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Hello everybody,  so in the last  class  while  discussing the properties  of  the thermodynamics

potentials we came across or rather we developed a set of Maxwell’s equations which I have

written  down on or  which  have been written  down here  for  your  convenience.  Now if  you

observe this particular set of Maxwell’s equations you will find that these equations they actually

relate the change in entropy with the change in pressure change in volume.

So in other words this basically relates the changes in entropy with changes in pressure volume

and we will also see how they are related to the changes in temperature? And from here we are

going to derive the changes of enthalpy, internal energy etc with changes of pressure volume etc

and this is as an endeavor to relate the measurable and the non-measurable properties. So that we

can estimate the non-measurable properties simply by measurement of the measurable properties.
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Now among the measurable  properties  the common ones  as we all  know they are pressure,

volume, temperature out of which pressure and temperature are most easily measured and most

easily controlled along with that we also know that beta and Kappa these 2 the coefficient of

isothermal  compressibility  and  the  coefficient  of  thermal  expansivity  these  2  can  also  be

measured. Now let us see how we can play with these set of Maxwell’s equation in order to find

out say the change of entropy the isochoric change of entropy with pressure.

What does isochoric change in entropy means? It basically means del s del p at constant v, right?

Now if you observe then this is related to, if you see the first Maxwell’s equation this will be

equal to del v del t at constant s, so therefore we can write it down as say for instance s from

some particular initial state say P2v1 to say v1P1 this will be equal to del s del p at constant v

integral of say from P1 to P2 dP which can also be written down as minus integral P1 to P2 del v

del T at constant s dp, right?

In the same way suppose I tell you to find out the isobaric change in entropy with volume, what

does this signify? This basically refers to del s del v at constant p, right? So therefore we would

like to find out integral of this as a function of volume that means it is from v1 to v2 this is dv,

okay. So therefore this is equal to s say P1v2 minus s P1v1 which will be equal to if we relate it

we find that in this particular case their relevant Maxwell’s equation is the second Maxwell’s

equation, isn’t it?



We find out that the second Maxwell’s equation which del s del v at constant P with del P del T

at constant S. So therefore this will be equal to integral v1 to v2 del P del T at constant s  dV,

right? In the same way suppose I would like to find out the isochoric change in temperature,

what does that mean? That means del s del T at constant v. Now can you tell me in what way can

I find this particular quantity out?

Can I not write this quantity as del u del T at constant v divided by del u del s at constant v?

What is  del u del  T at  constant  v?  We  have already discussed the specific  heat  capacity  as

constant  volume and constant  temperature,  what is  del  u del  s  at  constant  v? remember  the

differential equation du equals to Tds minus PdV from there we find del u del s at constant v is

nothing but equal to the absolute temperature, right?

Same way if you want to find out del s del T at constant p we can simply write it down as del h

del T at constant P divided by del h del s at constant P all these things they come from the cyclic

rules again we know del h del T at constant P is nothing but equal to del q del T at constant P

which was equal to Cp and this term again from the original dh equals to Tds plus VdP we get

this is equals to T. So therefore we find that in this particular way we have been able to relate the

change in entropy with change in pressure with change in volume with change in temperature at

constant volume the change in temperature at constant pressure.

Now before I proceed I would like to remind you that when we were discussing the Maxwell’s

equation or the evolution of Maxwell’s  equation from the thermodynamic potentials  we had

derived the equation in terms of total quantities and I had used all sorts of capital alphabets in

order to denote vt sorry v, s, g, a, u and h. Now as I told you that all of these are extensive

properties and the same relationships which hold for total properties are also applicable for molar

properties or for specific properties at this moment we are going to deal with molar properties

and  therefore  since  we are  dealing  with  molar  properties  I  have  written  all  this  Maxwell’s

equations in terms of lower case alphabets meaning that I have been relating the change in molar

entropy with the change in molar volume, pressure and temperature.

It’s  important  for you to remember that  the same equations  that  I  have derived here can be

derived for total quantities as well the important thing to remember is if you are dealing with

total quantities all the quantities here should be total, if you are dealing with molar quantities all



the quantities written down is molar that is the only thing that we need to remember. Well, now

suppose we go for the?
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Suppose in this particular case, now let us see once we have derived or rather once we have

discussed how entropy changes with pressure, volume, temperature etc then we should be in a

position to derive that Tds equation which are known or in other words we should be able to

derive entropy as a function of volume and temperature and entropy as a function of pressure and

temperature.

Let  us see how we go about  doing this,  for in  order to derive this  in terms of volume and

temperature we just need to write this as ds equals to as a function of temperature and volume, so

this is del s del T at constant vdT plus del s del v at constant T dv in the last slide I have already

derived this as nothing but equal to Cv by T dT plus del p del T at constant vdv the Maxwell’s

equation have been written on the side so that you can refer to them and find out the way I have

derived.

This can also be written down in terms of beta and Kappa in that particular case this becomes

CvdT plus beta by Kappa dv, right? And using the and if in case you would like to find entropy

in terms of temperature and volume then in this particular case again we write it down in terms

of temperature and pressure, sorry I think I have mentioned volume it was pressure. So I can

write it down in terms of temperature and pressure and in this particular case this becomes CP by



T dT minus del v del T at constant pdp which can also be written down as Cp by T dT minus v

beta dp, right?

Now usually what we do is, these particular equations they are written in the form of Tds for our

convenience, right? And we usually write them down as Tds equals to CpdT minus T of this or

in other words here also we would like to write it down as CpdT T of this, right? Here also

suppose I would like to express it in terms of your Tds equations then in that case the equation

can be written down as it can be written down in the form of Tds equals to CvdT plus T of beta

by k Kappa, now these 2 equation they not only show us how s varies with temperature pressure

and volume temperature but they can also be used for finding out a large number of other things

as well.
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For example suppose we would like to find out u as a function of T and v, how to proceed in this

particular case? We already know the basic equation, what is the basic equation that we know?

We know that du I would just like to make the pen a little thicker, so that is it is easier for you to

see. We already know du that is equal to Tds minus pdv, this we know. And from the first Tds

equation which I have written down, from this particular Tds equation can I not substitute this

particular Tds and write it down as CvdT plus T del P del T at constant v minus p dp, right?

Or in other words I can also write it down in the terms of beta kappa etc. I can also write it down

as CvdT plus T beta by Kappa minus P sorry this is dv I made a mistake this is going to be dv,



right? So therefore by using the 2 Tds equations the first Tds equation I could actually express u

as a function of CvdT in this particular equation, okay.

Now from here let us see some very interesting result that we get, say for example for an ideal

gas what do we get? For an ideal gas, what is del h? Suppose from here sorry not del h what is

del u del v at constant p? We know for an ideal gas Pv equals to RT for one mole since we are

dealing with molar properties, so therefore in this particular case if you substitute del p del T at

constant v then for an ideal gas this particular term it becomes R by v. So RT by v is nothing but

equal to P. So therefore what do we find? The internal energy dependence on volume for an ideal

gas it disappears off and we find that del u del v at constant T that is that becomes equal to 0,

right?

And I would like to remind you that when we were dealing with the first and second laws under

that condition I had told you that for an ideal gas du equals to CvdT. You had assumed that what

I was telling was correct I could not prove that at that time. Now I show you from Maxwell’s

equation why for an ideal gas del u del v at constant T equals to 0. Same in the similar way

suppose I would like to find del u del P at constant T.

How to find this  particular  term out? We know from the cyclic  relationships  del  u del p at

constant T del P del v at constant T that will be equal to del u del v at constant T isn’t it? From

the cyclic relationships we have already proved that this is equal to 0. We know that this term is

not equal to 0. So therefore what does it imply? It implies del u del p at constant T will be equal

to 0, right? So therefore we have not only deduced du in terms of CvdT but we have also shown

that for an ideal gas u is independent of pressure and volume it is just a function of temperature

and nothing else which is a very well-known equation.
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In the same way suppose I would like to derive the equation for, in the same way if I would like

to derive the equation for h(T,P) right? In that particular case what do we get for h T,P suppose I

in the same way in this particular case I would again like to remember that sorry dh equals to

again from the Tds equation, Tds minus vdp, right? Again I substitute the second Tds equation

here the same way that I had done and then from there once I substitute what do I get?

I get dh is nothing but equal to CpdT plus v minus  T, delv del T at constant P dp or in other

words this can also be in terms of beta kappa etc. We can write it down as CpdT plus V into 1

minus beta T into dp, right? So therefore and this particular equation is particularly important

because for most of the practical applications we come across enthalpy changes of physical as

well as chemical processes. In this case also suppose I try to find out del h del p at constant T for

an ideal gas what do I get?

Suppose I do it for an ideal gas, so the for an ideal gas let me find out del v del T at constant p

what is del v del T at constant p for an ideal gas? It is nothing but equal to R by P. So therefore

RT by P for one mole of the gas is nothing but the molar value therefore this whole term cancels

out if you are dealing with ideal gas which shows us that del h del P at constant T for an ideal gas

is 0. Just the way we have proceeded for internal energy we can show in this particular case del h

del v at constant T will also be equal to 0.



I will just write it down properly, so this is also equal to 0. So therefore for an ideal gas what do

we know? h it is a function of temperature only h ideal we denote ideal gases with a subscript 0.

So therefore from here we can write h0 is nothing but equal to T1 to T2 Cp 0 dT. At this juncture

I would just like to remind you once more something which I had mentioned in the last class

something about nomenclatures. By this time you must already have been aware of the fact that

we  are  dealing  with  a  large  number  of  properties  and  if  we  do  not  denote  the  properties

consistently we might get lost in it.

So therefore again I would like to remind the consistent nomenclatures that we are going to

follow in this class all the total properties the total energy, the total entropy, the total enthalpy etc

all  of  them  will  be  denoted  by  capital  letters  and  all  molar  quantities  will  be  denoted  by

lowercase letters and you must have noticed from the beginning of the class I am just using

lowercase letters just to emphasize upon you that I am dealing with molar properties only but at

the same time it is important for you to remember that the same equations that I am deriving will

be applicable for total properties as well.
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Now I have introduced one more additional nomenclature, what is it? Whenever I am dealing

with ideal gases I am just putting superscript 0 just to differentiate that these properties refer to

ideal gases in contrast to any particular real gas or any particular real substance, right? Now so

by this particular time we have already come across we have deduced the 2 Tds equations from

the 2 Tds equations we have also derived the equations for dh and du.

And we have also derived or rather we have also shown that both enthalpy and internal energy

for an ideal gas both of them they are unique functions of temperature and both of them are

independent of pressure as well as of volume, right? Now before I proceed further I would like to

ask one particular question to you, we have this particular equation, at this juncture I would like

to remind you that for most of the situations we will be dealing with changes in enthalpy and

entropy as we come across changes of these quantities in practical applications.

So primarily I will be dealing with dh, ds quantities but it is important for you to keep in mind

that you can proceed similarly for du as well, right? Suppose I have some particular gas at a

pressure a P1 and a temperature T1. I would like to take it to another state with pressure P2

temperature T2, now how do I propose to proceed? Suppose I would like to plot the changes on a

P-T curve, right? So here what do I have? I have one particular gas at P1 T1, right?

I would like to take it to P2 T2 state, what are the different ways by which I can perform this

particular process? One is I can perform an isobaric process initially, okay where I go from P1



T1 to P1 T2 and then I follow an isothermal process. This I can indefinitely do for this particular

process initially I have performed, the initial process was isobaric, so for this particular process I

can write this down as del h del P dp this has to evaluated at T equals to T1 this integration will

be from P1 to P2 plus del h del T at dT this is at constant pressure, this is at P equals to P2 and

this integration is going to be from T1 to T2.

This is one particular thing that I can do, what have I done for this particular part? Initially I have

performed  an  isothermal  compression  from  P1  to  P2  at  temperature  T1  and  then  I  have

performed an isobaric heating from T1 to T2 at pressure P2, right? On the contrary there is one

other thing that I can in this particular case. I can first perform the isothermal process and then I

can  perform  the  isobaric  process  very  well.  Since  at  both  these  points  I  am  dealing  with

properties which are dependent on the initial and final states as you already know so hardly it

should matter in this case.

For this particular case what is my h2 minus h1 equals to? In this particular case initially I am

going to write T1 to T2 del h del T at constant P equals to P1 into dT plus integral P1 to P2 del h

del P at constant T equals to T2 dp, right? So therefore I can either perform it by this process or I

perform it by this process, normally it should hardly matter, okay but let us see from the practical

point of view which particular process we should be or rather we should be opting for.

Now tell me what is del h del T at P equals to P1? This should be something like this should

refer to Cp at P1 which should be equal to del h del T at P equals to P1 and for this particular

case what do I need? For this particular case I need Cp, I need information on Cp at P2 and in

order to find these 2 properties, what do I need? I just need if you would recollect I simply need

the PVT behavior of the gases and this I need for sorry I have made a mistake in this particular

case this is not here, for this case I will be needing this one is equal to Cp at P2 sorry.

So therefore we find, in order to find this particular integration and this particular integration for

these 2 integrations I just need the PVT behavior of gases, right? I need to find out how h varies

with P at T1, for this case I need to find out how h varies with P at T2, right? But from the

practical point of view we know that Cp data are available for ideal gases only, Cp data are not

available for or rather they are much rarer and much less accurate for higher pressures, right?



So  therefore  usually  at  low  pressure  Cp  data  are  available.  So  therefore  from  practical

considerations we would neither prefer this particular process nor we would prefer this particular

process, from practical considerations what are we going to prefer? We are going to prefer I will

select a separate colour for your convenience. We shall be preferring, we would like to come

down to pressure P equals to 0 when at P equals to 0 we would like to perform the change in

temperature and then from here we would like to go to P2 T2.

So the process which we would prefer in this particular case, that particular process is we would

prefer to undergo an isothermal expansion of the gas from P1 T1 to P equals to 0. At this P

equals to 0 where the gas behaves as an ideal gas we would like to bring about the change in

temperature and then once the change in temperature is affected at the low-pressure then from

this P equals to 0 we would like to go to P2 T2, right?

So this is the practical path which we are going to adopt. We neither adopt this path nor we adopt

this path also normally just we would have felt that it hardly matters we can take up any path but

normally but under practical considerations we would prefer this path. So for this path suppose I

would like to write h2 minus h1 for this particular path equals to, let us see what should be the h2

minus h1 for this particular path?
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For this particular path it is going to be the h2 minus h1 expression that should be equal to it

should comprise of an isothermal expansion. So it is P equals to P1 to P equals to 0, this del h del

p at constant T dp plus at this particular pressure at this p equals to 0 we would like to perform

del h del T at constant P from T1 to T2 at P equals to 0 dT plus from P equals to 0 to P equals to

P2 we would like to perform del h del P at constant T dp, isn’t it?

So therefore this would be at T2, this would be at T1 and we know the value of this now, this is

nothing but equal to integral T1 T2 Cp 0 dT and we all of us know that Cp is a unit function of

dT, normally Cp 0 is given by a plus bT plus c(t) square plus so on and so forth. So therefore we

can find out Cp 0 as a function of T and you can use that data for due to which we had devised

the roundabout path in bringing about the change of this state from P1 T1 to P2 T2.

So now if I complete this particular equation, so what do I get? I find that this will be equal to

this amount this is nothing but equals to v minus T del v del T at constant P this whole thing

integral P equals to P1 to P equals to P almost 0 dp and this particular path that also comprises to

the same term del v del T a constant p dp but in this case this is from p equals to 0 to p equals to

Pt this here we have supposed to evaluate it at T2, here we are supposed to evaluate it at T1,

right?

So therefore for this particular case what we have done actually? This particular case we have

devised a path in order to use Cp0 and other than the data on Cp0 we find that we just need



data on the PVT Behavior of gases which tell us how volume is going to vary with temperature

at the constant pressure. Once we have an idea regarding the PVT Behavior of the gases we are

able to calculate these 2 terms and we can find out h2 minus h1 for any change of state from any

initial state T1 P1 to any final state T2 P2.  We will continue with our discussions in the next

class on this particular thermodynamic estimation of properties, have a good day.


