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Very good afternoon everyone. So, we were looking into the various classifications, 

definitions, properties, characteristics of partial differential equations, in the last class. 

And at the end of the last class, we defined a linear operator and we have looked into the 

property of the linear operator that if the operator is linear, we can use the principle of 

linear superposition. 

We have demonstrated one example in the case of ordinary differential equation to use of 

to explain the use and application of principle of linear superposition. In that case, if you 

remember whatever we have done, we took up a problem of second order, which will be 

having, where they will be having to you know boundary conditions to solve the 

problems, and both the boundary conditions were non-homogeneous and the Governing 

Equation was also non-homogeneous. So, there were three sources of non-homogeneity 

in the problem. So, we divided the problem into three sub problems considering one non-

homogeneity at a time and forcing the other two non-homogeneities to vanish. 

Then, we took up each and every each and individual problem. So, we took up each of 

the three problems; each of these three problems will be containing only one non-

homogeneity at a time now. Now, we solved these three problems separately and added 

the solution up in order to get the overall solution. So, that simplifies the whole problem. 

So, you it may not be apparent to you, what is the benefit of this method of principle of 

linear superposition by solving the ordinary differential equation, but it will be quite 

apparent to, the advantage will be quite apparent for the in the case of solution of partial 

differential equation. In case of ordinary differential equation, it was taken up as for 

demonstration purpose; for the case of partial differential equation, the advantage will be 

quite apparent. 



So, in this class, we will be taking up an example to demonstrate the principle of linear 

superposition in case of partial solution of the partial differential equation. And how that 

will help in overall solution? We will just look into that. 
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So, we look into the application of principle of linear superposition. Consider a second 

order general partial differential equation. 

Let us say, grad square u is equal to b del u del t plus a u plus c del square u del t square 

minus f, say function of x, y, z, and t in general. So, we are considering a 3-dimensional, 

a 4-dimensional problem where, x, y, z, at the 3-dimensional mean special dimensions, 

and t is the time dimension; so, it is a 4-dimensional problem; grad square is a 

generalized Laplacian operator. So, this will be del square del x square plus del square 

del y square plus del square del z square. 

So, in this equation, let us say this is equation number 1. In equation number 1, what we 

have? We have, if b is not equal to 0 and c is equal to 0, will be getting a Parabolic PDE. 

If b is equal to 0 and c is equal to 0, then we will be getting an Elliptic partial differential 

equation. For c greater than 0, we will be getting Hyperbolic partial differential equation. 

If f is equal to 0, we will be getting homogeneous partial differential equation. 
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Now, general boundary condition will be, it will be alpha del u by del n; n is basically 

the normal derivation of any surface; beta u is equal to h. So, that is a general boundary 

condition on any boundary. If h is equal to 0, we will be getting a homogeneous 

boundary condition. If alpha is equal to 0, we will be getting a non-homogeneous 

Dirichlet boundary condition. If beta equal to 0, then you will be getting non-

homogeneous Neumann boundary condition. If none of them will be, if the equation A as 

it is, then that is equation A is a Robin-Mixed, but non-homogeneous boundary 

condition. 

Now, we like to use principle of linear superposition to simplify this partial differential 

equation. So, what we will do? Let us write down: grad square u is equal to au plus b del 

u by del t minus f is the non-homogeneous equation. Let us say this is non-homogeneous 

parabolic partial differential equation. So, u will be initial condition. 
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So, let us consider, this one initial condition will be let us say u is some generalized, 

some function of x, y, z; it is a function of space, and the boundary condition is given as 

alpha del u by del n plus beta u is equal to h; n is the normal derivation of the boundary, 

whatever we are talking about. So, it is basically normal derivative with respect to the 

boundary. 
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So, let us identify what are the sources of non-homogeneity to this equation. There are 3 

sources of non-homogeneity to this equation. This is source number one; so, this 



homogeneity is appearing in the main Governing Equation. Then, in the initial condition, 

there is another non-homogeneity is present, and in the boundary condition there is 

another non-homogeneity is present. So, there are three sources of non-homogeneity in 

the problem. 

So, whenever a differential problem is defined, including the Governing Equation and 

the boundary conditions, whenever we are talking about a Governing Equation, it is valid 

throughout the whole volume of the control volume, and whenever we are talking about 

the boundary conditions, they will be valid only on the boundary. Therefore, the solution 

must the solution of the differential equation must satisfy the Governing Equation as well 

as the boundary conditions. On the other hand, the boundary conditions need not to be 

the solutions. Boundary conditions are valid only on the boundaries, but the Governing 

Equation is valid throughout the whole control volume of the system. 

Now, since there are three sources of non-homogeneity in this problem, we divide this 

problem into three parts. So, we divide this problem into 3 solutions: u is equal to u 1 

plus u 2 plus u 3. Since the operator we are talking about is… what is the operator in this 

problem? 

The operator will be so del square u. So, we will take a diversion here and talk about the 

operator once again, del square u is equal to a u plus b del u by del t minus f. So, the so it 

can be cast in the form L u is equal to minus f. So, L is the operator and this operator is 

grad square minus b del by del t minus a. 

So, the operator is nothing but del square del x square plus del square del y square minus 

b del by del t minus a. If it is 3-dimensional space then one more del square by del z 

square will be appearing here. So, since this operator is a linear operator, we can we can 

simply linearly superpose all the 3 solutions and get the complete solution. 

Now, what will be the solution for, what will be the governing equations for these 

particular sub-problems? So, divide the problems into three sub-problems; then u 1, u 2, 

and u 3, each are called sub-problems. So, we define each such sub-problem such that we 

will be considering only one non-homogeneity at a time. 

Now, how this sub-problems will be form the Governing Equations of the sub-problems 

will be formulated since this operator is a this operator is a linear operator. What will we 



be doing is that we will be substituting u is equal to u 1 plus u 2 plus u 3 in the governing 

equation. So, if you do that we will be getting grad square u 1 plus u 2 plus u 3 is equal 

to a u 1 plus u 2 plus u 3 plus b del by del t of u 1 plus u 2 plus u 3 minus f. 

So, if since the individual parts of this are linear; so it will be getting grad square; u 1 

plus grad square u 2 plus grad square u 3 is equal to a u 1 plus a u 2 plus a u 3 plus b del 

u 1 by del t plus b del u 2 by del t plus b del u 3 by del t minus f. 

Now, what we will be doing? We just Since this operator is a linear operator, we just 

consider the u 1 containing part equal, u 2 containing part equal, and u 3 containing part 

equal. We separate them out and while separating, we put f into one f. We associate the 

non-homogeneous term f along with the any of the sub-problems u 1, u 2, u 3. Let us say, 

we associate f with u 3; we could have associated f with u 1 as well. 

So, if we compare the u 1 containing part, u 2 containing part, and u 3 containing part 

from this equation, and make the separate sub-problems from them, what we will be 

getting? We will be getting the Governing Equation of individual sub-problems. 
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So, let us first construct the Governing Equation of u 1; take out the u 1 containing part; 

so, grad square u 1 is equal to a u 1 plus b del u 1 by del t. 



Similarly, the Governing Equation of u 2 will be grad square u 2 is equal to a u 2 plus b 

del u 2 by del t, and u 3 will be nothing but, grad square u 3 is equal to a u 3 plus b del u 

3 by del t minus f. 

So, we associate the non-homogeneous term f with the third sub problem. If you add this 

3 up linearly, then you will be you will be getting the original problem, the Governing 

Equation of the original problem u. 

So, once we get that, now let us look into the boundary conditions as well. So, if you 

look into the initial condition of the original problem, the initial condition of the original 

problem was u is equal to g x y z. Therefore, you just write - u is equal to u 1 plus u 2 

plus u 3 is equal to g. So, therefore, the initial condition can be, for each of them can be 

written down as u is equal to g for the u 1 is equal to g for the first sub-problem, u 2 is 

equal to 0, and u 3 is equal to 0. 

So, this is the initial condition of the first sub-problem; this is the initial condition of the 

second sub-problem; this is the initial condition of the third sub-problem (Refer Slide 

Time: 16:50). 

If you look into the boundary condition, the boundary condition of the original problem 

was alpha del u by del n plus beta u is equal to h. 

So, if you put u 1 u 2 u 3 in in the place of u, then you will be getting del u 1by del n plus 

alpha del u 2 by del n plus alpha del u 3 by del n plus beta u 1 plus u 2 plus beta u 3 is 

equal to h. Again, we take up the u 1 containing part, u 2 containing part; collect the u 1 

containing , u 2 containing, u 3 containing part separately, and associate h with the 

appropriate problem and we will be getting the boundary condition of each sub problem. 

So, if we take alpha del u 1 by del n plus is equal plus beta 1 u 1 is equal to 0. So, that is 

the boundary condition for u 1. 
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Then, similarly, what we will be getting? alpha del u 2 by del n plus beta u 2 is equal to 

h; that is the boundary condition for u 2. So, here, you just note, we associated the non-

homogeneous part h in the boundary condition with the solution, the with the sub-

problem u 2. Because we want to have, each sub problem will be containing only one 

homogeneity at a time.  

So, we could have associated h with u 1 or with u 3, but u 1 is already having one non-

homogeneity; that is in the initial condition. So, we did not associate the non-

homogeneous term of h in the along with u 1. On the other hand, in case of u 3, if you 

remember, u 3 contains we associated the non-homogeneous term with Governing 

Equation in u 3. Therefore, u 3 is already containing one non-homogeneous term. 

So, we intentionally did not associate the boundary condition, non-homogeneity of the 

boundary condition with u 3 simply because u 3 must be having only one non-

homogeneous term, either in the Governing Equation or in the boundary. So, the only 

choice left is association of the non-homogeneous term in the boundary condition with u 

2 so that u 2 will be having only one non-homogeneity in the form of this boundary. 

So, alpha del u 3 by del n plus beta u 3 is equal to 0 is the boundary condition for u 3. So, 

if we look into the three sub-problems now, u 1 is having a Governing Equation - grad 

square u 1 is equal to a u 1 plus b del u 1 by del t; the initial condition is u 1 is equal to g; 

boundary condition is u 1 alpha del u 1 y del n plus beta u 1 is equal to 0; for this is for u 



1. For u 2 - grad square u 2 is equal to a u 2 plus b del u 2 by del t and initial condition is 

u 2 is equal to 0, and boundary condition is alpha del u 2 by del n plus beta u 2 is equal 

to h. This is the one and we will be writing down for u 3. u 3’s Governing Equation is 

grad square u 3 is equal to a u 3 plus b del u 3 by del t and the initial condition is u 3 is 

equal to 0 minus f was there. u 3 equal to 0 and alpha del u 3 by del n plus beta u 3 is 

equal to 0; that comes from this (Refer Slide Time: 21:31). So, this is the boundary 

condition for third sub-problem. 

Now, if you closely examine each of this sub problem, that you will be having only one 

non-homogeneity in this formulation. You will be having only one non-homogeneity in 

this equation. In this problem, each of these sub problems will be having only one non-

homogeneity in them. 
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In this case first case u 1 g is the non-homogeneous term; in the second case h is the non-

homogeneous term; in the third case, Governing Equation, f is the non-homogeneous 

term, 

So, therefore, we will be dividing the problem into three sub-problems considering one 

non-homogeneity at a time. And probably, now it will be it must be clear to you how to 

reconstitute or reformulate each of the sub-problems having one non-homogeneity at a 

time. So, you should have a judicious selection of association of the non-homogeneous 

term in the boundary conditions as well as in the Governing Equation to the appropriate 



such sub-problem such that, that particular sub-problem under concerned will be 

containing only one non-homogeneity at a time. 

Now, most probably, we will be the most common method of solving the second order of 

partial differential equations are is a using of use of separation of variables. In case of 

separation of variables, if you remember that we divide the solution into the two sub-

parts and the entire solution is constructed by multiplication of the two parts, and we 

consider one part is entirely function of a particular variable, another part is a sole 

function of the particular variable, then, we multiply these two and construct the all the 

solutions and add them up simply and we will be getting the complete solution.  

But in this case, if you remember that if you have the initial condition, so you will be 

having 3 conditions in general, 2 conditions in space ,1 condition in time; that is known 

as the initial condition. When you formulate the sub-problem, then these two conditions 

in the space will be used up to get the solution of one of the sub-problems. One of the let 

us say space varying time, a space varying solution, in the time varying solution, you 

will be getting only one condition that is the initial condition when you construct 

complete solution. So, one constant will be evaluated by putting the using the initial 

conditions. So, you will be utilizing all the 3 conditions. 

Now, if the initial condition becomes 0, then the whole problem, whole purpose - the 

formulation of the partial differential equation becomes an ill posed problem. So, that 

cannot be entertained because if whenever you will be evaluating a the solution of the 

partial differential equation, the final constant will be evaluated from the initial condition 

and final constant will be multiplied to with the rest of the solution. 

So, if you put the initial condition as 0, then the whole solution becomes, the whole 

problem becomes ill posed problem, ill-defined problem. So, we have to make the 

problem well posed. 

 Now, if you look into these three sub-problems, whatever you have constructed in 2 

cases, the sub-problem u 2 and sub-problem u 3, we have the initial condition 0. So, sub-

problem definition of u 2 and u 3 are not well posed; on the other hand, the sub-problem 

u 1 is well posed because here it has homogeneous boundary condition, and non-

homogeneous or non-zero initial condition. 
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So, let us note down whatever we are trying to say, that ill posed partial differential 

equation is that PDE, that contains homogeneous initial condition. 

For example, in the sub-problem, the initial condition u 2 is equal to 0; that means in a 

particular problem, at time t is equal to 0, u 2 is equal to 0. This is ill posed partial 

differential equation. And which one is well posed? Well posed PDE is the one where 

the initial condition is non-homogeneous, but boundary conditions are homogeneous. 

So, in this case also, if you look into so boundary condition, so initial non-homogeneous 

initial condition and homogeneous boundary conditions are well posed partial 

differential equation. Now you cannot So, this solution is direct. On the other hand, for 

the ill posed problem, one has to convert the ill posed problem into well posed problem. 

So, conversion of ill posed PDE to well posed PDE is very important. Now, how this 

conversion is done? 

So, let us let us consider the problem number u 2; both problem u 2 and u 3 in the current 

example they are ill posed because they are homogeneous initial condition or 0 initial 

condition. 

So, what we have to do? We have to again divide the problem into two sub-problems. 

So, u 2; so, one part will be time dependent and another part will be time independent. 

So, that will be corresponding to the steady state solution. 



So, u 2 can be broken down into 2 parts; u 2 steady state which will be a function of 

space only and it will be having a transient part or time varying part which will be 

function of space as well as time. 

Now, what we will be doing? Then, we will be again formulating the Governing 

Equation and the boundary conditions of the steady state part and the transient part. For 

that, we take the take recourse to the same method, as we have considered earlier. 

(Refer Slide Time: 28:54) 

 

So, let us look into the what is a parent problem for u 2; the mother problem for u 2 is 

grad square u 2 is equal to a u 2 plus b del u 2 by del t. 

So, we write down the u 2 is equal to u 2 s plus u 2 t. So, grad square u 2 s plus grad 

square u 2 t is equal to a u 2 s plus a u 2 t plus b del u 2 t by del t, but when you write u 2 

s, you write del u 2 s by del t but u 2 s is a sole function of space. It is a function of x, y, 

and z. It is a steady solution. So, u 2 s is not a function of x, y, z. Therefore, the partial 

derivative with respect to time will be equal to 0. 

So, this does not exist. So, again, we take out the we collect the similar terms and 

formulate the Governing Equation of u 2 s. So, what is u 2 s? The Governing Equation of 

u 2 s is nothing but grad square u 2 s is equal to a u 2 s. And what is the Governing 

Equation of u 2 t? u 2 t will be - just collect the similar terms grad square u 2 t is equal to 

a u 2 t plus b del u 2 t by del t. 



Now, we have to formulate the initial and the boundary conditions for this problem. Let 

us look into the initial condition of the original problem of u 2. The original problem was 

u 2 is equal to 0; so, we have u 2 s plus u 2 t is equal to 0. 

So, therefore, we do not need an initial condition of on u 2 s because u 2 s is a function 

of space only; it is not a function of time. Therefore, we need not to have initial condition 

on u 2 s. Therefore, the initial condition is not appropriate for u 2 s. So, we write it down 

it here. I think that will be better because we write need to have one initial condition on u 

2 t. So, u 2 is equal to 0; so, you have u 2 t plus u 2 s is equal to 0; so, u 2 t is nothing but 

minus u 2 s, which will be a function of x, y, z. 

So, initial condition of the second of the transient problem is nothing but the solution of 

the steady state part and a minus sign with it. So, we just cut it down here. Now, we get 

the boundary condition; the boundary condition was for u 2 was alpha del u 2 by del n 

plus beta u 2 is equal to h. So, alpha del u 2 s by del n plus alpha del u 2 t by del n plus 

beta u 2 s plus beta u 2 t is equal to h. 

Again, collect the similar terms. So, u 2 containing term, you will be getting - alpha del u 

2 t by del n plus beta u 2 t is equal to 0, and we associate the non-homogeneous term 

with the steady state solution. So, alpha del u 2 s by del n plus beta u 2 s is equal to h. So, 

therefore, this is the boundary condition for the steady state part and this is the boundary 

condition for the transient part (Refer Slide Time: 32:58).  

Now, you just see the steady state part requires only the boundary conditions. Therefore, 

with the help of this boundary, steady state part does not require any initial condition 

because it is time independent. Therefore, with the help of this boundary condition, one 

will be able to solve the steady state part completely. So, this Governing Equation of the 

steady state part along with this boundary condition is a complete solution, will give will 

lead to a complete solution of u 2 s as a function of space x, y, and z. 

Once that is that is known, then we come back to the transient part. In the transient part, 

this is the transient equation (Refer Slide Time: 33:36), and initial condition u 2 was u 2 t 

is nothing but minus of steady state solution. 



We have already known the steady state solution. From here, that will be used as the 

initial condition of the transient problem, and if you look into the boundary condition, 

the boundary condition of the transient part is completely homogeneous. 

So, we are having a non-zero,, non-homogeneous initial condition homogeneous 

boundary condition for the problem u 2, and u 2 t, is now has become a well posed 

problem. So, we have converted u 2 t as a well posed problem from an ill posed problem. 

So, u 2 t now becomes a very well posed problem. Similarly, we can look into the into 

the derivation for u 3 t. 
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So, let us look into u 3. We have already said it is ill posed problem. So, it has any 0 

initial condition or homogeneous initial condition. 

So, therefore, we make it into you break into two sub-problems once again. u 3 is a 

function; u 3 s - that is a function of space x, y, and z; that is a steady state part plus u 3 t; 

that will be function of x, y, z, and t. Now, we should get the Governing Equation of u 3 

s and u 3 t, and the relevant boundary conditions, and initial condition. 

So, if you look into the mother problem of u 3 grad square, u 3 is equal to a u 3 plus b del 

u 3 by del t minus f. So, we just put u 3 is equal to u 3 s plus u 3 t. So, this becomes grad 

square u 3 s plus grad square u 3 t is equal to a u 3 s plus a u 3 t plus b del u 3 t by del t 



and del u 3 s by del t will be equal to 0 because u 3 s is a sole function of x, y, z. It is 

independent of t minus f. 

Now, we compute the we separate the steady state part and the transient part, and 

formulate the Governing Equation of u 3 s and u 3 t. So, what is the Governing Equation 

of u 3 s? We collect the similar terms. So, grad square u 3 s plus a u 3 s minus f. So, we 

intentionally attach the non-homogeneous part with the space varying part or the steady 

state part because that will be easier to solve. That will make my the partial differential 

equation in terms of t and space, homogeneous. 

And what is u 3 t? u 3 t will be - grad square u 3 t is equal to a u 3 t plus b del u 3 t by del 

t. And if you look into the initial condition, initial condition was u 3 and the original 

problem was u 3 equal to 0; therefore, u 3 t plus u 3 s is equal to 0; therefore, initial 

condition for u 3 t is nothing but minus of u 3 s which is a solution, which is a function 

of x, y, z, and this is the solution of the steady state part. 

So, you solve the steady state part completely, and the solution of the steady state part 

has become the initial condition of the transient part. And now, look into the boundary 

condition. The boundary condition was alpha del u 3 by del n plus beta u 3 is equal to 0. 

You put u 3 is equal to u 3 s plus u 3 t. So, alpha del u 3 s by del n plus alpha del u 3 t by 

del n plus beta u 3 s plus beta u 3 t is equal to 0. Again, we collect the similar terms. So, 

this boundary condition for the steady state part will be alpha del u 3 s by del n plus beta 

u 3 s is equal to 0, and here, the boundary condition for u 3 will be alpha del u 3 t by del 

n plus beta u 3 t is equal to 0. 
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So, if you look into this problem, this is the Governing Equation (Refer Slide Time: 

38:48) of the steady state problem along with this boundary condition. You do not need 

any initial condition to solve the steady state part because steady state part is time 

independent. With the help of these boundary conditions, this steady state equation can 

be completely solved and we will be getting u 3 s as a function of x, y, and z. 

So, therefore, that solution of the steady state part will be the solution of the will be the 

initial condition of the transient part. So, we will be knowing it; that will be known to us 

with a negative sign of course, and if you look into the boundary condition, the boundary 

condition has become transient, but becomes homogeneous. 

So, therefore, if you look into the formulation of the sub-problems, one common thing is 

clear to you that each of these sub-problems will be having only non-homogeneity at a 

time. If you look into u 3 t, the boundary Governing Equation is homogeneous; the 

boundary condition is homogeneous; the initial condition is non-homogeneous. 

So, out of these - in the 3 sources of the equation, only one non-homogeneity is 

occurring here. In the case of u 3 s, the Governing Equation is non-homogeneous 

because of the presence of f, the boundary condition is homogeneous. So, there is only 

one source of non-homogeneity here. 
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Similarly, if you look into the other problems, other sub-problems, u 2 t is having a 

homogeneous Governing Equation, a non-homogeneous initial condition, and a 

homogeneous boundary condition. In case of u 2 s, it has homogeneous Governing 

Equation, it has a non-homogeneous boundary condition. So, only one source of non-

homogeneity is present there, and in case of u 1, it is well posed problem. Therefore, in 

this case, the Governing Equation was non-homogeneous; the initial condition the 

Governing Equation was homogeneous; the initial condition was non-homogeneous and 

the boundary condition was homogeneous. 

So, we will be dividing the problem into sub-problems considering only one non-

homogeneity at a time, and if your initial condition of a transient problem becomes 

homogeneous, then you are in trouble; you have to break down the problem into two 

more sub-problems such that each sub-problem will be containing only one non-

homogeneity. So, while you are formulating the Governing Equation for the sub-

problems, ensure that association of the non-homogeneous term should be done 

appropriately. 



(Refer Slide Time: 41:40) 

 

So, therefore, now you will be in a position to get that complete solution of the problem. 

Complete solution is given as a linear superposition of all the sub-problems. u 1 plus u 2 

s plus u 3 t u 2 t plus u 3 s plus u 3 t; that gives the complete solution and u 2 s is the 

steady state part of the second sub-problem; u 2 t is the transient part of the second sub-

problem; u 3 s is the steady state part of the first sub-problem; u 3 t is the transient part 

of the third sub-problem. And by using a linear superposition of all the solutions of the 

sub-problems, one can constitute the complete solution of the original problem. 
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Next, we will be taking up an example of Elliptic partial differential equation, Elliptic 

PDE, and in this case, we are writing it the 2-dimensional Laplacian operator - del square 

del x square plus del square del y square del square u by del x square plus del square u 

by del y square is equal to 0, and in order to solve this problem, you must be having 2 

boundary conditions on x because it is order 2 with respect to x; 2 boundary conditions 

on y because it is order to with respect to y. 

Now, let us define our boundaries like this: This is x axis; this is y axis (Refer Slide 

Time: 43:18) this is this surface is x is equal to 0, while this boundary is located at x 

equal to 0, y equal to 0; this boundary is located at x equal to 1 y is equal to 0; this 

boundary is located at y is equal to 1 and x is equal to 1. And so, all these four 

boundaries can be specified. So, since and here, u is equal to at x is equal to 0, y. So, this 

is this boundary. Here, it is defined as the boundary condition is g 2. 

In general, it will be function of y; the boundary condition on this plane, on this surface, 

this surface is y equal to 0, and here the boundary condition is u at any x, but at y is equal 

to 0, this is let us say f 1 and this boundary is located at x is equal to 1. So, u at x is equal 

to 1 for any y, this value is g 1 y in general and this is located at y is equal to 1 but any x. 

So, x is equal to 0 x is any x, and y is equal to 1 u is equal to f 2 x; that means there are 4 

boundaries: x is equal to located at x equal to 0, x equal to 1; y is equal to 0 and y is 

equal to 1; at x is equal to 0, you have u is equal to g 2 y; at x is equal to 1, you have u is 

equal to g 1 y; at y is equal to 0, your boundary condition is f 1 x, and y is equal to 1 

your boundary condition is f 2 x. 

So, we have if you look into the problem and its boundary conditions that, this is the 

Governing Equation and this Governing Equation is homogeneous, there is no non-

homogeneous term present into this boundary, this partial differential equation which is 

elliptic in nature. On the other hand, it contains the 4 boundaries and all of these 4 

boundaries are non-homogeneous in nature, and therefore, we have to break down this 

problem into four sub-problems, considering one non-homogeneity at a time. 

So, what I will do? I will break down this problem into four sub-problems u 1 plus u 2 

plus u 3 plus u 4, and we construct the solution the Governing Equation of each sub-

problem. 
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u 1 will be del square u 1 by del x square plus del square u 1 by del y square is equal to 0 

and in and you just put u 1 is equal to at x equal to 0, u 1 is equal to g 2 y, and u 1 at x is 

equal to 1, u 1 is equal to 0 at y is equal to 0, and 1 we put u 1 is equal to 0. 

So, we are keeping, only one non-homogeneity at a time forcing the other 3 non-

homogeneities to be 0; that gives the construction of the Governing Equation of first sub-

problem; then we look into the Governing Equation and the boundary condition of the 

second sub-problem. This will be del square u 2 by del x square plus del square u 2 by 

del y square is equal to 0. So, at x is equal to 0, we consider u 2 is equal to 0. We have 

the other boundary conditions, non-homogeneous boundary condition to be intact. So, u 

2 is equal to g 1 y and other 2 boundary conditions at y is equal to 0 and 1; we have, let 

us say u 2 equal to 0. 

So, therefore, we keep one non-homogeneity here, forcing the other three non-

homogeneities to be 0, and we formulate the Governing Equation of u 3 del square u 3 

by del x square plus del square u 3 by del y square to be equal to 0, and boundary 

conditions at x is equal to 0 and 1; we have u 3 equal to 0, y is equal to 0; we have we 

keep this non-homogeneity u 3 is equal to f 1 x and y is equal to 1. we keep the We force 

the non-homogeneity to vanish. 

So, therefore, we keep one boundary condition at y equal to 0; that non-homogeneity, we 

keep intact and forcing the other three non-homogeneities to vanish. Therefore, we can 



formulate similarly the fourth sub-problem u 4 - del square u 4 by del x square plus del 

square u 4 by del y square is equal to 0, at x equal to 0 and 1, u 4 is equal to 0, and at y is 

equal to 0, we force the non-homogeneity to vanish, and at y is equal to 1, we keep that 

non- homogeneity to be intact, and that will be u 4 is equal to f 2 x. So, that completes 

the fourth sub-problem. 

And if you look into each of this sub-problem, that only in this in problem number 1, 

only one non-homogeneity is kept intact; that is the boundary x is equal to 0. In problem 

number 2, only one non-homogeneity is kept intact; that is given in problem on the 

boundary condition at located at x is equal to 1. In the third sub-problem, only one non-

homogeneity is kept intact; that is the boundary located at y is equal to 0, and in the 

fourth problem, we kept intact only one non-homogeneity that is the boundary condition 

located at y is equal to 1. 

So, each of these sub-problems is well posed and we will be speak we will be able to 

solve them quite elegantly without any hassle. So, that is important. We keep only one 

non-homogeneity at a time; force the other all non-homogeneous to vanish so that we 

can make a problem well posed, and that well posed problem will be easier to solve. 
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So, next we will be looking into a particular a special solution of a special type of 

ordinary differential equation. 



So, that is how we will be using the principle of linear superposition for bringing down, 

for resolving their partial differential equation into sub parts so that every sub part 

contains only one non-homogeneity at a time and each of these sub-problems is a well-

defined problem. 

So, now, this point onwards, we will take a diversion and look into a special type of 

ordinary differential equations. And later on will connect this type of ordinary 

differential equations, how they will be relevant to the solution of partial differential 

equation. 

Consider a second order ODE of the form d square y by d x square plus lambda y is 

equal to 0, subject to conditions at x is equal to 0 y is equal to 0, and at x is equal to 1 y 

is equal to 0. 

Now, this type of equations, this is a special type of equation where lambda is a scalar; 

scalar in this means, in this case, a continuous function. Scalar indicates it is a constant. 

So, at x is equal to 0, both the if you look into the nature of this equation, you will be 

having, you can see that this equation is a homogeneous equation. So, it is not non-

homogeneous; on other hand, the boundary conditions are both homogeneous. So, 

therefore, this is a set of homogeneous equation as well as the homogeneous boundary 

condition. So, this equation is known as a standard Eigenvalue problem. It has also a 

special name, that is called a Sturm Louiville problem, but please note, that this is not a 

general equation for a standard Eigenvalue problem. 

This is a special case of generalized, this is a special case of Sturm Louiville problem or 

a standard Eigenvalue problem, and this is also a standard Eigenvalue problem. 

We will be looking into more generalized version of the standard Eigenvalue problem 

and Sturm Louiville problem in the next class, but probably before that we should look 

into the solution of this equation. So, one obvious solution is that if y is equal to 0 it 

satisfies the Governing Equation as well as the boundary condition. 

So, the solution y is equal to 0 satisfies the Governing Equation as well as the boundary 

conditions. So, 0 is a solution; so, y is equal to 0 is a solution, but this is an obvious 

solution. Therefore, this particular solution is known as the trivial solution. On the other 



hand, we are not looking into the trivial solution; we are looking into the specific 

meaningful solution. 

So, therefore, in the next class, we will be looking into how the meaningful solutions or 

the non-trivial solutions will be obtained from the standard Eigenvalue solution, standard 

eigenvalue problem like this, and how one can get different kind of solutions by 

changing the boundary conditions. 

So, we stop in this class at this point. We will look into more details of the standard 

Eigenvalue problem, in the next class. Thank you very much. 


