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We will  continue  with  our  treatment  of  equation of  motion,  Navier–Stokes  equation  and

apply it to different geometry the same way we have been doing before and before we end

this part of the course I would like to show you two more problems slightly complicated but

nothing  that  Navier–Stokes  equation  and  common  sense  cannot  handle.  So  the  specific

situation that we have is where we have a cylinder, two coaxial cylinders, one is going to

remain stationary, the other will be rotated. So let us see, the outer cylinder is being rotated

while  the  inner  is  kept  stationary.  So I  have  a  cylinder  which  is  stationary  and another

cylinder which is coaxial but it's being rotated with some velocity. 

And the space in between two cylinders is filled with a liquid. Now you can clearly see that

how much force, how much torque in this case would be required to move the outer cylinder

at a constant speed, at a constant speed uh would depend on what kind of liquid we have in

between. So if we have a highly viscous fluid, you would require more torque and if it's a

very light fluid, very low viscosity then it would be easy to rotate the outer one with the same

speed. Now this suggests that measuring the torque of such systems where one of the two

coaxial cylinders is being rotated with some speed while the other is kept stationary, this

torque can be calibrated with the viscosity of the liquid. 



So in other words if you know the viscosity of the liquid, if you know the torque, if you can

measure the torque you should be able to calculate what is the, what is the viscosity of the

liquid. This is a very common; this is a quite common and accurate method to, to measure the

viscosity of unknown fluid, unknown liquid. But before we can get up to that point, I need a

compact expression that connects that torque with the viscosity of the liquid. So you as a

transport phenomena expert, you are given the job to find out what is going to be the torque

necessary to rotate one of these cylinders while the other is kept stationary and when we have

the liquid in between, what is the torque required to rotate the outer cylinder and obviously

the torque, the expression for torque will contain, from our common sense we can say it

should contain geometric parameters and by geometric parameters I mean the, the radii of the

inner and the outer cylinders, the length of each of these cylinders, what is the density of the

fluid, what is the viscosity of the fluid and at what speed the outer cylinder is being rotated. 

So my goal for this specific problem is to find an expression for torque, the expression of

which would contain among other things the unknown parameter viscosity; so measuring the

torque I should be able what is the viscosity of the liquid. So it’s very good model to measure

the viscosity. Its,  it’s a very good model for some of the viscometers which measure the

viscosity  of certain liquid.  Now when we talk about  the viscosity measurement,  the first

instrument that comes to our mind is the capillary viscometer where a liquid is allowed to fall

through the, or fall through the very narrow capillary and you know from your high school

physics how to connect the viscosity with the flow rate,  nothing but the Huggin Poisson

equation which you have derived. 

But this becomes problematic if you have a highly viscous fluid, if you have a viscous fluid

to deal with, then in order to collect sizeable quantity of the liquid to predict what is the flow

rate it would take a very long time, Ok. So for those liquids, you must device other ways to

measure  the  viscosity,  not  the  capillary  viscometer  way.  And  the  problem,  the  present

scenario, the present situation that we are going to discuss and model is an ideal case to be

used, ideal candidate to be used to measure the unknown viscosity of the liquid. So we are

looking at the tangential annular flow of a Newtonian fluid and the system in which 
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this annular flow takes place is in between two cylinders and I am looking at the top. In this

one is moving with an angular velocity 
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equal to omega naught. The inner radius is k r. The outer radius is equal to r 
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and the inner cylinder is stationary. 
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The outer is rotating. And of course you can 
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imagine what kind of a flow profile it's going to be; so here it will have a higher velocity and

as progressively you come inside the velocity will start to decrease. So this is the kind of

velocity profile which you would get and of course the velocity at this point must be equal to

zero since 
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you have no-slip over here. So here you have no-slip and in this point also you have no-slip.

So you, you can also write that v r and v z both are zeroes. 
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So it is 1 D flow that means liquid is only rotating, there is no velocity in the r direction and

there is no velocity in the z direction so both in r and z direction the velocity would be zero.

And since I don't have a pressure gradient, I also assume that there is no pressure gradient in

the theta direction. So 
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in the theta direction you can assume it is almost like a Couette flow because in this direction

the liquid is dragged in the theta direction because of the motion of the outer cylinder. There

exists  no pressure gradient to drive the flow and since it's  vertical  therefore this plane is

parallel to the ground, therefore there is no effect of gravity in the theta direction. So there is

no pressure gradient and no body force in the theta direction. The only motion in the fluid in



the theta direction is initiated by the motion of the outer cylinder which is rotating. So in that

sense it's like a Couette flow, however there are 
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some dissimilarities. The Couette flow in this case is, is not in Cartesian coordinate system

and  the  separation  between  the  cylinders  is  significant,  Ok  such  that  the  Couette  flow

approximation  or  the  parallel  plate  approximation  which  we  have  done  in  the  previous

problems cannot be used in this case. So the two cylinders are sufficiently apart from each

other  which  does  not  let  you,  does  not  allow you to  use  the  approximation  by which  a

cylindrical problem can be converted to a, to a Cartesian coordinate problem. So we have to

deal with the equation, with the cylindrical Navier–Stokes equation, Navier–Stokes equation

in cylindrical component. 

So I have 3 choices. One is the component equation in r direction, the component equation

for, the theta component motion equation and the z component motion. If you again think

about this, since v r is zero there is no motion in the r direction, Ok. So the, since the two

cylinders, the bottom of the cylinder is, is blocked therefore there is no motion in z direction

as well. So if you solve the r component of Navier–Stokes equation and the theta component

of  Navier–Stokes  equation  you will  simply  get  the  expression  for  the  pressure  gradient.

Because since there are no velocities the entire left, left hand side would be zero. Since there

is no velocity gradient the viscous term would be zero so what you get is, for example for the

z component minus d p d z is equal to rho g, Ok. 

So rho, in the z, in the z direction since gravity is working so therefore we will simply have,

if I write the z component equation, the variation in the, the variation of pressure in the z



direction is to be related by a body force which in the case of the r comp, in the z component

will simply be the gravity. So d p d z and d p d r, the corresponding body forces, in one case it

will be the centrifugal force, and in other case it is going to be the gravity force. 

So these can be used to obtain the pressure but these two expressions tell us nothing about the

velocity  expression.  But  my  aim  is  to  obtain  the  expression  for  velocity  and  somehow

connect this velocity expression or the gradient of the velocity to the shear stress prevalent in

the system. Once I  have the shear  stress evaluated,  from the evaluated,  from the known

expression of velocity I should be able to relate this shear stress to force and force to torque.

That is the approach that we should take. So I start with an equation that solution would give

me the expression for velocity. Once I have the velocity I will find out what is the velocity

gradient. If I know the velocity gradient, then I need to use the appropriate form for the stress

of  a  cylindrical  coordinate  system which  is  slightly  different  from that,  which  is  not  as

straightforward as that of a Cartesian coordinate system. 

So from the velocity gradient and the expression for shear stress I should be able to get the

complete expression for shear stress which definitely will contain the unknown parameter

viscosity. Once I have the shear stress I then multiply it with the relevant area to obtain what

is the force. Once I have the force I multiply that with the lever arm, in this case capital R to

obtain what is the torque and again the, the viscosity that we had in the velocity expression,

in the shear stress expression, in the force expression and in the torque expression will remain

the only unknown in that expression. 

So if I can measure what is the torque needed to rotate the outer cylinder with some velocity

then I should be able to calculate using that expression what is the viscosity. Thus my aim is

to obtain the velocity. In order to obtain the velocity I need to use that component of Navier–

Stokes equation in which we can foresee some motion. And for that the only direction in

which there is motion is the theta component. So we must write the theta component motion,

theta component of the equation of motion in cylindrical coordinate system and try to see if

we can obtain an expression for velocity. So that is what we are going to do next. 

So  if  you  write  the  theta  component  of  the  N  S  equation  Navier–Stokes  equation,  the

complete expression would be, 
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which is available in your textbook as well. 
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So this is the final form of the equation and even though it looks ominous to start with, but

you would see that after you cancel the terms it is going to be very compact. So let's start

with the first one which is the temporal term. So this would obviously be zero since we are

dealing with steady state. 
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So since it's a steady state case then del theta del t would be equal to zero. Come to the next

term. v theta, variation of v theta with r and I have a v r in here but there is no velocity in 
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the r direction so v r would be zero. Here v theta is non zero but the del v theta del theta, this

is equal to zero 
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which would simply says which is the statement of the fact that theta, the velocity is not a

function of theta. So if you fix the r the velocity is not a function of theta. Velocity is a

function of r but velocity is not, if you fix the r the velocity is not a function of theta. And

here v r is simply going to be zero 
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and in this case v z is going to be equal to zero. 
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We have mentioned, we have assumed that there is no pressure gradient in the theta direction

so it is simply the outer one; the outer one is simply rotating. There is nothing to force the

liquid, no pressure gradient to force the liquid to move in the theta direction, so therefore this

is going 
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to be equal to zero and v theta is a function of r, v theta here is a function of r so I cannot, I

cannot neglect, I cannot make a statement, I cannot neglect this term. So this term will remain

in the governing 
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equation. If I move to the next term, v theta is not the function of theta so this will be equal to

zero. 
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Then there is no question of v r so this part is going to be equal to zero. 
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And v theta is not a function of z so this is going to be equal 

(Refer Slide Time: 17:57)

to zero as well as there is no body force, no component of g in the theta direction, in a vertical

cylinder therefore this will be zero 
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as well. So what you see from here is that the, from the entire equation, the entire Navier–

Stokes equation, theta component of Navier–Stokes equation all terms are zero and you get

the governing equation out of this to be zero equals d d r of 1 by r d d r of r v theta is equal to

zero. So this is your governing equation. And look at it; look at how easily you could 
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obtain this governing equation starting with a general equation that takes into account all

possible variations. But you do not have these many complications so you can directly get

from the theta component of Navier–Stokes equation what is your governing equation. Now

think of the difficulty or the potential for errors if you are going to imagine a shell around this

and try to figure out what are the momentum in term, out term, 
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shear stress, pressure, gravity and so on. So here you don't have to do anything. That's the

beauty of Navier–Stokes equation. You start out with the equation, cancel out the terms that

are not relevant and you get a very compact expression in, in a matter of minutes, Ok and you

can never be wrong so if you use Navier–Stokes equation. So with this equation we are now

going to work on, on this equation to obtain what is the velocity expression. So we start with,

we started with the expression is zero is d d r of 1 by r d d r of r v theta is equal to zero

which, 
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after integration would give you v theta is c 1 by 2 r plus c 2 by r and the two boundary 



(Refer Slide Time: 20:17)

conditions are the no-slip conditions; that is at r equals kappa r, v theta is zero. So r equals k r,

this is essentially the inner cylinder where as at r equals capital R 
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theta would be equal the angular velocity times r. This is what you have on the outer cylinder.
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So the expression for velocity and the boundary conditions 
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would, when you put these two together you obtain the expression of velo, v theta to be

omega naught r k r by small r minus r by k r divided by k minus 1 by k. The velocity is a

function of the imposed 
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condition which is the velocity with which the outer one is being rotated and all the rest are

geometric parameters and therefore v theta is a function, function of r only, function of r. 

Now as I mentioned 
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to you before 
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is  what  we know as  the shear  stress for  a  simple Cartesian coordinate  system will  have

slightly different form because of the transformation from a Cartesian coordinate system to a

cylindrical  system.  So  the  expression  for  a  shear  stress  in  a  cylindrical  or  a  spherical

coordinate system would simply not be equal to mu times the velocity gradient. There would

be other components present in it and in any text you would see what is the corresponding

form  of  the  equation,  corresponding  form  of  the  shear  stress  for  cylindrical  coordinate

systems and for spherical coordinate systems. 

Here you would see that the non-zero component of the shear stress, the velocity is in the

theta  direction  and  the  theta  component  of  the  momentum,  because  of  the  variation  of

velocity in the r direction would get, would get transported in the rth direction. So tau has the

first subscript to be equal to theta because theta denotes the direction, the momentum the

theta  component  of  momentum which  is  non  zero  in  this  specific  case.  So  theta  is  the

direction in which you have velocity, theta is the direction in which you have momentum.

Due to viscosity, this theta momentum gets transported in the rth direction as the velocity

varies in the rth direction. 

Velocity does not vary in the theta direction so therefore tau theta theta is zero, velocity does

not vary in the z direction. Therefore tau z theta is zero. However since velocity varies in the

r direction, tau r theta will be non zero. So the only shear stress expression that you should

read, you should find out from your text is the expression of tau r theta from your text book.

So once you have the expression of tau r theta from your textbook for a cylindrical system

then your job is done and that tau r theta, expression for that tau r theta will contain the

velocity gradient. The theta, the theta component, velocity, theta component velocity gradient



of that. So the job is to identify which theta, which tau would be non-zero which is simple in

this case and find the expression of that tau from your textbook and plug in the expression of

velocity which you have obtained by the solution of Navier–Stokes equation. So let’s see how

that's done. 

So here what you have is the expression for velocity and you realize that tau r theta is the

only non-zero tau 
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you have in the system and from the text you know that, you would be able to see that tau r

theta is mu times r del del r of v theta by r plus 1 by r del v r by del theta. So this is the

expression for 
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tau r theta for a cylindrical coordinate system and here you know that v r is zero so therefore

this is going to be equal to zero so 
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your tau r theta would simply be equal to the first term. So this would be the expression for

tau r theta. 
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And in this expression we have to put in the expression for v theta in 
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here and do the del del r of that and this would look like as mu times r d d r no need to use the

partial signs in v theta is the function of r only it is not a function of theta or of z and then

what you get is, so this is the expression that you would get 
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and once you do this  I  will  skip the intermediate steps as they do not require  any more

understanding part tau r theta final expression would be minus 2 mu omega naught r square 1

by r square times kappa square minus 1 minus kappa square. So this is the expression for tau

r theta. 
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The torque t required to turn the outer shaft is equal to the force. The force would be tau r

theta but it is evaluated at r equals capital R since it is the torque needed to rotate the outer

shaft, so this is tau r theta and since this is on the fluid, on the shaft would be minus tau r

theta multiplied by the area which would be equal to twice pi r L so this is area, this is stress

and so together 
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it's force and it should be multiplied with the lever arm which 
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in this case is r. So this expression for tau r theta is then plugged in here and you get a 
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compact expression of tau as force, this is 
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the final expression for shear stress, for torque that you would obtain. So this is a very good

model for friction bearing and the viscometers which are based on this expression or this

concept are known as Couette Hatschek viscometer. 

So what we have done so far is we have obtained an expression for torque when we have two

cylinders,  one is  kept stationary,  the other one,  outer one is being rotated and the torque

expression  contains  the  geometric  parameters  which  are  L,  r  and  kappa,  the  operational

parameters which are omega naught and the property of the fluid, property of liquid that is of

interest as tau. 
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So once T is measured, the torque is measured, the velocity, the geometry, the length et cetera

are  known  then  the  only  unknown  mu  in  this  case  can  be  accurately  calculated.  The

viscometers which are based on this principle are known as Couette Hatschek viscometer.

There is only one more thing to add before we close 
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the discussion on rotating viscometers, viscometer where one is rotated. Here you have seen

that inner cylinder is kept stationary, the outer one is being rotated. What happens if we do

the reverse way? That is the outer is kept stationary, the inner is being rotated. If that's the

case, then also this formula, slight variation of this formula will still hold but 

(Refer Slide Time: 30:17)

the
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the , the expression that we have obtained for this specific case, let's review what are the

assumptions that we have made in this. The first and prominent assumption that we have

made, that it is one dimensional steady state laminar flow. The moment you start to rotate the

inner cylinder keeping the outer cylinder as fixed, the packets of fluid will have a tendency to

move towards the outer edge across the flow because the packets of fluid which are close to

the inner rotating inner cylinder, they have a high velocity. What they see next to them is a

region of low velocity. 

So the tendency of that fluid packet, faster moving fluid packet would be due to centrifugal

action  to  move  towards  the  outer  edge  across  the  flow.  When  that  happens  the  straight

streamline nature of  the  flow is  going to  get  disturbed and our  assumption that  we,  our

assumption  of  laminar  flow  will  be  put  into  severe  test.  So  in  order  to  maintain  the

assumptions in the system it is always customary to rotate the outer one and not the inner one

such that the laminar flow can be maintained for a longer duration for a higher value of

omega naught, higher value of the rotational speed and you can still use the expression to

obtain what is the unknown mu. 
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So the applicability of this relation in terms of laminarity would be sustained to a higher

value of omega naught if the inner cylinder is kept stationary and the outer one is rotated. So

that's something one has to keep in mind while working with viscometers where one cylinder

is kept stationary, the outer, the other one is rotating. It's always the outer one which rotates

and not the inner one, 
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thank you.


