
Transport Phenomena
Prof. Sunando Dasgupta

Department of Chemical Engineering
Indian Institute of Technology, Kharagpur

Lecture 11
Equations of Change for Isothermal Systems (Cont.)

(Refer Slide Time: 00:20)

This is a going to be a tutorial class on the concept that we have, we have covered in for

equations  of  motion,  mostly  Navier–Stokes  equation.  What  we have  seen  in  this,  in  the

previous two classes is the, from the fundamental concepts of derivatives, there are different

types,  the equations of continuity and the equation of motion,  we have a comprehensive

system right now which could address any of the fluid mechanics problems at least up to the

point  of  governing  equation.  The  concepts  behind  choosing  the  boundary  condition  will

remain  unchanged  from  whatever  we  have  discussed  previously.  So  just  a  quick

recapitulation of what we have done over here, 



(Refer Slide Time: 01:07)

What you see this is the equation of motion. When in the equation of motion you add the

constant  rho and constant  mu and equation  of  continuity  what  you get  is  Navier–Stokes

equation. So this is mass per unit volume multiplied by expression, so this becomes force per

unit  volume. Similarly del of p is also force due to pressure due to unit  volume. This is

viscous force per unit volume and rho g is the gravitational force or the body force per unit

volume, so all terms in Navier–Stokes equation are nothing but force per unit volume. In the

special case would emerge if you assume that it is an inviscid fluid or the viscosity of fluid is

insignificant. Since the viscosity of the fluid is insignificant what you get from Navier–Stokes

equation is something which is known as Euler's equation for inviscid flow of liquids where

this mu term would simply be dropped and what you get is this Euler's equation where rho

times turbidity is the sum of surface force mainly pressure and body force which is gravity.

Now the expressions for different components x, y, z components of Navier–Stokes equation

in Cartesian, cylindrical and 
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Spherical components are given in any textbook. You can refer either to Bird, Stewart and

Lightfoot or you can also, any of the or Fox McDonald, any of the textbooks will contain the

expression for Navier–Stokes equation in different coordinate systems, the x, y, z components

in Cartesian, cylindrical as well as spherical coordinate system. So what you need to do in

that is first see what is the, what kind of a geometry you have in hand. Then accordingly

choose whether it is Cartesian, spherical or cylindrical geometry has to be chosen. Then find

out what is the principal direction of motion. 

If  it  is  one-dimensional  flow,  let's  say  flow  in  the  z  direction  then  you  choose  the  z

component of equation of motion and simplify the terms which are not relevant for these in

that context. If it is, if it is flowing two dimension, then you have to, let's assume you have to,

you have to analyze both the x component of equation of motion as well as y component of

equation of motion and then see what kind of simplifications you can suggest in order to

make the problem, make the set of equations solvable hopefully by the analytic method. If

not  we  have  to  think  of  other  methods  including  numerical  techniques  to  solve  such

problems. So the table for these equations would look something like this. so 
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this is the, this is from Bird, Stewart and Lightfoot and what you see here are the Cartesian

coordinates 
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x, y, z; what is the, what is the equation of motion, 
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cylindrical coordinates r theta and z, what is the r component of equation of motion, 
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theta  component  of  equation  of  motion,  and z  component  of  equation  of  motion  and in

spherical components r, theta and phi be different components of motion in three different

directions. So these are available in any standard textbook. This is from Bird, Stewart and

Lightfoot. So what you need to do is from these nine equations, first you have to see which

equation is going 
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to be relevant in your case. Is it Cartesian, is it cylindrical or spherical? Let's say 
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for the case of flow through the tube. For flow through the tube that we have analyzed so far

the direction of the motion of the fluid was in the z direction. 
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So first of all in a tube we must choose the Cartesian coordinate system. Once I choose the

Cartesian coordinate system I will  also have to choose what  is  the principal direction of

motion;  that  is  the  z  component.  So  in  that  table  that  lists  the  different,  the  different

components of Navier–Stokes equation, I must choose the z component of the cylindrical,

cylindrical  version  of  Navier–Stokes  equation  because  my principal  direction  is  in  the  z

direction and then cancel the terms which are not relevant. So I will, in this tutorial part of

the, of the course I will pick three problems that we have done in our, using shell momentum

balance, one where a fluid flows along an incline. It is a freely falling liquid film. That means

there is no imposed pressure gradient in the direction of flow. 

The flow takes place only because of gravity. In the second problem, the one that we have

done is where the flow is taking place in a tube and there is a pressure difference as well as

the gravity is acting downwards. And the third problem that we will look at is where we have

a tube, the flow is from below, the liquid which is the top, the top of the tube spills over and

starts flowing along the sides of the tube. So these three problems we have put considerable

effort in obtaining the difference equation and from the difference equation, the differential

equation. You would see and I am sure all of you would agree with me towards with the end

of this class is that the Navier–Stokes equation, the use of Navier–Stokes equation is the way

to go for solving the problems of fluid mechanics, solving the problems of fluid flow, the

differential fluid analysis of fluid motion.

So we start with the first case where there was flow along an inclined plane, no pressure

variant only gravity. So this was, this was the case which we have drawn. 
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This is the plate and I have a flow of liquid, the dimensions, this is x direction, this is z

direction and in the y direction the film is assumed to be the, the plate is assumed to be very

wide. This is the length and the angle is beta. The thickness of the falling film is equal to

delta. 
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So let's see if we can simultaneously find out which equation that we need to choose from

this table. First of all, one must see that I have to choose, if this is a Cartesian coordinate,

cylindrical  or  spherical  coordinate,  so obviously it  is  going to  be a  Cartesian  coordinate

system. So I am going to restrict myself to 
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B 6 dash 1, B 6 dash 2 or B 6 dash 3. The principal direction is in the z, principal motion is in

the z direction. So I must choose the z component of equation of motion, 
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Ok. So if I choose the z component of equation of motion, then I am going to write the z

component, 
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either the expression that you see here, everything 
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is  expressed  in  terms  of  velocity,  in  terms  of  velocity.  But  you  can  also,  also  use  the

component, the form of the equation where instead of everything in terms of velocity; it is

expressed in terms of shear stress. That is the same thing except mu times del v del v x del x

is simply going to be del square v x by del x, we can express it in terms of shear stress. So

that's the same thing. This is what 
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I am talking about. 
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In here the same equation that is seen in the next page 
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where everything is in terms of velocity, here 
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everything is in terms of shear. So 
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in some cases it would be, it would be beneficial to work with the shear stress form, in some

cases it would be more convenient to use with 
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the  velocity  gradient  form,  Ok.  So  you  can  choose  which  one  is,  which  one  you  are

comfortable with. But the conceptually they are the same. So I am going to start with, 



(Refer Slide Time: 10:36)

in  order  to  bring  parity  to  what  we  have  done  in  our  previous  class  while  solving  this

problem, I  am going to  choose the z component  of  Navier–Stokes  equation in  Cartesian

coordinate system and we are, I will use the shear stress form of the equation. Because you

would remember that the governing equation that we have obtained for that case was in terms

of shear stress. So I will choose the shear stress. The same problem can be done using the

velocity form of the Navier–Stokes equation. That is fundamentally, conceptually nothing, no

difference between the two. 

So let me write this first. 
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This is the z component of this equation, Navier–Stokes equation; first one is the temporal

term or the time varying term. These are the convective part of the momentum transport. This



is the conductive or viscous transport of momentum. Let's see what these terms are, once

again. This is the temporal term. Any term that contains the velocity component separately,

these are convective transports of momentum. So the entire left hand side of Navier–Stokes

equation  is  the,  is  the  convective  transport  of  momentum;  the  convective  transport  of

momentum and temporal transport. When you come to the right hand side, this is the surface

force part, this is the shear and this is the body force. So let's see what are the, how did we,

how can we solve this problem. What were the assumptions that we have made while solving

these problems? The first one, it was a steady state, the second was one D flow where you

only have v z which is not equal to zero but all other components are going to be equal to

zero. No pressure, no pressure acting on the system and you only have gravity which is the

component of the gravity in this direction. So 
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the first term would obviously be zero since the velocity in the z direction is not a function of

time, so 
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the reason for that I am, since we are writing s s or steady state. Now if you look at the

second term, the v x, the x component of velocity, x component of velocity, it is not there.

Only v z is non zero 
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in this case but both v x and v y, v x and v y both are equal to zero. So this part is zero since v

x is zero. 
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Similarly this is zero since v y is zero. 
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However in the fourth term v z is not equal to zero 
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but equation of continuity since we are also going to assume that this is an incompressible

fluid. If this is an incompressible fluid 
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then what we have is that v z is function of z, is not a function of z only. So v z if you look at

the figure is a function of x, v z is not a function of either y or z. Depending on where the

film is located, with respect to it, 
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distance from the solid wall the velocity varies. So the velocity is zero 
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on the solid liquid interface, that is at that this point the velocity would 
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be zero. And the velocity would progressively rise as we move away from the solid plate.

Therefore v z is the function of x. 
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But v z is not a function of y, v z is not a function of z or it's a function of y. So therefore del

v z del z, since v z is not function of z, this is going to be zero since v z is not 
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a function of z. So what I have in the entire left hand side is going 

(Refer Slide Time: 15:59)

to be equal to zero, Ok 
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and then comes this del p del z. This is a case where no pressure is acting, 
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 no applied pressure gradient on the system so this could be equal to zero. 
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In case if  this  is  going to be be equal to  zero then what you have in here is  then the z

component,  the  now  we  are  going  to  add,  look  at  the  shear  stresses.  The  z,  for  the  z

component to be transported in the y direction there must exist a velocity gradient in the y

direction. So for z component of momentum to get transported in the y direction there must

be a y variation of velocity or there is no y variation of velocity. So v z is not a function of y

and therefore 
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tau y z is equal to zero. Similarly 
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for z component of momentum to get transported in the z direction, v z must be a function of

z 
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but we know that v z is not a function of z therefore tau z z would be equal to zero. I will

repeat it once again. The tau y z represents the transport of z component of momentum in the

y direction through viscous means.  Now transport  of z  momentum in the y direction by

viscous means will  only happen when there is  a variation in v z with y.  So without the

velocity gradient velocity variation, there cannot be any transport of viscous momentum. But

we understand that v z is not a function of y. v z 



(Refer Slide Time: 18:01)

is not a function of y, there is no gradient in the y direction, there is no gradient of v z in the y

direction. If there is no gradient then tau y z must be equal to zero. Similarly when we come

about tau x, x tau z then in order for 
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z component to have a viscous transport in the z direction the velocity must vary. But we

understand that the velocity in the z direction is not the function of z. So therefore tau z z is

also  equal  to  zero.  Now  we  come  to  this  part.  For  z  component  of  momentum to  get

transported by viscous means in the x direction v z must be a function of x. So need to see, 
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is really v z a function of x? If we look at the picture over here, v z is definitely the function

of x, Ok. v z varies with x 
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being zero over here and maximum over here. So there will be a transport of z momentum in

the x direction since v z is a function of x. 
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So what I have then d d x of tau x z in, I have dropped the partial sign because it is only a

function of x, tau x z or any quantity is only a function of x. They are not functions of; they

are not functions of y or z. So of the three terms of the viscous transport of momentum, only

one will remain. The rest are zero because of our conditions, because of our understanding.

Now come, we come 
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over here. g z is the component of the body force in the, in the z direction and from the figure

you can clearly see that the component of gravity in the z direction is simply g cos beta. So

your, this would simply be equal to g cos beta. 
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And if you look at the previous, the one that we had done 
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in the last week, this is exactly the same 
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governing equation that we have obtained. So there is no need at all to think about a shell,

make balances along, along and across the surfaces, find out what are the pressure forces and

so on. The only job that you need to do is simply you choose the relevant, the right equation

component for Navier–Stokes equation in the appropriate coordinate system. After that use

your understanding, the description, the physics of the problem, cancel the terms which are

not relevant. What you will be left with is the governing equation. So it's a very simple way

to arrive at the governing equation and once you arrive at the governing equation the rest will

be identical. That means we are going to integrate in the same way, we are going to use the

same sort of, same boundary conditions and you will end up with the same solution but in a

much more structured and easy way. 

So in the next problem what we are going to see is the same problem where we have a flow

through a tube in which there is going to a pressure gradient and there's going to be, there's

going to  be  the  action  of  gravity  which  has  led  to  the  Huggins  Poisson equation  in  the

problems that we have dealt with before. So our next problem is analysis of flow through a

vertical tube when there is a pressure gradient active in the system. So what we have then is 
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the, a tube of, this is the radial direction, 
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this is the z, actual 
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direction. You have some pressure p naught over here and you have some 
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pressure p L 
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over here and as a result of which you are going to have flow in and flow out of the system. 
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If you remember previously we had to think of a shell like this, and in that shell we have

found out what is the amount of liquid coming through the annular top surface, 
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what is the shear stress that is acting inside and so on. We need not do anything, anything of

that sort right now, Ok. What I need to do only is 
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find out, use the, again 
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the right component the right component 
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of the equation over here. This is a cylindrical coordinate problem, r, theta, z. I am going to

choose the cylindrical coordinates. 
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The principle direction of the motion 
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is in the z direction. So I would choose the equation B dot 5-6 
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which is nothing but the z component of equation of motion in cylindrical coordinate. So this

is the last, this last equation I am going to choose as the starting point to derive the governing

equation for this specific problem, Ok. So I am going to write this equation in first.  The

equation 
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is nothing but this z component of equation of motion which from the text would simply 
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tell you row del v z del t, the temporal term v r del v z del r plus v theta by r del v theta by del

theta plus v z del v z by del z since it's a, since it's a 
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cylindrical  coordinate  system the  terms  are  slightly  more  involved  and  complicated  but

ultimately it would not matter because we would be able to simplify it to a large extent. This

is a pressure term and then what I have over here is the viscous transport of momentum and

also you have the body force term. 
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Now I will write this as term 1, 2, 3, 4, 5, 6, 7, 8 and 9. 
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So what were the descriptions of the problem that we have, we have seen over, we have done

over here? That is, that is one D flow, that was the same assumption that we have used, I am

just repeating the assumptions that we had made over there; flow only in z direction, it's

incompressible flow, 
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v z is not equal to zero and v z is a function of r, v z is not a function of theta or of z 
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and all the other components v r and v theta would equal to zero. 
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So these were the basic assumptions that we have, we have made in solving the previous

problems, and the another one which I missed is it's a steady state condition, 
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Ok. So we would like to see whether or not it's, what happens to 1, term 1 over here. Will it

remain in the governing equation or I can cancel it? If you look at term 1, and see steady state

so term 1 has to be equal to be zero since it's a steady state problem. 
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What about term 2? Term 2 is this term and if you look here it would simply tell you the term

2 would also be equal to zero since your v r is equal to zero. 
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About term 3, the same thing term 3 would also be equal to zero; this is my term 3 since v

theta is equal to zero. 
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Term 4, term 4 v z is not zero, but del v z del z is zero since v z is not a function of z, Ok. So

this is zero since v z is not a function of z. So the entire 
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left hand side of the expression is 
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zero. The temporal and the convective transport of momentum in, for this specific problem is

going to be equal to zero. Now what about term 5? The variation of pressure with z, I know

that the pressure over here is p naught, the pressure over here is p L, so 5 is not equal to zero.

There is a pressure variant that acts on, that acts on the system. Now remaining is the z

component gets 
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transported in r direction is the significance of tau r z. So in order for z component to get

transported in the r direction there must be variation in v z with r. Do we have variation of z

in r? Let's see over here. The velocity v z is the function of r so obviously the velocity varies

with r and therefore tau r z is non-zero and cannot be neglected from this equation. So this is

not going to be equal to zero 
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but how about z component getting transported in the theta direction? In order for that to

happen the velocity must change with the theta direction which it does not because velocity is

not a function of theta so your seventh term is equal to zero since v z is not a function of theta

therefore it leads to tau theta z to be equal to zero. 
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Eighth term tau  z  z,  z  component  in  z  direction,  for  that  to  happen,  velocity  must  be  a

function of z but velocity is not a function of z. So your term 8 is also equal to zero; and how

about your term 9, 
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term 9 is 0? g z there is definitely a non-zero component of component of gravity in the z

direction equal to plus g. So this is not equal to zero. 
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So what I have then out of the governing equation is this, this would be zero and only these

three terms, term 5, term 6 and term 9 
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would remain in the expression and when that happens the, this equation takes the form as

minus del p del z plus 1 by r, sorry minus 1 by r del del r of r tau r z plus rho g and 
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since you have, your velocity is a function of z only, the velocity is a function of z only,

essentially I can write this expression 
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as zero equals minus del p del z minus 1 by r d d r of r tau r z. There is no need to write a

partial one now. And this governing equation, if you look at, 
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it is identical to the one that we had derived in the previous class by taking, by writing a shell,

by imagining a shell and getting, getting all the momentum in and out terms of this and this

was solved using the condition that velocity is zero, v z is zero at small r equal to capital R

which is the no-slip condition and 
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your tau r z has to be finite at r equals zero. So once you 



(Refer Slide Time: 32:29)

reached this point then the rest of the solution would be identical to the one you had done

before. Now what you then see here is
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you do not need to think of a shell right now. You do not need to individually evaluate and

balance all the, all the mechanism by which momentum can come into the control volume,

the forces and so on. All you need is simply choose the expression, the right expression of

Navier–Stokes equation in the correct component form. So the table, the table that is provided

from that, choose the equation. And then look at the equation and think carefully, should the

term remain based on my understanding and statement of the problem? Is there a temporal

term? Is it unsteady state process or a steady state process? 



Then look at the component, each component of the velocities; are all v x, v y, v z in the

system or is it a one D flow therefore only v x is present and I can safely neglect any term

containing v y and v z and, and, and only have the term containing v x? In some cases it is

not the velocity but it is the velocity gradient which is important. Is it, is it one D flow where

you have v x, non zero v x but v x is not a function of x, v x is a function of some other

dimension, let's say z. So v x may not be zero but del v x del x is zero therefore the term

which is v x del v x del x that term would be equal to zero so what you would see in most of

the cases, most of the simple problems the entire left hand side of the Navier–Stokes equation

which represents convective transport of momentum would, can be set to zero and then you

come to the right hand side. 

The first term is the pressure gradient term. Is there any input pressure in the system? If not,

then that term can also be dropped. The last term is the gravity term, the body force term. Is

there anybody force term present in the system? If so, choose the right component of gravity

in order to evaluate what is the force which is the body force which is acting on the control

volume,  on  the  fluid.  Once  you are  done then  what  you have  is  essentially  the  viscous

contribution of momentum transport and there you would see that from looking at the two

subscripts let's say, tau y x, it is the y, it's the x component of momentum getting transported

in the y direction because of the gradient in velocity v x that exists in y so x component can

get transferred in y only if there is a variation in velocity in the y direction. Do we have that? 

So look at the subscript and think whether or not there should be any stress in the prescribed

direction due to the motion, due to the principal direction of motion. So there also you would

see that many of these, some of these sheared stress contribution to the overall momentum

transfer can be neglected, Ok. And after you clear, after you cancel all the terms that are not

relevant  to  the  problem at  hand,  what  you are  left  with  is  the  governing equation.  That

governing equation can then be used; can then be integrated, that's a differential equation, it

can  be  integrated  with  relevant  boundary  conditions  to  obtain  what  is  the  velocity

distribution. The functional form of velocity as, as a function of the x, y, z and in some cases

time as well. 

This differential  approach of using Navier–Stokes equation would give rise to a compact

velocity expression in many of the cases, not in all but in many of the cases. So in subsequent

lectures we would see applications of Navier–Stokes equation in slightly more complicated

geometry  and  how to  solve  them.  In  some cases  we  will  get  a  nice  compact  analytical



solution, in some cases we may not but the concepts behind the, the Navier–Stokes equation

and the ease of using Navier–Stokes equation to obtain the governing equation to obtain the

governing  equation  for  a  given  flow condition  will  always  supersede  any other  method,

specially the shell momentum balance. That's all I wanted to convey in this lecture. Thank

you


