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Good afternoon every one. So, we in the session, we will be looking into some of the 

problems of chemical engineering problems, which we will be utilizing, where we will 

be utilizing the stability analysis for the steady state; we will be evaluating the steady 

state first and then we will be looking into the stability of the steady state. In some of the 

cases, we will be looking into the combinations of various parameters, which will be 

corresponding to the half bifurcation or saddle in bifurcation. So, we will be looking into 

some more applications of chemical engineering processes, and how this Eigenvalue or 

Eigenvectors method can be utilized to identify the stability of such systems. 
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So, first example will be talking about in this session is the example of free and 

undamped oscillation. Just consider a system, that this the equilibrium position and we 

have a pendulum bomb of mass m is kept at an angular displacement theta; theta is 



nothing but the angular displacement. This is the equilibrium position and the restoring 

force in this direction will be m g sin theta. 

Basically the presence, because of the presence of this m g sin theta restoring force, the 

pendulum will be moving towards the equilibrium position, but it cannot stop there 

because of the equation inertia of motion, it moves back the on other side and get, it will 

be acted upon by the restoring force in the opposite direction towards the equilibrium 

position, comes back and starts oscillating. 

Now, we just look into the stability of the system; now, if you look into the equation of 

motion for this particle, this becomes theta double prime; theta double prime is basically 

d square theta d t square plus K sin theta is equal to 0; so, d square theta d t square plus K 

sin theta that will be equal to 0. Now, consider this transformation - thus theta is equal to 

y 1; that means, theta is equal to y 1; so, d theta theta prime is given as y 2, and y 2 is 

nothing but d y 1 d t. 

So, we have by defining this, we can break down this equation motion into two equation; 

so, the first equation will be d y 1 d t will be y 2 that is equal to f this is equation number 

one; equation number two will be d y 2 d t will be equal to minus K sin y 1 and that will 

be equal to g this time. 

So, the at the steady state will be obtained by putting d y 1 d t equal to 0 and d y 2 d t 

equal to 0; so that will be corresponding to the steady state of this problem. 
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So, therefore, we will be getting as y 2 is equal to 0; so, d y 2 d d t d y 2 d y 1 d t is equal 

to y 2 equal to 0; that is one steady state. And at the steady state the sin y 1 d y 2 d t 

equal to 0; so that will give you sin y 1 with a minus k should be equal to 0. Now, k 

being a non zero constant; so, therefore, sin y 1 is equal to 0 and the solution is y 1 is 

equal to n pi, where the index n earns from 0 plus minus 1, 2 like that. 

Now, consider, so the steady state is nothing but represented by this two states, y 1 equal 

to 0 and y 2 equal to 0; so, these are the steady state of this problem. Now, let us identify 

the matrix the Jacobian matrix f x f y g x g y; this simply means this is nothing but del f 

1 del y 1 del f del y 1 del f del y 2 del g del y 1 and del g del y 2, evaluated at steady 

state, that means, y 1 is equal to y 2 is equal to 0. 

Now, we are already seen that f is nothing but y 2, and g is nothing but minus K sin y 1; 

so, if that is the case del f del y 1 will be equal to 0, del f del y 2 will be equal to 1, del g 

del y 1 will be nothing but minus k cos y 1, and del g del y 2 will be equal to 0. So, this 

will be evaluated at the steady state, that means, at y 1 equal to 0 and y 2 equal to 0; so, 

this will be 0 minus K 1 0, so that is the a matrix the Jacobian matrix. 
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Now, if you like to find out the Eigenvalues of these determinants of this matrix A; so, 

let us look into the Eigenvalue of this matrix A, so that we can find out, what are the 

Eigenvalues of this system. So, to find out the Eigenvalue of this matrix, so determinant 

of A minus lambda I should be equal to 0; so, this will be, determinant of this matrix will 

be equal to 0 so it will be minus lambda 1 minus k minus lambda that should be equal to 

0. 

So, lambda square, minus into minus, plus k will be equal to 0; so, lambda becomes plus 

minus i root over k. So, now, this will be lambda 1, 2, if you look into the phase place 

plot, so this is imaginary axis this is real axis; so, this roots they are lying on this axis, so 

this is root over k and this will be minus root over k; so, they are on the verge of crossing 

over the left of plane to the right of plane. 

So, we cannot say that, they are unstable or stable, so we call them as this condition is 

known as the steady state, is known as the critically stable. So, this is neither on the right 

of plane, which means, they are unstable; they are neither on the left of plane left of 

plane, so which is stable; so, this stability is known as the critically stable the steady state 

0; 0 is at critically stable condition and it shows a periodic vibration. So, the disturbance, 

if you look into the solution of the disturbance, the disturbance solution will be in the 

form of, of e to the power lambda t; so, it will be in the form e to the power plus minus 

some i root over k times t; so, it will be composing of sin theta plus minus cosine i cosine 



theta. So, it will be in this form; so, therefore this indicates that, it shows a periodic 

vibration or periodic motion. 
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So, responses in phase plane plot we can say, we can look into responses in phase plane; 

we divide the governing equation into one after, one by the other; so, d y 2 d y 1 is 

nothing but minus k sign y 1 divided by y 2. So, for small perturbation, that means, if 

theta is small, the angular amplitude is small, then sin y 1 can be approximated by y 1; 

so, we will be having d y 2 d y 1 is equal to minus k y 1 by y 2. So, it will be y 2 d y 2 is 

equal to minus k y 1 d y 1. So, we can integrate it out over integration what will be 

getting is y 2 square by 2 is equal to minus k y 1 square by 2 plus c. 

So, you will be getting y 2 square plus k y 1 square is equal to some constant c; so, it will 

be new constant to see that will be new constant. This should satisfy the initial condition 

that is y 1 is equal to y 2; this should satisfy the steady state y 1 plus y equal to y 2 equal 

to 2. So, if you do that, then c 1 trans out to be 0 so y 2 square plus k y 1 square will be 

equal to 0; that will be the governing equation in the phase plane plot. 
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Now, if you plot this equation, so see what we will be getting. If you plot y 2 and y 1 will 

get will be getting the concentric, you will be getting the elliptical contuse for different 

values of case; so that will be the response in phase plane plot.  Next, we look into the 

example of damped oscillation. 

 Now, in case of damped oscillation, the governing equation will be, d square theta d y 

square plus c d theta d square theta d t square plus c d theta d t plus k sin theta equal to 

zero. So, in that case, we define theta is equal to y 1, so, theta prime is y 2; if we define 

these two parameters, so d y 1 this equation govern the equation can be broken into two 

ordinary differential equation. So, this will be d y 1 d t is equal to y 2 is equal f d y 2 d t 

plus c y 2 plus k sin y one is equal to 0; so, that will be the second equation. So, you will 

having d y 2 d t is equal to minus k sin y 1 minus c y 2. 
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So, therefore, we get down to the governing equation of the system; so, what are the 

governing equation, just write it down once again, so d y 1 d t will be is equal to y 2 that 

is equal to f d y 2 d t is equal to minus k sin y 1 minus c y 2 is equal to g. So, let us look 

into the steady state of this problem; so, the existing steady states are when putting d y 1 

d t is equal to d y 2 d t is equal to 0. And I am just writing the steady state, so it will be 0; 

0 is 1 steady state plus minus pi, 0 is another steady state plus minus 2 pi, 0 is another 

steady state, likewise. 

So, consider the steady state 0, 0 and see what we get out of it 0, 0; so, the matrix A is, 

let us write the matrix Jacobian matrix A, f x f y g x g y; so, it will be simply del f del y 1 

del f del y 2 del g del y 1 del g del y 2. And this becomes del f del y 1 so it becomes 0, 

del f del y 2 it is 1, del g del y 1 so it will be k cosine y 1, and with a minus sin because 

this minus is there and del g del y 2 will be nothing but minus c. 
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So, that is the Jacobian matrix, we evaluate this Jacobian matrix at the steady state. So, at 

0, 0 we evaluate this Jacobian matrix; so, at 0, 0 we evaluate this one, A this becomes 0 1 

minus k minus c. 

Now, we will put the condition we evaluate the Eigenvalues; so, Eigenvalues will be 

evaluated by putting the determinant A is equal A minus lambda I to be equal to be 0. If 

that is the case, will be getting minus lambda 1 minus k minus c minus lambda is equal 

to 0; that means, there will be lambda into c plus lambda minus into minus plus k is 

equal to 0. So, will be having the condition lambda square plus lambda c plus k is equal 

to 0. Either you evaluate that are you can use the condition by looking into this matrix, 

one can find out the condition for stability. If you remember the condition for stability is 

that trace of the matrix A is less than 0 and determinant of matrix A should be greater 

than 0; so what is the trace, 0 plus c 0 plus minus c. 

So, this basically addition of the diagonal element; so, 0 plus minus c should be equal to 

0; that means, c is positive; minus c is less than 0, that means, c is positive, so that makes 

the trace of the matrix A is 0. And what is determinant of this, determinant of this will be 

this minus, this multiply this, minus c, minus into minus, plus k should be greater than 0; 

so, that means, c multiplied by 0 minus k multiplied by 1; so, minus into minus plus k, so 

k greater than 0. So, k greater than 0 and c greater than, c is greater than 0 because trace 

of c traces of a should be less than 0; so, minus c is less than 0, c greater than 0; so, c 



greater than 0 and k greater than 0 will lead to the steady state 0; 0 a stable steady state. 

So, this two condition, c greater than 0 and k greater than 0, will lead to this stable steady 

state. 
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So, any such problems, the first thing, first we have to formulate the governing equation 

of the process, governing equation of the process. Next, we have to evaluate the steady 

state by putting the time variables, if the time derivatives to equal to 0. Third will be 

solve for the steady state, once you solve for the steady states, by you can use Newton 

Raphson, may be one of the method for a complicated problem. Then you take up 

individual steady state, evaluate Jacobian matrix at that steady state. And next is that you 

check the condition on stability and conclude about stability of steady state. 

So, next we go head, so this will be the steps. So, once we get the stability of the steady 

state, then you take up the another steady state and repeat this process evaluate the 

Jacobian matrix, at the particular steady state; check the condition of stability and 

conclude about the stability of the steady state or you find out the conditions of the 

parameters, so that the steady stable or unstable. 
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Next, we look into the third example; example 3, this is about the Lotka-Volterra 

population method and there is spelling mistake here and it will be Lotka-Volterra 

population method and in this method the model is known as the Predator-Prey Model. 

So, it is like a fox and rabbit population in a forest; if number of foxes, that if the 

population of the fox increases when the population of the rabbit decreases; once the 

population of fox population of rabbit decreases, then because of dearth of scarcity of 

food, the population of fox decreases and population of rabbit increases and it keeps on 

going like that. So, the governing equation for this problem is given by d y 1 d t is equal 

to a y 1 minus b y 1 y 2 that is equal to function f; d y 2 d t is equal to k y 1y 2 minus l y 

2 is equal to g. 

Now, these are the two models, model equation of the process. So, now, let us look into 

the steady state; the steady states are obtained by putting d y 1 d t is equal to d y 2 d t is 

equal to zero. So, if you put the first equation to be 0, it becomes y 1 a minus b y 2 equal 

to 0; so, it has a two solution y 1 equal to 0 or y 2 is equal to a by b. 
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Now,, if you put the second equation to be 0 second transient equation to be 0, will be 

getting k y 1 y 2 minus l y 2 equal to 0. So, you will be getting y 2 into k y 1 minus l 

equal to 0; so, therefore, either y 2 equal to 0 or y 1 is equal to l by k. So, there exists two 

steady states in this particular problem; these two steady states are denoted by S 1 and S 

2, S 1 and S 2 and S 1 is 0, 0 and S 2 is l by k and a by b; so, these are the two steady 

state of this particular process and we will check the stability of this two steady states 

one after another, but before that we construct the Jacobian matrix. 

So, we construct Jacobian matrix and if you look into the Jacobian matrix, this will be f y 

1 f y 2 g y 1 g y 2; so, this will be del f del y 1 del f del y 2 del g del y 1 del g del y 2; so, 

this will be a minus by 2 minus by 1 k y 2 k y 1 minus l. So, this is the construction of 

Jacobian matrix. Now, we take up the steady state S 1 and evaluate the Jacobian matrix 

A and look into the stability by looking into the trace and the determinant conditions. 
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So, consider steady state 1 that is nothing but 0, 0. So, evaluate the Jacobian matrix at 0, 

0, so this will be a 0 0 minus l; so, this will be the construction of the evaluation of 

Jacobian matrix at the steady state 0, 0. So, you find out trace of a will be nothing but 

this plus, this so a minus l; and determinant of A will be nothing but minus a l. 

Now, for stability of the, of this particular steady state, trace of A has to be equal to 

minus 1; so, a minus l should be less than 0; so, a must be less than l that is required 

condition number one. And next condition is determinant of A should be greater than 0, 

that means, minus a l should be greater than 0 and a l has to be less than 0. 

Now, in the model equation, if you look the model equation, the constants those appear 

a, k, l and b, all are positive constants so multiplication of two positive constants cannot 

be 0; therefore, this steady state cannot be a stable steady state. So, 0, 0 that is S 1 can 

never be a stable steady state, because the constants those are appearing the governing 

equations, they all positive and multiplication of two positive numbers cannot be 

negative. 
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So, therefore, this particular steady state can never be a stable steady state. Then, let us 

look into the steady state number 2 that is S 2; we examine the stability of this particular 

steady state S 2 is l by k and a by b, evaluate the Jacobian matrix as S 2, so this will be a 

minus evaluated at a by b, k into a by b minus b l by k and k multiplied by l by k minus l. 

So, therefore, this becomes zero minus b l by k ka by b plus 0; so, this will be the 

Jacobian matrix evaluated at the steady state l by k and a by b. Again, we look into the 

trace, trace of A is basically some of the, of this two values. So, in the corner elements, 

so it will be 0, and determinant of A will be nothing but this minus, this, so determinant 

of a will be k by b, so there we will be 0 into 0, 0 minus into minus, plus ka by b into b l 

by k, this becomes b b will be cancelling out, and k k will be cancelling out; so, this 

becomes a times l. 

Now, for the stability determinant of A has to be greater than 0; therefore a l has to be 

greater than 0; there is no problem in that because both a and l are positive constants. So, 

multiplication of them only greater than 0, but trace of A makes them equal to 0; that 

means, the Eigenvalues, if you remember if trace becomes 0, the Eigenvalues are purely 

imaginary; this simply means the Eigenvalues are purely imaginary. Therefore steady 

state 2 is critically stable, because the both the steady state are lying on the imaginary 

axis, both the steady states are lie on the imaginary axis and they are critically stable 

slight deviation, they may be unstable. 
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The next example, we will be talking about the something called Van der pol oscillation; 

that is example number 4. This is Van der pol oscillation, the first governing equation of 

this process is given as d x 1 d t is equal to x 2 that is equal to f; the second equation is d 

x 2 d t is equal to a 1 minus x 1 square multiplied by x 2 minus x 1 this is equal to g and 

this constant a is a positive constant. 

Now, we evaluate the Jacobian matrix, so we find out the steady state; the steady state 

will be obtained by putting x 2 d x 1 d t equal to 0; that means x 2 equal to 0. And if you 

put x 2 is equal to 0 then from the other equation will be getting x 1 is equal to also 0; so, 

0, 0 is the only steady state of this particular problem. So, next we evaluate the Jacobian 

matrix A is f of x 1 f of x 2 g of x 1 g of x 2. And this will be equal to 0 1, and g of x 1 is 

nothing but 2 a 2 2 x 1, so 2 a x 1 x 2 minus 1, and g of x 2 will be simply, a times 1 

minus x 1 square. 
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So, these are the foue elements of the Jacobian matrix and we evaluate this Jacobian 

matrix at the steady state 0, 0, if we do so, then after evaluation the Jacobian matrix 

becomes 0 1 minus 1 and a, these are the elements of the Jacobian matrix. So, evaluate 

trace of A the trace of A is a summation of the diagonal elements so it becomes a. And 

on the other hand determinant of A becomes 0 into a, that is 0, minus into minus, plus so 

it will be 1. 

Now, determinant a, of a, is always 0, but trace of a should be negative. But as the 

problem is given that in the problem, it was given that a is always positive. So, therefore, 

for positive a, the steady state 0, 0 is unstable. On the other hand, if in the problem it was 

given that a is negative, for negative a trace negative a, that is a is less than 0, that is 

satisfied, then this 0, 0 is a stable steady state. For a equal to 0, then we have the HoPF 

bifurcation because trace becomes equal to 0 that presents a HoPF bifurcation point. 
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Now, we can further analyze the system, if we get into the characteristic equation of the 

Eigenvalues. So, if we look into the characteristic equation of the Eigenvalues will be 

given by, determinant of by setting, determinant of A minus lambda I is equal to 0. So, 

you will be having A minus just construct the A minus lambda I, matrix minus lambda 1 

minus 1 a minus lambda; so determinant of that will be equal to 0; so, minus lambda a 

minus lambda, minus into minus, plus 1 will be equal to 0. So, this will be lambda square 

minus a lambda plus 1 is equal to 0. Now, if you look into the roots of this characteristic 

equation which will be corresponding to the Eigenvalues, two Eigenvalues this will be 

minus b plus minus under root b square minus 4 divided by 2. 

Now, if we see that, for if you try to fix up a domain of the parameter a, then for minus 

infinity lie, a lying in between minus infinity to minus 2; that means a is in the negative 

domain. So, if it is minus infinity to minus 2, then if a is lying between minus infinity 2 

minus 2, then stable then the steady state 0, 0 is a stable node.  

So, for minus 2 a lying in between minus 2 to 0, if a is lying in between minus 2 to 0, 

then you will be having a negative real part, but at the same time, this will be the 

material with the argument, with in the square root becomes less than 1; so, if it is lying 

between minus 2 and 0 the argument with in the under root becomes less than 1. So, it 

becomes, the whole thing becomes imaginary, at the same time the real part of this will 

be negative. 



So, this is condition, then we will be having imaginary roots, may know complex 

conjugate roots with negative real part. So, Eigenvalues becomes complex conjugate but 

negative real part, so for this case we will be having a stable focus. 
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So, for a lying between minus 2 and 0, the steady state is a stable focus, because roots the 

Eigenvalues are imaginary and Egenvalues are complex conjugate and real part of 

Eigenvalues are negative. For a lying in between 0 and plus 2, what we will be having is 

that, wiil be having a unstable focus, because in this case Eigenvalues will be again 

complex conjugate, but real part of the Eigenvalues will be 0 greater than 0. 

So, therefore, you will be having a focus, but that focus will be unstable focus because 

the real part of the Eigenvalues are greater than 0. Now for a lying in between 2 to 

infinity, we will be having, if this is the case, then if you look into the solution a plus 

minus under root a square minus 4. So, therefore, we will be having the Eigenvalues real 

and greater than 0, always positive; so, we will be getting the unstable node. So, for this 

condition, the steady state 0, 0 is nothing but an unstable node. 

So, for different domains of a, one will be getting the different times, types of steady 

state. In one case, we will be getting the stable focus; in another case, will be getting the 

unstable focus; in two domains of, for a will be getting the stable node and unstable node 

always. 
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So, you can make this phase plane plot, that for a is less than minus 2, you can come to 

conclusion that steady state 0, 0 is an attractor, because it will be a stable node. For a 

lying in between minus 2 and 0, the steady state 0, 0 is an attractor, because that will give 

you a stable focus. For a lying between 0 and 2, the steady state 0, 0 is a repeller. And for 

a greater than 2 the steady state 0, 0 is again a repeller. 

So, therefore, this gives a particular demonstration of example, where different values of 

the parameter. You will be landing up the different steady states which can be an 

attractor or can be repeller, can be a node, can be a focus, can be a stable node, can be 

unstable node, can be stable focus, can be unstable focus. 

Then, will move on to another example and that will be quite interesting example, 

because in this case, we will be not only checking the steady state, we will be putting up 

conditions in the parameters, such that, stability will be implemented or it will be 

imposed. 

So, in this particular problem, what we are doing, a chemical engineering process is 

characterized by the following 2 ODEs. And this ODEs are given by d x d t is equal to x 

A y minus 1 plus B is equal to we called that as f and d y d t is equal to y times 5 minus 

B x plus y and we called that as g. 



Now, let us find out the steady; so, the question is find out the steady state of this process 

and evaluate the stability of the steady state. And find out the conditions in the 

parameter, so that the steady state is stable or unstable. 
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So, first step that we are going to do is evaluation of steady state. To evaluate the steady 

state - so, it becomes 0 x A y minus 1 plus B, and 0 y into 5 minus B x plus y; so, the 

first equation will give you the solution x is equal to 0 or y is equal to 1 minus B divided 

by A. From the second one you will be getting y is equal to 0 or x is equal 5 plus y 

divided by B. So, 0, 0 is one steady state, so you are having two steady states in this 

problem and the second steady state 0 minus 5 is another steady state. 

If x is equal to 0, you can put, you can get y is equal to minus 5; so, 0 minus 5 is another 

steady state and by solving these two equations, by solving these two equations, one can 

get the third steady state. And the third steady state is 5 A minus B plus 1 divided by A B 

and 1 minus B by A. How to get this steady state? If you simply solve these two 

equations A y is equal to 1 minus B and B x is equal to 5 plus y. 

So, if you 1 minus, so if you put the value of y there, so it becomes 5 minus 1 minus A 

by 1 minus B by A; so, 5 A minus B, 5 plus y, so B x will be 5 plus y, y is 1 plus 1 minus 

B, so it becomes 5 A minus B plus 1 divided by A. 



So, x becomes 5 A minus B plus 1 divided by A B. So, you will get the first value of the 

steady state and corresponding to that you, put into here y becomes 1 minus B by A. So, 

you will be having three steady state into this problem; by you can get these three steady 

states by solving these 2 equations. One will be getting the steady state number 1 that is 

0, 0; steady state number 2 that is 0 minus 5; this is a steady state number 3 5 A minus B 

plus 1 divided by AB and 1 minus B over A. 
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Now, we evaluate the each and every steady state and check the condition for their 

stability, but before that what we should do, we should evaluate the Jacobian matrix. If 

we evaluate the Jacobian matrix, J is nothing but f x f y g x g y; and this becomes A y 

minus 1 plus B A x minus B y 5 minus B x plus 2 y. 

Now, let us, so this is the Jacobian matrix; now, we take up one steady state after another 

and check the stability of the steady state. So 0, 0 is the, for steady state, we check the 

stability of this one; so, evaluate the Jacobian matrix at 0, 0, so this becomes B minus 1 

then it becomes 0 0 and 5. So, determinant, if you evaluate the Eigenvalues, so the 

characteristic equations becomes determinant of j minus lambda I should be equal to 0; 

so B minus 1 multiplied by 5, so this becomes J minus lambda I becomes B minus 1 

minus lambda 0 0 5 minus lambda, so determinant of this will be equal to be 0. So, B 

minus 1 minus lambda multiplied by 5 minus lambda that should be is equal to 0. 
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Now, if we land up with a quadratic and evaluate the roots of the quadratic. So this 

quadratic equation has to be evaluated, B minus 1 minus lambda multiplied by 5 minus 

lambda equal to 0. So, one root will be getting as 5, another root will be getting as B 

minus 1. Now, since, one root is always positive, now depending on the value of the 

lambda 2 can be positive and negative; for B less than 1 lambda 2 is negative for B 

greater than 1 lambda 2 is positive, so it does not matter because the other root is always 

positive. 

So, this is always positive, that means, the steady state 1 that is 0, 0 is always an unstable 

steady state; so, it does not matter to the values of a and b and the parameters 0, 0 steady 

is always unstable. 

Now, next, we examine the stability of the steady state 2, steady state 2 is 0 and minus 5. 

So, evaluate the Jacobian matrix at these steady state values, so it becomes minus 5 A 

minus 1 plus B 0 and this will be 5 B and minus 5. 
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So, we again we evaluate the Eigenvalues by putting determinant of J minus lambda I is 

equal to 0. So, if we do that the characteristic equation becomes, so the characteristic 

equation, we write down the characteristic equation that becomes, minus 5 A minus 1 

plus B minus lambda multiplied by minus 5 minus lambda is equal to 0. So, therefore 

first equation, so first root lambda 1 is equal to minus 5; and second lambda 2 is equal to 

B minus 1 minus 5 A. Now, lambda 2, so lambda 1 is minus 5, it is less than 0 and for 

lambda 2 is less than 0, we have to have, B minus 1 minus 5 A should be less than 0. 

So, therefore, 5 A should be greater than B minus 1, so that is the condition so that both 

roots are negative and we will be having this steady state stable. Now, if you put into the 

other condition that is the trace of determinant of the Jacobian matrix is less than 0 will 

be landing up with minus 5 A minus 1 plus B minus 5, that is the summation of the 

diagonal elements of the Jacobian matrix should be less than 0. 

So, this will be getting 5 A should be greater than B minus 6; in fact, between these two 

conditions 5 A is greater than B minus 6 is more stringent condition between these two; 

therefore, we can consider this thing, so that trace becomes less than 0. 
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Then, we will also check the determinant of a should be, determinant of J the Jacobian 

matrix should be greater than 0. If you look into the determinant, this becomes minus 5 

minus 5 A minus 1 plus B should be greater than 0. 
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So, minus can be consumed here, so this will be 5 A plus 1 minus B should be greater 

than 0. So, one can have 5 A is greater than B minus 1; so, if you remember that we 

already got this equation earlier, so this equation we got from earlier; so, 5 A is always 

greater than B minus 1. 



So, therefore between these two conditions is more stringent condition; therefore, we can 

say that lambda 1 that for 5 A is greater than B minus 6. The steady state S 2 is always 

stable, we can talk about the HoPF bifurcation and Saddle point bifurcation. For HoPF 

bifurcation trace of a should be, trace of Jacobian matrix should be equal to 0; so, the 

condition for that is 5 A is equal B minus 6. So, this is the condition on the parameters 

where the HoPF bifurcation occurs. Similarly, one can get the Saddle node bifurcation 

point; for Saddle node bifurcation point, you will be getting determinant of A should be, 

determinant of Jacobian matrix should be equal to 0 and you will be having 5 A is equal 

to B minus 1; so that is the condition for Saddle node bifurcation. And what is left now is 

that will be doing, probably the third steady state is left and again we will be evaluating 

the Jacobian matrix for the third steady state and see the stability values where in a 

stability criteria. 

The trace of and evaluate the Jacobian matrix at steady state number 3, we evaluate the 

trace of the Jacobian matrix and determinant of the Jacobian matrix by putting the 

condition trace is less than 0 and determinant of is greater than 0 will be getting the 

conditions on a and b for the stability of the third steady state. 

So, we stop here, we will take up the examination of third steady state in the next class 

and start from that point onwards. 

Thank you. 


