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Now let us see what happens for multi-component systems, for multi-component systems if we

take it up thus same equation with little with some more terms again I repeat we are going to deal

with only PV type of work and I will be doing the entire derivation considering internal energy

keeping in mind that the same derivation can be applied for other systems as well.
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So in this  particular  case what did I  write down initially? This was equal to del U del s at

constant v dv for closed systems del U del V at constant s sorry this was dS this was dV. Now if

if I have more than one component then what do I do? This is equals to ni not equal to j this is nj

not equal to i, nj not equal to i where I varied the number of moles of the neth component. So

therefore this is going to be del U say del n1 at constant s, v n2 to the final component nM of

whatever number or say nC is the total number of components, okay.

So therefore it goes on continuously into dn1 plus del U del n2 dn2 again this is at constant s, v,

n1, n3 till n and maybe a number of components N plus and so on we can keep on writing. So

therefore this can be summarized and it can be written down as this is equal to del U del s

constant nj not equal to i d s plus del U del V constant s nj not equal to i d v plus summation of i

equals to 1 to n where n is the total number of components del U del ni constant s, v nj not equal

to i.

I am sorry in this particular case I am extremely sorry it should have been total N. I am very

sorry for this mistake it should have been total N, right? So therefore this is the final equation

which we are going to get for multi-component systems and in this particular equation we find

that each and every variation of U with the mole numbers each of them they correspond to the

chemical potential of that particular component mu2.
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So therefore this can also be written down as del U del S at constant v, n ds plus del U del V at

constant s, n dv plus Sigma i equals to 1 to n mui dni, right? Where each mui it corresponds to

del  U del  ni  of the ith  component  where the number of total  number of moles  of  all  other

components except the ith component is kept constant, I have written down the equations for the

multi-component open systems in each case.

You can see and in each case again it can be proved that the property change due to the change in

the number of moles of component i when the number of moles of all other components are kept

constant  is  given  by  mui  dni  in  each  particular  case  where  muis  just  like  mu  for  single

component systems.

In this particular case also we find that it corresponds to the molar internal energy or the molar

thermodynamic  potential  subject  to  the  respective  constraints  and  in  reality  it  is  the  molar

isobaric isothermal potential when the number of moles of any 1 component is changed while the

number of moles of the other components are kept constant and in this case also just like the

previous case we can define the Gibbs Duhem equation in fact the Gibbs Duhem equation is

much more convenient when we are defining it for multi-component systems.
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In this particular case the equation becomes sdT minus vdp plus Sigma ni d mui equals to 0 and

at constant T and P this becomes Sigma ni d mui equals to 0 and if we divide it by the total

number of moles it becomes Sigma xi d mui equals to 0. The importance of this equation can be

immediately understood if we know the composition of the mixture and if we know the chemical

potential of n minus one number of components we can use this particular equation to find the

chemical potential of the neth component.

Say for example for a true-component system this just reduces to x1 dmu1 plus x2 dmu2 equals

to 0 at constant T and P. So if we know x1 if we know the change of mu1 then by using this

equation we can find out this particular quantity and there is where the importance of the Gibbs

Duhem equation this is the Gibbs Duhem equation for multi-component system and we will find

later that this is very important to test the thermodynamic consistency of the data that we use

because we need to remember that most of the these data they are obtained from experiments. So

therefore before using them for any particular calculation it is very important to test that this data

are  thermodynamically  consistent  and  this  particular  equation  is  usually  used  to  test  the

thermodynamic consistency of this data.

Now before we go further it is very important to understand that why is this so very important

term? The molar Gibbs free energy given a special name and that took the name as chemical

potential. Is it really a potential in the true sense just like u, h, a and g. Now in order to



understand this we have to recall the properties of a thermodynamic potential which I had

already discussed when I was discussing when I was trying to explain why u, h, a and g are

thermodynamic potentials.
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What are the properties of thermodynamic potentials if we recollect? What are the properties of

thermodynamic potentials are? If you remember first is the value has to be independent of the

integration part. What does it signify? It signifies that these particular property or rather these

particular potentials they have to be properties of the system. Definitely chemical potential is a

property of the system we know that. So in this case we do not have any problems, the other

thing which we found out was that all these potentials they must be units of energy, right? Here

also  definitely  chemical  potential  it  is  measured  in  the  unit  of  energy  but  that  is  primarily

accidental, why?
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Because the chemical potential mui it is nothing but equal to del G del ni at constant T, P nj not

equal to i and this particular number of moles it is basically a number, have I expressed in terms

of concentration then this would have been a energy concentration instead of an energy unit. So

therefore since mui is defined in terms of ni so therefore it has the units of energy but that is

primarily accidental and what does the third condition of potential imply?
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It implies that the minima denote stable equilibrium which we already know while we were

discussing equilibrium under different conditions what did we find?
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We found that dU s, v was equal to 0 the conditions of equilibrium work then dH S, P was equal

to 0 then dA T, V was equal to 0 and dG T,P was equal to 0, right? So therefore we find that for

each and every case the differential quantities are equal to 0.
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But in the case of chemical potential if you observe this particular equation and this particular

equation it immediately appears to you it is not that the dmu is equal to 0, this does not happen

on the  contrary  Sigma mui  ni  this  is  equal  to  0.  So  therefore  if  you observe  this  that  the

summation of chemical potential for any particular reaction or for any particular process equals

to 0 than it appears that it has been better if it would have been called by the name of the force

because  we  find  that  this  particular  characteristic  combines  with  or  rather  this  particular

characteristic it corresponds to a fourth quantity.



But again then we found out that if we name it by the force then we find that we have a force

which has the unit of energy that is not something very convenient and the next thing which we

observed was that very frequently we find that for non-equilibrium condition the driving force

for current they can be identified with the gradient of chemical potential because very frequently

we find that when we are dealing with non-PV type of work then we are dealing with electrical

work and under that condition the current it is usually defined as the gradient of potential energy.

So therefore under that condition we find that it is a force being a derivative of a force that is also

not  a  very  comfortable  feeling.  So  therefore  what  I  mean  to  say  is  chemical  potential  is

something very unique which combines some of the characteristics of potential but it cannot be

consider a thermodynamic potential in the true sense.

It  has  some  characteristic  of  a  thermodynamic  force  but  it  cannot  be  considered  a

thermodynamic force in the true sense it has the unit of energy it is an intensive property of the

system but the summation it corresponds to equilibrium and it’s Minima does not correspond to a

stable equilibrium.

So all these things suggest that chemical potential has a unique place of its own and since it

combines a large number of characteristics just because the way it has been defined, so therefore

it has got a multifaceted aspect and since in the absence of any better name we would like to

prefer to follow conventions and we would like to continue calling it as a potential but not a

thermodynamic  potential  but  a  chemical  potential  keeping  in  mind  that  it  is  not  a  true

thermodynamic potential.
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The next thing again which I would again I would like to say that what have we done in this

particular case? For this particular case we have found out or rather we have related each and

every thermodynamic potential with the chemical potential term. Now it would be interesting for

us to find out that if we notice that for an isolated system what is the criterion of equilibrium?

For this particular case it is dS isolated equals to 0 where we know that S is not a thermodynamic

potential. So therefore in this particular place it will be interesting to find out how this particular

term del S del n at constant u, v in what way is it related to the chemical potential? Now this

particle derivation it is slightly involved but we can go through it and we can try to appreciate

keeping in mind that although it is not a thermodynamic potential it is often used in order to find

out the criteria of equilibrium for an isolated system and it has got a very interesting relationship

with chemical potential where the relationship is not of this particular form.
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Let us see this particular relationship before we proceed further, now this particular case can we

not write it down in this particular form dS equals to we can write it down as say del S del n at

capital UV, right? We would like to find how this is related to mu? Now this particular equation

you can definitely write it down as ns at constant UV which is nothing but equal to just like we

are being doing for all cases del s del n at constant capital UV.

Now I would like to remind you of a very important rule of differentiation which is given as del

z del x at constant n is nothing but del z del x at constant y plus del z del y at constant x into del

y del x at constant M. So if we apply this particular equation here, what do we get? We get del s

del n at constant capital U capital V is nothing but del s del n at u v plus del s del u at n, v into

del v del n at u, v we can write it down in this particular terms.

Then this particular term can also be expanded in the similar way. We can again write this term

as del s del n at small u small v plus del s del v, u n into del v del n, u capital V, right? And then

we can substitute this equation there. Once you substitute what do we get? We get del s del n at

capital U capital V this is nothing but equal to del s del n small u small v plus del s del v small u

small n into del v del n uv plus del s del u  nv, del u del n capital U capital  V, we can write it

down in this particular way.

Or if you observe this equation what do you find? The first thing is this particular term del s del

n at small u, v this term this term this becomes equal to 0, what about this term? Here I would

like



to remind you that Tds equals to du plus pdv, right? So from there what is this term equal to can

you tell me? This term then becomes equal to P by T, what about this particular term? This term

becomes equal to 1 by T.
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So therefore and we have to keep in mind that capital U is nothing but equal to nu capital V is

equals to nv. So therefore from there what do we get? We get del u del n capital U, v this is

nothing but equals to del del n of u by n U, v which is nothing but equals to minus u by n or in

other words this is equal to minus capital U by n square. Same way we can write it down as del v

del n capital V, u is nothing but equals to minus v by n. So therefore from there what do we get?

del s del n at capital UV it is nothing but equals to minus of u plus Pv by Tn from there what do

we get?
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We get that then this becomes equal to and if we substitute this particular term in the first 

equation that we have, then finally what do we arrive at?
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We arrive at a condition that del S del n capital U, V is nothing but equal to s plus nu minus pvn

by Tn from there what do we get? We get minus of, so we get minus of u plus pv minus Ts by T

which is nothing but equals to minus mu by T. So therefore what do we get? We get that del S

del n at capital U, V is nothing but equals to minus mu by T.
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So therefore we were trying to find this relationship we know now that this is equals to mu by T.

So therefore we combine first and second law for open systems for only Pv work from combined

first and second law and single component system for all these conditions, what do we get? We

get dS is nothing but equals to 1 by T dU plus P by T dv minus mu by T dn or in other words

Tds equals to dU plus pdv minus mu dn. So this is the equation which we derive derivation was

slightly involved with large number of capital and small case alphabets involved.

But  by  this  particular  discussion  what  I  wanted  to  impress  upon  you  is  the  importance  of

identifying the total  and molar properties and I would like you to remember that we are not

dealing with mass specific properties at the moment, same equations will be applicable for mass

specific properties as well.

And from here what we came to know is when we have to deal with open systems when the

system interacts with the surroundings not only by energy interaction but also by changes in the

number of moles or by mass interaction then we find that we had to introduce a new chemical

property which was actually not new it is basically the molar Gibbs free energy but we had

called it by a new name the chemical potential.
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Why did we have to put a new name to it? Because we found out that for single property system

it was the molar Gibbs free energy but moment we are dealing with multi-component systems we

find that this particular property it becomes equal to mui in this particular case, right?

So therefore just in order to combine both single component and multi-component systems we

had defined or rather we have defined the Gibbs molar Gibbs free energy for single component

systems as chemical potential.



And we keep in mind for single component systems chemical potential is equal to this particular

expression which for a multi-component system it becomes del U del ni s,  v, nj not equals to i

and so on and so forth and both these terms they are referred by the same name it is known as the

chemical potential and we will remember that the chemical potential is not a true thermodynamic

potential but it has a number of characteristics of a thermodynamic potential.

So in the next class we shall be going to deal with open systems, first we are going to deal with

single component open systems and then we are going to extend it for multi-component open

systems.


