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Good morning everyone. So, we are looking into the higher order differential equations 

for multidimensional partial differential equations and parabolic equations to you and use 

the separation of variable to solve these equations. 

Now, in today’s class, in the last class whatever we have done is that, we have taken up a 

3-dimensional problem in the and with all Dirichlet boundary conditions, 2 dimension in 

space and 1 dimension in time and we solve the problem completely by using separation 

of variable technique. 

Now, we have also discussed in the last class, what are the conditions where one will be 

using a lumped systems analysis in heat conduction problem in chemical engineering 

applications, where the governing equation is basically an ordinary differential equation. 

And under what conditions, the special variations of the temperature within the body of 

the material become very important and the problem becomes a multi-dimensional 

problem and you will be landing with a partial differential equation. 

Now, in today’s class, we will be looking into the 3-dimensional problem and 4-

dimensional problem in more detail and in the last class, we have done the we have taken 

up an example, where we have solved the problem using all Dirichlet boundary condition 

un embassy basic problem. Now in today’s class, what you discuss, I will discuss out of 

the 4 boundary conditions, at least some of the boundary conditions will be containing 

are Dirichlet, Neumann and Robin mixed boundary condition for a basic problem. 

Then we will take up one more example for an actual problem, how to reduce the actual 

problem in the form of the basic problem and one can get the complete solution. And 

then, we will move into the 4-dimensional parabolic partial differential equation. 
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So, we will be considering again a 3-dimensional parabolic PDE, 1 dimension in space, 1 

dimension in time and 2-dimensional in space and we consider a basic problem. So, the 

governing equation of this problem will be del u del t is equal to del square u del x 

square plus del square u del y square is equal to ok so, that remains the same. 

Now, we have the 4 boundary conditions, we fix up some of the boundary conditions as 

robin mixed and Neumann and Dirichlet are mixture of the of all, at t is equal to 0. Since 

it is a basic problem, we must be dealing with a non-homogeneous initial condition. So, 

at t is equal to 0, u is equal to let say u naught or that means, it is a constant or in more 

general, it may be a function of x and y, where or it may be a function of x alone or it 

may be a function of y alone. 

So, all of these 4 combination can be specified can be this functions can be specified as 

the initial condition. And the boundary conditions, where let us say at x is equal to 0, u is 

equal to 0, at x is equal to 1 we have u del u del x plus Beta u is equal to 0, at y is equal 

to 0, we have let say del u del y is equal to 0 and at y is equal to 0, y is equal to 1 we 

have let say u is equal to 0. 

So, if you look into this problem and compare with the earlier problem solved in the last 

class, the difference is that, both the problems are 3-dimensional parabolic partial 

differential equations, both the problems of a homogeneous boundary condition and non-

homogeneous initial condition. 



In the earlier problem the difference is that, in the earlier problem all the boundary 

conditions were Dirichlet boundary condition, but in this problem, we have a Dirichlet 

boundary condition present at x is equal to 0; we have a mixed boundary condition 

present at x is equal to 1, we have a Neumann boundary condition present at y is equal to 

0 and we have a Dirichlet boundary condition present at y is equal to 1. 

So with this, let us move forward to solve this problem almost completely, since this is a 

linear and homogeneous governing equation and linear boundary linear boundary 

conditions and homogeneous boundary condition, we can go ahead with the separation of 

variable type of solution. That means, the solution u is composed of a product of 3 

quantities, 3 functions, which will be a function of time alone, another function will be 

function of x alone, another function is function of y alone. 
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So, therefore, we can write u as a product of T of t X of small x and capital Y for small y, 

then we substitute this in the governing equation. If we do that, then you will be getting 

X Y d T d t is equal to Y T d square x d x square plus X T d square Y d y square, divide 

by X Y and T. What will be getting is 1 over T d T d t is equal to 1 over X d square x d x 

square plus 1 over Y d square Y d y square. 

Now, the left hand side is a function of time alone, the right hand side is a function of 

space alone and they are equal, they must be equal to some constant. And this constant is 

minus lambda square, if this constant can be 0 or positive then, will be landing up with a 



trivial solution, we have already proved it earlier. Now, let us compose decompose the 

spatial part, 1 over X d square x d x square is equal to minus lambda square minus 1 over 

Y d square Y d y square. 

So, again the left hand side is completely a function of x, the right hand side is entirely a 

function of y and that. So, they will be equal to some constant, again if this constant is 0 

or positive, we will be landing up with a trivial solution. So, this constant must be a 

negative constant that will be minus alpha square. Next, we put it we formulate the 

governing equation of x. 

So, we equate 1 over X d square X d x square with minus alpha square. So, you will be 

getting d square X d x square plus alpha square x is equal to 0. Now, let us put down the 

boundary conditions on capital X, it must be satisfying the x varying part must be 

satisfying the boundary conditions on x of the original problem. So, at x is equal to 0 

your capital X is equal to 0, because u was equal to 0 at that boundary and at x is equal to 

1, you have d X d x plus Beta u is equal to 0 per Beta is scalar parameter. 
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Now, if you look into this problem and examine this problem, this problem is a special 

form of a standard Eigen value problem or Sturm Liouville Problem with the boundary 

conditions as homogeneous boundary conditions. We have already solve this sub-

problem earlier, if you remember that the Eigen values of this equation will be obtained 

from the transcendental equation, b Eigen values of this equations will be obtained from 



the equation write alpha n tan alpha n plus Beta is equal to 0. So, Eigen values are roots 

of this equation where n goes from 1, 2, 3 up to infinity. 

So, Eigen values are the roots of this equation and Eigen functions are sine functions are 

sine functions, they are sine alpha n x. Next, we have also solve this problem and got the 

complete solution, let us look into the complete solution. X n is the Eigen function of 

corresponding to n th Eigen value, so this will be C 1 sine alpha n x. 

So, these are the Eigen functions and then, let us look into the other problem, that is the y 

varying part. If we look into the y varying part, the governing equation becomes lambda 

square minus with 1 by Y d square Y d y square is equal to minus alpha square. 

So, this will be 1 over Y d square Y d y square is equal to alpha square minus lambda 

square, again if you look into the right hand side, alpha is a constant, lambda is a 

constant this constant can be positive. So, the whole thing becomes a constant, again this 

constant is positive, if this constant is 0, we are going to get a trivial solution. So, this 

constant has to be a negative constant. So, let us say this negative constant is nu square. 

So, we can get an expression of lambda square will be nothing but, nu square plus alpha 

square. 

So, d square Y d y square plus nu square Y becomes 0 and if you look the into the 

boundary conditions on y, the boundary conditions on y of y must be satisfying the 

boundary conditions of the original problem on y. So, therefore, at y is equal to 0, d Y d 

y must be equal to 0 and at y is equal to 1, capital Y must be equal to 0. 
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So, if you look into this problem, this problem is again a standard Eigen value problem 

with the homogeneous boundary condition a Neumann at the center at y equal to 0 and at 

y is equal to 1 a Dirichlet boundary condition. And we have already solved this problem 

earlier and we if you remember that for this particular problem, the Eigen values will be 

2 m minus 1 pi by 2 and Eigen functions are cosine function. So, this is a again a 

standard Eigen value problem. So, therefore, the Eigen functions, the Eigen values will 

be 2 m minus 1 pi by 2, where the index m runs from 1, 2, 3 up to infinity and Eigen 

functions are cosine functions cosine 2 m minus 1 pi by 2. 

So, this we write as nu m and y. So, this will be cosine nu m y, where nu m is nothing 

but, 2 m minus 1 pi by 2. So, let us write down the y m as c 2 cosine nu m y, next we 

look into the time varying part. If you look into the time varying part, this time varying 

part will be nothing but, one over ok. So, if you look into the lambda square now, lambda 

square we have already obtained is equal to nu m square plus alpha n square and if you 

really look into the value, you know value of lambda, lamda is a function of nu m and 

alpha n. 

So, we write lambda subscript m comma n. So, nu m nu m is basically 2 m minus 1 

whole square pi square by 4 plus alpha n square, but in this case, we do not have the 

explicit expression of alpha n, because alpha n’s are root is of the transcendental 



equation that we have already written earlier, that is alpha n tan alpha n plus beta is equal 

to 0. 
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So, therefore, what is left for this problem is the time varying part, the time varying part 

if you look into the time varying part, this becomes 1 over T d T d t is equal to minus 

lambda square. So, since lambda is a function of m and n, so we put a subscript m n 

corresponding to lambda and corresponding solution on T we put m and n. So, therefore, 

we integrate this out, T m n can be expressed as x, some constants c 3 exponential minus 

lambda m n square times t. 

So, now, we have solved each of the segments, each of individual segments separately 

and we can construct the complete solution. The complete solution first will be having let 

say U m n, U m n will be nothing but, 3 constants multiplication of this three functions 

and the 3 constants will be multiplied and giving rise to a new constant, let us have it C 

m n. So, C m n exponential minus lambda m n square times t cosine nu m y into sine 

alpha n x. 

So, the overall solution will be obtained as u is nothing but, double summation over u m 

n, one is over m another is over n. So, therefore, this will be double summation C m n e 

to the power minus lambda m n square t cosine nu m y sine alpha n x. Now, this problem 

is solved and what is left behind is the solution of the determination of the constant C m 

n. So, we get this constant from the initial condition at t is equal to 0, u was equal to u 



naught. So, this will be u naught summation, double summation one over m another over 

n. So, this becomes c m n cosine nu m y sine alpha n x. 

So, what we do next? We utilize the orthogonal property of the Eigen functions, cosine 

functions and sine function. We Exploit orthogonal property of Eigen functions cosine 

function and sine function. So, therefore, what we are going to do? We are going to 

multiply both sides of this equation by sine nu n y and cosine alpha n x d x d y. 
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So, if you do that, we will be getting u naught double integral u naught sine nu n y cosine 

alpha m x d x d y, this will be from 0 to 1, this over x, this over y from 0 to 1 that will be 

is equal to summation 1 over m, another over n C m n integral double integral 1 over X, 

another over y cosine nu m y nu n y d y. So, that will be integration over y, then this 

should be multiplied by we another integration over x, that will be sine alpha n x sine 

alpha m x d x. 

This will be sine alpha m and this will be cosine nu, we multiply both side by sine nu m 

y and sine alpha n sine alpha m x (Refer Slide Time: 19:49). So, this is fine, this is sine 

nu m y cosine alpha m x. So, what we are going to get here that, once open up this 

summation series what will be getting is that, cosine nu m y, this will be cosine here 

cosine nu n y d y will be is equal to 0, for m not is equal to n and integral sine alpha n x 

sine alpha m x d x will be is equal to 0, for m not is equal to n. 



So, all if you open up this summation series, all the terms will vanish, only one term will 

remain that will be 1 m is equal to m. So, what we will be getting is integral y integral x, 

u 0 will be taken out because that is a constant, integral sine nu m y and cosine alpha m x 

d x d y is equal to C m n integral cos square nu m y d y from 0 to 1 and integral sine 

square alpha n x d x. 
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So, we know the value of cos square nu m y will be 0 to 1 will be half, but this value is 

not half because that will be not the you know, so will be getting this equation by solving 

whatever we have done earlier. So, we already know how to handle this integral. So, I 

will just write down the value of C m n, C m n will be 2 u naught integral over y integral 

over x, sine nu m y cosine alpha m x d x d y divided by integral from 0 to 1 sine square 

alpha n x d x. 

So, we can evaluate this integral analytically and we will be able to solve this problem 

completely. So, that gives you the solution of the equation, u is equal to summation 

double summation C m n e to the power minus lambda m n square t plus e multiplied by 

cosine nu m y sine alpha n x, this is over m 1 to infinity, this is over n 1 to infinity, this 

integral from 0 to 1, this integral from 0 to 1 (Refer Slide Time: 23:13). 

So, we can analytically evaluate this constant and one will be able to obtain the complete 

solution of the function of the variable u as a function of x y t. So, this gives a 

presentation that when the boundary conditions are not of same time, if they are mixed 



with the Dirichlet boundary condition, Neumann boundary condition and mixed 

boundary condition, what will be the nature of the solution one will get? Since you will 

be having the Neumann boundary conditions, the Eigen functions will be cosine 

functions and Eigen values will be 2 n minus 1 pi by 2, since the one of the boundary 

conditions in a y direction is basically they are in the Eigen functions, they are in the 

mixed boundary condition. 

So, you will be getting the sine functions as the Eigen functions and sine and the Eigen 

values will be obtained from a transcendental equation. So, depending on the boundary 

conditions, one will get the various Eigen functions and can get either sine function or 

cosine function in your solution. Now, I will be taking up one complete example in a 3-

dimensional problem in chemical engineering application and see, how that will be 

reduced to the solution. So, we have already known, how to solve a basic problem in 3-

dimensional basic problem in 3-dimensional analysis. 

And I will be taking up just 1 chemical engineering application, where we will be getting 

the boundary conditions all non-homogeneous sine generalized and then, we can break 

down the problem in the form of basic problem; then one can construct the complete 

solution by superposing a by using principle of linear superposition of all the solution to 

add them up and you will be getting the complete solution. 
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So, the next practical example I will be taking again a 3-dimensional a 2-dimensional 

transient heat conduction problem, in a plate rectangular plate and this is 2-dimensional 

in space transient in time. So, therefore, it is a ultimately a 3-dimensional problem. If you 

write down the energy balance equation, what you will be getting is that, you will be 

getting del u rho C p del T del t is equal to K del square T del x square plus K del square 

T del y square assuming rho C p K thermal conductivity all are constants. 

So, if you divide both side by rho C p, what you will be getting is del T del t is equal to 

alpha del square T del x square plus alpha del square T del y square a bracket. Now, 

alpha is the thermal diffusivity and this will be K divided by rho C p, now we set up the 

boundary conditions at t is equal to 0, we have T is equal to T naught. Let say T naught 

is the temperature that is existing for T is equal to at initially at time T equal to 0 at x is 

equal to 0, let us say we have a Dirichlet boundary condition, let say x is equal to 0, T is 

equal to T 1 and at x is equal to 1, at x is equal to a. 

So, this will be let say minus K del T del y del T del x is equal to h times T minus T 

infinity; that means, the boundary at located at x is equal to a is expose to the 

environment. That means, how much whatever the heat that is coming by conduction at 

the boundary is taken up by the convection. 
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So, you have a Dirichlet boundary condition at x is equal to 0, you have a robin mixed 

boundary condition at x is equal to a, next what we do? We set up the boundary 



conditions for y, at y is equal to 0, we have T is equal to let say, it is a we are supplying 

let say constant heat flux to the system. So, minus K del t del y will be is equal to q 

naught, q naught is the constant heat flux that is going into the system. 

So, this is known as the constant heat flux condition, then let us put the other boundary 

that is at y is equal to b, T is equal to T 2, we maintain a Dirichlet boundary condition or 

a constant temperature at the boundary located at y is equal to b. Now, let us first non-

dimensional this equation as we have done earlier, if you really set it up what will be 

getting is that, at we define x star as x by a and y star as y by b. 
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And we defined, so there are how let us look into the how many sources of non-

homogeneity are present in this problem? In this problem, initial condition is a non-

homogeneous initial condition, the boundary condition at x is equal to 0 is non-

homogeneous, the boundary condition at x is equal to 0 is non-homogeneous because of 

this term. 
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So, we have 1, 2, 3 non-homogeneities here and both the boundaries on y, that is minus k 

del T del y is equal to q naught and T is equal to t 2, both are the both of this term they 

contribute as the non-homogeneous term in the governing equation. So, there are 5 

sources of non-homogeneity in this particular problem. So, if we define a temperature 

such that, we can reduce at least 1 non-homogeneity and we can reduce them from 5 to 4. 

Let us define a non-homogeneity a dimensional temperature theta is equal to T minus T 

infinity divided by T 1 minus T infinity and x star is x by a, y star is equal to y b y by b 

now let us put all this equations, all this non-dimensional containing the governing 

equation. So, this becomes T 1 minus T infinity del theta del t and this will be alpha T 1 

minus T infinity del square theta, this will be a square del x star square plus 1 over b 

square del square theta del y star square. 

So, this T 1 minus infinity, T 1 minus infinity will be cancelled, what we can do, we 

multiply both side by a square. So, this becomes alpha by a square you take a square 

common. So, this becomes d square theta d x star square plus a square by b square del 

square theta del y star square. So, we take it on the other side, so it becomes a square by 

alpha t del theta del t is equal to del square theta del x star square plus a square by b 

square del square theta del y star square. 
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Now, if you remember that, a square divided by a square divided by alpha. So, this not T 

here a square divided by alpha as a unit of time. So, we can define a non-dimensional 

time. So, the right hand side is entirely non-dimensional. So, left hand side has to be non-

dimensional. So, we define a time as tau t alpha divided by a square as a non-

dimensional time. 

So, our governing equation now becomes del theta del tau is equal to del square theta del 

x star square plus let us say, kappa square del square theta del y star square, where kappa 

is equal to a by b, the geometric factor. Now, let us set up the, make the boundary 

conditions non-homogeneous the dimensionless. So, at x is equal to 0 means, at x star is 

equal to 0, t is equal to t 1, so therefore, theta is equal to t 1 minus t infinity divided by t 

1 minus t infinity. So, theta becomes 1. 

So, that is the boundary condition at x is equal to x star is equal to 0, at x star is equal to 

1 that means, that at x equal to a, this becomes minus K theta t becomes T 1 minus T 

infinity del theta del x. So, divided by a del x star is equal to h theta, into T 1 minus T 

infinity. So, this will be cancelling out. So, what will be getting is del theta del x star plus 

Biot number times theta is equal to 0, where Biot number is equal to h a over k. 

So, that becomes the boundary condition at x star is equal to one, now if you see this 

boundary condition as become homogeneous boundary condition. So, therefore, let us 

make the other boundary conditions non-dimensional at y is equal to 0; that means, at y 



star is equal to 0 minus k del t del y is equal to q naught. So, minus K T 1 minus T 

infinity del theta del y star is equal to q naught. So, if we take it other side, del theta del y 

star becomes q naught b divided by K 1 T 1 minus T infinity with a negative sign. 
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So, the left hand side is completely non-dimensional. So, right hand side has to be a non-

dimensional quantity, let us put this as q 0 prime, which is a non-dimensional quantity. 

Next, we put the other boundary condition, so that is at y is equal to b, t is equal to t 2. 

So, at y star is equal to 1, we have theta is equal to T 2 minus T infinity divided by T 1 

minus T infinity is equal to let say theta 2. Now, let us see in this problem, how many 

sources of non-homogeneities are there. 
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There is one sources of non-homogeneity, the initial condition is non-homogeneous, the 

boundary condition at x is equal x star is equal to 0 that is non-homogeneous, this 

becomes homogeneous, the boundary condition at y star is equal to 0 that becomes non-

homogeneous and the boundary condition at y star is equal to 1, this becomes non-

homogeneous (Refer Slide Time: 36:00). 

So, we put the initial condition, we make the initial condition non-dimensional as well. 

So, this becomes T was is equal to t naught. So, therefore, theta was is equal to T naught 



minus T infinity divided by T 1 minus T infinity. So, that becomes theta naught. So, if 

you look 1, 2 and 3 and 4, so there are 4 sources of non-homogeneities in this problem 

ties in this problem and this if you remember in the original problem, we had 5 sources 

of non-homogeneities; so, therefore, we have reduced at least one non-homogeneity in 

this by doing this non-dimensionalization. 

Now, since there are 4 sources of non-homogeneity, so therefore, the original theta the 

will be divided into 4 sub-problem considering, 1 non-homogeneity at a time. Let us say, 

theta is equal to theta 1 plus theta 2 plus theta 3 plus theta 4. So, what I will be doing? I 

will be formulating all these sub-problems one after another, but I would not be solving 

it completely, because you have already looked into the solution of the basic problem in 

the earlier two examples. 

So, one can get these sub-problems and break down these sub-problems up to the form of 

the basic problem then, one can go ahead with the solution whatever we have done in the 

earlier class. So, let us look into the formulation of the governing equation of theta one, 

considering one non-homogeneity at a time, del theta 1 del tau is equal to del square 

theta 1 del x star square plus del square theta 1 del y star square with a kappa square 

here. 

So, this with the now we consider, one non-homogeneity at a time therefore, we keep the 

non-homogeneity of the initial condition with this forcing all the other non-

homogeneities on the boundaries to be vanish. So, at tau is equal to 0, we write theta is 

equal to theta naught at x star is equal to 0, we had theta is equal to 1, theta is equal to 0, 

we force the non-homogeneity to vanish, at x star is equal to 1, this is already non-

homogeneous. 

So, this becomes del theta 1 del x star plus Biot times theta 1 is equal to 0, at y star is 

equal to 0, we have we make this forces boundary condition to be homogeneous, del 

theta del y del theta 1 del y star is equal to 0 and y star is equal to 1, we have the 

boundary condition as theta is equal to theta 2. 

So, we make this as homogeneous. So, we force it to be homogeneous. So, theta 1 

becomes theta 2 naught, we put it as theta 2 naught in order to avoid the mixing up of the 

nomenclature later on, because this is also theta 2. So, you make it as theta 2 naught. So, 

what we did out of the 4 sources of non-homogeneities in this particular problem of 



definition of theta 1, we kept one non-homogeneity intact and we forced all the other non 

-homogeneities to vanish, we force it to 0. 

So, we force all the other 3 non-homogeneities to vanish. So, we have 1 non-

homogeneity here this is force to be homogeneous, this is already homogeneous, the 

boundary condition at y star is equal to 0 is force to be homogeneous, the boundary 

condition at y star equal to 1 is forced to be homogeneous. So, this is a basic problem 

basic problem or a well-posed problem. So, we have already seen the solution of this. So, 

we know the solution of theta 1. 
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Now, let us look into the other parts, the governing equation of theta 2 will be del theta 2 

del tau is equal to del square theta 2 del x star square plus kappa square del square theta 2 

del y star square. Now at tau is equal to 0, theta 2 we make it homogeneous, the initial 

condition and one boundary condition, we keep as non-homogeneous that is at x star is 

equal to 0, we keep this non-homogeneity intact. So, theta 2 is equal to 1 and at x star is 

equal to 1, we have del theta 2 del x star plus Biot times theta 2 is equal to 0. 

So, it is already there, it is already homogeneous and at y star is equal to 0, del theta 2 del 

y star is equal to 0 and at y star is equal to 1, theta 2 is equal to 0. So, we keep this non-

homogeneity intact forcing all the other non-homogeneities to vanish, but this is an ill 

posed problem; simply because this becomes a ill posed problem, the initial condition is 

0 and one of the boundary condition becomes homogeneous. 



So, this problem has to be divided into two sub-problems theta 2 becomes f a theta 2 s 

which will be function of x and y alone, and there will be other part that is theta 2 t. 
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Now, what we do? We put this value there. So, this becomes del theta 2 t del tau is equal 

to del square theta 2 s, del x star square plus del square theta 2 s, del y star square plus 

del square theta 2 t, del x star square plus there will be kappa square here, plus kappa 

square del square theta 2 t del y star square. So, we collect the similar terms and 

formulate the governing equation, first we solve the steady state part, we take the steady 

state part the steady state part is del square theta 2 s. So, it becomes del square theta 2 s 

del x star square plus del square theta 2 s del y star square is equal to 0 and next we 

formulate the theta 2 t. 

So, that will be del theta 2 t, del tau is equal to del square theta 2 t del x square plus 

kappa square del square theta 2 t del y star square. Now, let us set up the boundary 

condition of the steady state part, the boundary condition should satisfy the boundary 

condition of the original problem. The original problem in this case is theta 2, that is the 

parent problem for this, at x star is equal to 0, we have theta 2 is equal to 1. 

So, therefore, we put theta 2 s plus theta 2 t is equal to 1. So, we associate the non-

homogeneous part with the steady state solution and we associate the homogenous, we 

force the boundary condition of theta 2 t the time varying part, we force it to be 



homogeneous. Therefore, at x star equal to 0, we put theta 2 s is equal to 1 and at x star is 

equal to 0, we put theta 2 t is equal to 0. 

So, we force it to be homogenous and this at x star is equal to 1, if you look into the 

original problem it was del theta 2 del x star plus B i theta 2. So, this will be del theta 2 s 

del x star plus B i theta 2 s is equal to 0 and for this, at x star is equal to 1 del theta 2 t del 

x star plus B i theta 2 t is equal to 0 and at y star is equal to 0 we had del theta 2, del y 

star is equal to 0. So, it is homogeneous, so no problem. 

So, this becomes del theta 2 s del y star is equal to 0 and at y star is equal to 0, we have 

del theta 2 t del y star is equal to 0. And similarly, at y star is equal to 1, there will be 

kappa square here, at y star is equal to 1 we had theta 2 is equal to 0 so, therefore, theta 2 

s is equal to 0 and at y star is equal to 1 theta 2 t is equal to 0. 

And let us put into the initial condition at tau is equal to 0, theta was theta 2 was theta 2 s 

plus theta 2 t, that will be equal to 0. So, it will be theta 2 t is nothing but, theta 2 s which 

will be a function of x star and y star. Now, if you look into this particular problem, this 

will be the initial condition is non-homogeneous and this is not equal to 0 and this is 

nothing but, the solution of the steady state part that is number 1. 

Then boundary condition at x star equal to 0 this is homogeneous, boundary condition at 

x star is equal to 1 this is homogeneous, the boundary condition at y star equal to 0 this is 

homogeneous, the boundary condition at y star equal to 1 this is homogeneous. So, this is 

a well posed problem and we know the solution of this provided, the solution of this 

steady state function, the steady states solution is known that becomes negative of that 

becomes an initial condition. 

Now, let us come back to the steady state problem. In this steady state problem, this is an 

elliptical partial differential equation, we have not seen till now, how to solve the 

elliptical partial differential equation. We will see shortly after couple of classes may be 

then this boundary condition, all these 3 boundary conditions are homogeneous, but 1 

boundary condition is non-homogeneous will be able to solve this problem completely. 

So, that problem is solvable, this is a well posed problem. 

So, we have already seen the solution of this, provided we can supply the initial 

condition as the solution from this problem and we have homogeneous boundary 



conditions. So, absolutely no problem, we can get the solution of theta 2 which will be 

nothing but, a linear superposition of theta 2 s plus theta 2 t. 
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Similarly, if you look into the third problem and we can solve the third problem as a we 

and fourth problem like that. So, if we formulate the third problem, keeping 1 non-

homogeneity at a time. So, third problem will be del theta 3 del tau is equal to del square 

theta 3 del x star square plus kappa square del square theta 3 del y star square at tau is 

equal to 0, theta 3 is equal to is equal to 0 at x star is equal to 0, we have theta 3 is equal 

to 0 at x star is equal to 1. We had del theta 3 del x star plus B i Biot theta 3 is equal to 0 

that is already homogeneous from the parent problem, at y star is equal to 0, we have del 

theta 3 del y star is equal to is equal to q 0 prime, this non-homogeneity we keep intact. 

And at y star is equal to 1, we force the non-homogeneity to vanish. So, again if you 

examine in this problem, in this problem only 1 non-homogeneity we have kept in the 

formulation and this non-homogeneity is appearing in the boundary condition with a 0 

initial condition. So, again this problem has to be divided into two sub-problem, one is 

the function of space there is the steady state part, another is the function of time and 

space, both that is the transient part. 

So, theta 3 is nothing but, theta 3 s which is a function of x and y plus theta 3 t which is a 

function of x y t both. We have already seen in the earlier example that, how to get the 

governing equation of theta 3 s and theta 3 t and we will by selecting we will be 



associating the boundary condition, non-homogenous boundary condition with the steady 

state part forcing this boundary condition for that transient part to be homogeneous. 

So, that way and the initial condition of the transient part will be nothing but, the minus 

of the solution of the steady state part. So, we can completely solve the steady state part 

which turns out to be a parabolic lead and elliptical partial differential equation in this 

case as well and you know transient part will be having non-homogeneous initial 

condition and all the boundary conditions becomes homogeneous. So, this problem 

becomes a well-defined or well posed problem and we have already seen the solution to 

that and we can get the solution of this problem as well. 
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Next, we look into the formulation of the sub-problem theta 4, that will be del theta 4 del 

tau is equal to del square theta 4 del x star square plus kappa square del square theta 4 del 

y star square. Now, we keep one non-homogeneity here and forcing the others to vanish. 

So, this will be tau is equal to 0, theta 4 is equal to 0, at x star is equal to 0 theta 4 is 

equal to 0, at x star is equal to 1 del theta 4 del x star plus Biot times theta 4 is equal to 0, 

at y star is equal to 0 del theta 4 del y star is equal to 0. 

And at y star is equal to 1, we keep the non-homogeneous term theta 2 naught. Now, in 

this problem, we have kept all we have forced all the non-homogeneous term to vanish 

and kept the boundary condition non-homogeneity of at the boundary at y star is equal to 



1. Again, this problem has 0 initial condition, non homogeneous initial condition, non-

homogeneous boundary, 1 non-homogeneous boundary condition. 

Then again it is an ill posed problem, we have to convert this problem into well posed 

problem. So, therefore, theta 4 is equal to theta 4 as a function of theta 4 s, which is a 

function of x star y star plus theta 4 t, which is a function of x star y star and tau both all. 

So, this will be function of x star, y star and tau; now like the earlier problem, we 

formulate differently the governing equation of steady state part, the transient governing 

equation of the transient part and we can we associate the non-homogeneous term to with 

the steady state solution, force forcing that the transient part should be assured have a 

homogeneous boundary condition at y star is equal to 1. 

So, therefore, will be having and the initial condition of the transient part theta 4 2 t will 

be nothing but, at time t is equal to 0, it will be nothing but, the minus negative of the 

steady state solution, which will be completely solvable. Therefore, again the transient 

part becomes a well posed problem and will be getting complete solution from theta 4, 

we have we already seen the solution of theta 4 s and theta 4 t. 

We have not seen the solution of the of the partial of a differential equations in the as the 

elliptical characteristic, we will be looking the solution of that shortly. So, will be getting 

the complete overall solution as theta is equal to theta 1 plus theta 2 plus theta 3 plus 

theta 4. And thus an appropriate that actual chemical engineering 3-dimensional problem 

can be reduced into 4 sub-problems and we can do the solution by doing a linear 

superposition of all the individual solutions. 

So, I stop it here at this particular class and then, I will move into the next class, I will 

move into the next topic, that is a formulation of a 4-dimensional problem or a highest 

possible dimensional in our realty. So, we will be talking about a 4-dimensional problem, 

3 dimension in space at 1 dimension in time. Thank you for your kind attention. 


