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Well to continue with our discussions where we have ended in the last class was I had derived

the Clausius clapeyron equation, from the Clausius equation and the final derivation where I

ended was the Clausius Clapeyron equation expressed in this particular form and we find that a

more  popular  equation  which  relates  vapor  pressure  with  temperature  is  just  a  empirical

modification of the Clausius Clapeyron equation, in fact that equation you must have heard and

that equation is much more popular and that is used much more frequently, it is an empirical

modification of the Clausius Clapeyron equation which is expressed as log 10 P equals to A

minus B by t plus c.

In this equation if you, this equation is known as Antoine equation and for most of the purpose

we will find that if you have to find out vapor pressure at some temperature or if you want to find

out the boiling point at some particular pressure usually we use this particular equation if you

compare there 2, we find that there are basically 2 differences one is, it is expressed in log10

whereas this is the 10 base and this is with the ln and the other thing we find that the parameter C

is anything any value other than 273.15 Kelvin, so this equation is much more used.



Now coming  back to  the  assumptions  which  were  involved  in  Clausius  Clapeyron equation

despite the fact that it can be so successful and it is used so very frequently, possibly it’s thought

that a fortune cancellation of the errors inherent due to the different assumptions gives or it's

responsible for the success of the Clausius Clapeyron equation. Now what is the most drastic

assumption? I have just mentioned it in the last class.
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The most drastic assumption is that I have assumed as I have assumed delta h vaporization to be

constant based on which performs this particular integration in coming from this equation to this

equation.
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In reality we know that Delta h vaporization it is a significant function of temperature and this

will be evident if you observe the Pv curves which I have shown in this particular diagram. We

find that the liquid region exists at low in this particular region the vapor region exists under this

particular  region  these  are  the  isotherms  which  have  been  drawn  the  constant  temperature

isotherms and



we will find that there is a dome where the liquid vapor both of them coexist when any particular

system within this particular dome then it keeps on changing its composition, sorry.

It keeps on changing its phase from the pure liquid states to the pure vapor phase it keeps on

changing its composition from the pure liquid state to the pure vapor phase and when it is inside

the dome we find that depending upon its  location it  has different proportions of liquid and

vapor. We find that as we go towards higher and higher pressures we find that this liquid vapor

dome it keeps on becoming smaller and smaller.

And the horizontal portion which marks the phase change from the liquid to the vapor region that

keeps on getting shorter and shorter till it reduces to a point at the critical point. So therefore at

the critical point what we observe is the partial the molar volume of the liquid phase and the

vapor phase they are the same and therefore none of the phases they can be distinguished from

one another and under this particular condition we will find that the transition is not abrupt it is

just continuous.
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So therefore accordingly based on this if we plot delta h vaporization versus temperature we find

that that the curve is something of this sort where delta h vaporization becomes 0 at T equals to

Tc.  So therefore from here it is quite evident that in no way delta h vaporization is constant

unless we assume the 2 temperatures T1 and T2 over which the transition or over which the

phase transition takes place are very close to one another.



So therefore my next attempt will be to find out the dependence of the latent heat of vaporization

on temperature and this particular derivation this has been derived from the or rather this is

known as Kirchhoff’s equation we know that the latent heat of vaporization this is nothing but

equal to h vapor minus h liquid, so therefore d of this is going to give me this, right?
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Now this  is  the  latent  heat  of  vaporization  it  is  dhv minus  dhL.  If  you recall  the  property

estimations  for  single  phase  substances  that  is  in  closed  systems  we  had  related  h  with

measurable parameters T and P. If you recall those equations that we had derived dh was equal

to CpdT plus v into 1 minus beta T dp, right when we were trying to express h as a function of T

and P, fine. So therefore we can substitute this equation for the vapor phase and for the liquid

phase in this particular equation once we substitute what do we get?

We get d delta hv this is nothing but equal to Cp vapor minus Cp liquid dT plus v vapor minus v

liquid minus v vapor beta vapor minus v liquid beta liquid T into dp, right? We get this equation

and from this equation suppose I would like to find out the variation of the molar latent heat of

vaporization with temperature, what do we get? The equation is something of this sort vg minus

vL minus vg sorry it's I missed it should be vv minus beta v minus vL beta L T, delta hv by T

delta v, isn’t it?

What I have done? I have substituted dh from the basic equation that we have derived and then

have substituted the Clausius clapeyron equation for dp dT in this particular case. So from there



what do I get? I get d delta hv dT in this particular case it is nothing but equal to Cp vapor minus

Cp liquid plus delta h v by T this and this cancels out minus Vv beta v minus vL beta L by Vv

minus vL into delta hv and this particular equation this is known as the Kirchhoff’s equation to

predict the latent heat of vaporization in terms of temperature and pressure and this can find, so

therefore this is the equation this is primarily for the liquid vapor transition.

Now what happens for the, and in this particular case it is important for us to remember that if

we assume that the vapor phase is an ideal gas then for that case beta v is nothing but equals to 1

by T and again if we assume that beta v is much greater than vL as a result beta v beta v will also

much greater than vL beta L and substituting all these things here we finally get d delta hv dT

that is nothing but equal to Cp vapor minus Cp liquid.

The other terms we find they are going to cancel out, so therefore this particular equation gives

us the variation of latent heat of vaporization with temperature.
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Now suppose  I  would  like  to  find  an  identical  thing  for  the  solid  liquid  transition.  In  that

particular case suppose I would like to find the delta h fusion then in that case here also I repeat

the same thing I do the same thing I tried to substitute dhL minus dhs I write this in terms of Cps

CpL etc and then the equation that I get is CpL minus Cps plus repeating VL minus Vs minus vL

betaL minus vs beta s T into delta hf by T delta v, right?

From where again if I start substituting I get CpL minus Cps plus delta hf by T minus vL beta L

minus Vs beta s by vL minus vs delta hf by T and if we assume that vL, vs your CpL, Cps all of

these are constant and I also assume that quite naturally in both the solid and for the liquid they

are incompressible  liquids, so beta is negligible  as a result of that in this particular  case the

equation reduces to delta hf by T which is nothing but CpL minus Cps divided by T.
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So therefore from here what did I get? If you observe that we could actually predict the variation

of the latent heat of vaporization and the variation of the latent heat of fusion with temperature in

terms of the specific heats of the 2 phases in fact it is important for you to remember that when I

assumed that the latent heat is constant it means that I assume that this specific heats of both the

phases in or in the respective phases remain constant with temperature.

And  so  therefore  from  these  equations  we  can  also  find  that  we  can  predict  delta  hv  at

temperatures other than the normal the boiling point, we can predict delta hv at temperatures

other than normal boiling point using the Kirchhoff’s equation, okay and I would also at the end

like to mention a few other equations which can be used for these purposes those equations are

primarily empirical in nature.

One of the equations is due to Watson it is known as the Watson correlation which gives delta

hv2 equals to delta hv1 1minus Tr2 by 1 minus Tr1 to the power 0.38 where 1 and 2 these two

refer to the temperature of States one and two and  Tr  is nothing but the reduced temperature

which is nothing but T by Tc.
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And for finding out the latent  heat of vaporization at  the normal boiling point this  is easily

estimated from another correlation which is known as the Riedel correlation. From here we can

find out delta hvn it is nothing but 1.093  RTc Tbr ln Pc minus 1.013 by 0.930 minus  Tbr.  So

therefore what I mean to say is and in this particular equation we will find delta hvn it is nothing

but the enthalpy of vaporization at normal boiling point Tc is nothing but the critical temperature

as we know Pc is  nothing but the critical  pressure and this  equation  Tbr is  nothing but the

reduced boiling point and reduced normal boiling point of the particular substance with which

we are dealing with.

So therefore we can use the Riedel correlation to find out the molar latent heat of vaporization at

normal boiling point.
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And then we can either use the Kirchhoff’s equation or we can use the Watson correlation to find

out the molar latent heat of vaporization at any temperature other than the normal boiling point.

So with this I would like to conclude this particular session on homogeneous on homogeneous

open system, the simplest type of open system which comprises of just one component and it

exists  in  2  phases  and  we  found  that  by  using  rather  by  using  the  basic  equations  of

thermodynamics  we  could  actually  predict  either  the  pressure  temperature  data  from  the

thermodynamic data like molar enthalpy of vaporization or molar enthalpy of transition or the

vice versa.

From here we could also find we could also deduce 2 equations namely the Clapeyron and the

Clausius  Clapeyron  equation  and  I  would  like  to  remind  you  once  more  that  the  Clausius

Clapeyron  equation  despite  its  large  number  of  assumptions  serves  quite  well  for  practical

purposes but usually we use the Antione’s equation to find out the vapor pressure, in the next

class what we are going to do? We are going to deal with heterogeneous closed systems.

So  initially  what  I  did?  We  started  our  discussions  with  homogeneous  closed  system,  in

homogeneous closed systems we assume that it was made up of a single component or even if it

is a mixture the composition of the mixture did not change and we tried to define a large number

of  properties  for  those  particular  systems  and  we  tried  to  relate  the  measurable  and  non-

measurable properties and the basis for that was Maxwell’s equation.



After that we just relaxed the assumption further we went for homogeneous open systems and we

deduced  the  Clausius  Clapeyron  equation,  in  the  next  class  we  are  going  to  deal  with  the

heterogeneous closed systems which comprises of a large number of homogeneous open systems

which have been enclosed or rather which are enclosed by a boundary and the entire composite

system does not interact with the surroundings with respect to mass transfer or with respect to

volume transfer it can interact with respect to energy interaction. So we are going to deal with

heterogeneous closed systems in the next class.


