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So, welcome to the next session of this next class, of this session. So, we are discussing 

about the stability of the steady state. So, in the last lecture, we finished - we have 

studied - the classification of the steady state and we have discussed about the two steady 

states - one is the unstable node and another is the stable node. 

Now, in this class, we will finish the classification of the steady state and further we 

develop our theory for the stability analysis. 
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So, next steady state that we will talk about is the saddle steady state. So, let us see what 

a saddle is - at this steady state, some Eigenvalues are positive and some Eigenvalues are 

negative. And we have real first condition is for the saddle, we have real valued 

Eigenvalues. Secondly, some lambdas are positive and some lambdas are negative; so 

the saddle is always unstable. 



  

So, if you look into the phase plane plot for the saddle, it will look something like this; 

so, in one steady state branch, you will be - let us say - this is u 2 and this is u 1 (Refer 

Slide Time 00:55). So, lambda 1, lambda 2 are two Eigenvalues, corresponding 

eigenvectors are u 1 and u 2. Now, in this case, any disturbance will decay, so lambda 2 

is negative and along with this eigenvector, and along with this eigenvector u 1, any 

disturbance will grow in time; so, therefore, lambda 1 is ever positive. 

So, this case of saddle, saddle is basically a steady state, where at least some of the 

Eigenvalues are positive and some of the Eigenvalues are negative. 
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Next steady state will be - talking about is - called as stable focus. Now, in this case, the 

Eigenvalues are imaginary and they are in the form of p plus minus i q. So, in case of 

real values of lambda 1 is less than 0 and real value of lambda 2 is also less than 0, then 

we call this focus as stable focus. 

So, basically if you look into the phase plane plot, it will be the steady state here; so 

whenever you will start from here, it will spiral and then we come into this steady state; 

so, trajectories spiral towards - steady state - steady state and from why it will be 

spiraling? That will be depending on the initial conditions. 

 



  

So, it will be spiraling in that particular path and as you have seen that, it contains an 

imaginary part, it will be the solution then the deviation variable or part of variable will 

be in the form of sine and cosine function; So, it will be having a spiral nature towards 

the steady state or away from the steady state. 

So, in this case of real values of lambda 1, lambda 2 are negative, then it will be landing 

with a stable focus and focus will happen only in case of a complex. So it is not 

imaginary, it is basically complex and complex conjugate; so Eigenvalues are complex 

conjugate (Refer Slide Time 02:42). 

So, then we will be having a focus. So, the condition for having a focus is that, complex 

conjugate Eigenvalues must occur, that is, number 1. And secondly it will be a stable 

focus; if the real values of the Eigenvalues are negative then you will be having a stable 

focus. 
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In case of unstable focus, the lambda 1, lambda 2’s are complex conjugate and they are 

in the form of p plus minus i q and real values of lambda 1 and lambda 2 are always 

greater than 0. 

Now, if you look into the phase plane plot x 1 and x 2, then in this case the steady state 

and the focus will be unstable and it will be diverging away from the steady state; the 

deviation or perturbation will be diverging away from the steady state. 



  

Therefore now in case of the trajectories whatever we are talking about in the phase 

plane plot this trajectories are equivalent to magnetic lines of force or the streamlines in a 

fluid flow. Therefore, no two trajectories will intersect each other at any point of phase 

plane. So, not that is a typical property of the trajectories in the phase plane plot. 

And next we look into the bifurcation theory and the actual theory for the stability 

analysis in any chemical engineering system 
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So, next we define what stability is, with this background we are able to take up the 

stability analysis using the bifurcation theory, which is also known as the linear stability 

analysis. 

So, stability of a state – can be determined - is evaluated by examining if a small 

perturbation about that steady state grows or decays in time that is the definition of the 

stability of a particular state. 

Next, we talk about, if basically for a steady state you just give a perturbation, if that 

perturbation grows in time, it becomes an unstable steady state; if the perturbation 

decays in time, it is a stable steady state. 

Next, we look into the bifurcation theory. This is also known as the linear stability 

analysis. So, basically if the bifurcation theory says that we have several system 

parameters. 



  

System parameters are nothing but combination of operating variables and inherent 

system properties; so, that is the system parameters and it says that, if parameters change 

a new solution is generated.  

Now, we have to test whether the new solution is stable or unstable. In other words one 

can get the bound on the parameters for where the solution or the steady state is always 

stable or always unstable or you can get the combination of the parameters or the 

conditions in the parameters where the solution becomes moves from stable to unstable 

region. So if you want to operate under the stable steady state, those conditions are have 

to be avoided. 

(Refer Slide Time: 12:10) 

 

So, what a linear stability analysis or bifurcation theory does? Bifurcation theory has 2 

functions. First one, it discusses stability the 2 stability subject to very small fluctuations 

- discusses stability - of solution. It calculates the points or the parameters conditions on 

parameters where stability changes. One can get a boundary of stable or unstable region. 

Now, we just take up an example and the example I preferred is that the example 

whatever we have done with the earlier in context of whatever we discussed about the 

contraction mapping - the CSTR problem. 
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So, let us take up the example of CSTR problem - non isothermal CSTR. So if you 

looked into the unstable solution, the variation is something like this (Refer Slide Time 

14:17), if B is greater than 4 into 1 plus beta, then this is D a i ignition, this is D a e 

Damkohler number extension; so, extension D a e and D a i are called the bifurcation 

points. 

If we slightly shift the Damkohler number from D a e or D a I, it will be getting a new 

steady state either in the upper half branch or in the lower half branch. 

So, across the bifurcation point the solution changes; so, if we write down the governing 

equation of this system thing becomes clearer and we can go further with the analysis. 
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So, for mass balance will give you dC dt is equal to minus C plus D a 1 minus C e to the 

power T and this is function of C and T - concentration and temperature, this is non-

dimensional concentration is basically conversion and temperature. So, dT dt is nothing 

but minus 1 plus beta T plus BD a 1 minus C e to the power T, this will be some function 

g of concentration and time. 

So, at the steady state, we have 0 is equal to function of C s s and T s s and 0 is equal to 

some function the g of C s s and T s s. Now, the steady state will be obtained by solution 

of these equations. Solution of these two equations will give you the steady state values 

of C s s and T s s, but the point is in this particular form; these two equations cannot be 

solved analytically. So, one has to take request to the non-linear, because these two 

equations are non-linearly connected and therefore one has to take the iterative 

technique, may be a Newton-Raphson technique will be suitable. 

So, some kind of iterative technique can be adopted to solve these two equations because 

subject to given a set of the parameters, because they are not linear in nature and one can 

take recourse to the Newton-Raphson technique numerically to solve these set of 

equation in order to get C s s and T s s - the steady states. 

Now, the question is, whether the steady state C s s and T s s they are stable or unstable? 



  

So, what we do? We write C as a function of T as C s s plus C star t and T as a function 

of time as T s s plus T star t, so this star indicates the perturbation about the steady state. 

Now, we write the governing equation in terms of the part of variable C star and T star 

and see what we get. 

(Refer Slide Time: 19:24) 

 

So, if we really do that we will be getting dC star dt is equal to function of C s s plus C 

star and T s s plus T star and dT star dt will be function of C s s plus C star and T s s plus 

T star. 

Now, again we use to the tell up a linearize the problem, linearize the equations using 

Taylor series expansion and retaining the first order term and neglecting higher order 

term assuming the deviations are quite close to the steady state. So, we have a 

linearization f of C T will be in about the steady state, this has to be done about the 

steady state. 

So, f of C T will be nothing but f of C s s and T s s plus del f del C about the steady state 

C s s T s s C minus C s s plus del f del T about the steady state T minus T s s and T 

minus T s s is nothing but T star C minus C s s is nothing but C star. 
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So, therefore, we will be getting the, so similarly we can expand the Taylor series 

expansion with respect to f of g of C and T about the steady state and what will be 

getting is that, dC star dt is nothing but f of C s s T s s plus del f del C about the steady 

state times C star plus del f del T about the steady state times T star. And dT star dt will 

be is equal to g of C s s and T s s plus del g del C steady state C star plus del g del T 

steady state T star. 

Now at the steady state, this will be equal to be 0, this will be equal to 0 (Refer Slide 

Time 21:29). So, you have dC star dt is equal to f of f c - we just call this as f c - C star 

plus f subscript T T star and dT star dt is equal to g c C star plus g of T T star. 

So, what is f c? f c is nothing but del f del C at the steady state; f T is del f del T 

evaluated at steady state; g C is del g del C evaluated at steady state; g T is del g del T 

evaluated at the steady state. 

So, therefore, in a compact notation - matrix notation - these two equations can be 

written as dU dt is equal to AU, where U being a vector comprising of C star and T star 

and A is the Jacobian matrix, that is f of c f T g c g T which are nothing but these 

derivative with respect to steady state evaluated at the steady state and that forms the 

Jacobian matrix. 
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So, we are basically having an equation in the form of dU dt is equal to A U and  assume 

the solution in the form of, so this variable U - the vector U - is nothing but it is made of 

elements which are in the form of part of variables. 

So, assume the solution in the form of C star is C hat e to the power sigma t and T star is 

T hat e to the power sigma t. So, if we put all these in this equation, so this becomes C 

hat we put dC star dt is equal to f c C star plus f T T star. So, dC star dt will be C hat 

sigma e to the power sigma t is equal to f c C hat e to the power sigma t plus f T T hat e 

to the power sigma t and you will be having this C star C hat sigma that e to the power 

sigma t will be cancelled out, C hat sigma has f c C hat plus f T T hat and from the other 

equation dT star dt is equal to f c C star that plus f T T star, we will be getting T hat 

sigma is equal to g c C hat plus g T T hat. And in the compact notation, you can write 

this equation as sigma u hat is equal to A u hat and in that u hat is nothing but the vector 

comprising of the element as C hat and T hat. 

So, basically you will be getting A U hat is equal to nothing but sigma u hat and this is a 

typical Eigenvalue problem with the sigma as the Eigenvalues; so, this a typical 

Eigenvalue problem with sigma as Eigenvalues. So, we can come to some kind of 

analysis. Now we will be looking into the values of Eigenvalues and their signs in order 

to establish the stability. So, how the sigmas are, so how to obtain the Eigenvalues? 
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Sigmas Eigenvalues are obtained from the characteristic equation and this characteristic 

equation will be obtained by solving the determinant of A minus sigma I is equal to 0, 

but we solve this determinant is equal to 0 and we will be getting the characteristic 

equation, P of sigma is equal to 0. 

If it is 2 into 2 matrixes, you will be getting two Eigenvalues, it is a quadratic root 

quadratic characteristic equation will be landing up with the two roots; if it is 5 into 5 

matrixes, then you will be getting the five roots, fifth order of polynomial of the 

characteristic equation and you will be getting the five roots; so, whether sigma e to the 

power sigma t increases or decreases it entirely depends on sigma.  

For complex conjugate roots, for complex sigma, the sigma will be occurring in the form 

of complex and conjugate and if S is positive, then perturbation grows; if S is negative 

then perturbation decays. So, the point is, real part of sigma should be greater than 0 for 

instability and real part of sigma is less than 0 for the stability. 

So, stability can be analyzed by looking into the - by evaluating the - Eigenvalues and let 

us see how the Eigenvalue and the nature of the Eigenvalues will dictate the perturbation 

from the steady state, it will grow in time or decay down in time or not. Now, let us see 

how the Eigenvalues are evaluated in this particular case. 
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So, evaluation of Eigenvalues, if you look into the matrix A u hat is equal to sigma u hat 

and Eigenvalues are obtained by evaluating this determinant of A minus sigma I is equal 

to 0. So, if you look into the matrix A, matrix A is nothing but the Jacobian matrix 

containing f c f T g c and g T and this partial derivatives with respect to concentration 

and with respect to temperature are evaluated at the steady state; so these are evaluated at 

the steady state. 

So, determinant of A minus sigma I become f c minus sigma f  T g c g f T minus sigma 

is equal to 0. So, f c minus sigma times g T minus sigma minus f T g c will be is equal to 

0. So, if you just multiply this thing, this will becomes sigma square minus sigma f c plus 

g T is equal to plus f c g T minus f T g c is equal to 0. So, if you look into these matrix 

what is f c and f c plus g T? It is nothing but the trace of the matrix A and f c g T minus f 

T g c is nothing but the determinant of the matrix A. 

So, sigma square we can write, we can replace this by trace of A multiplied by sigma 

plus determinant of A is equal to 0. So, therefore, the coefficient of sigma is nothing but 

the trace of the Jacobian matrix and with the third term in this equation is nothing but the 

determinant of the Jacobian matrix. 

Now, this equation will be having real root for negative real part of sigma, we can have 

the condition trace of A should be negative and determinant of A should be positive, then 

only you will be having the real negative part of the root sigma. 
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So, if we just invoke how this thing will come? How this condition will come? If you 

remember for a polynomial a 0 S to the power n plus a 1 S to the power n minus 1 up to a 

n is equal to 0. The necessary condition for roots S to be such that real part of S will be 

less than 0 is that all coefficients must have same sign. 

(Refer Slide Time: 34:10) 

 

So, therefore, this is positive determinant of A is positive, when the coefficient of sigma 

square is positive in order to have a positive sign coefficient of sigma trace of A has to 

be negative, in order to have a positive value of determinant of A has to be positive. 



  

So, therefore, these are the other conditions of stability for a two-dimensional system. 

So, trace of A Jacobian matrix has to be negative and determinant of A is positive; if 

both these conditions need to be satisfied for having unconditional stability of a two-

dimensional system, we can write it as two-dimensional system; for higher dimensional 

system what will be the condition, that we will discuss shortly. 

(Refer Slide Time: 35:54) 

  

Now, let us talk about two kinds of bifurcation, one is the saddle node bifurcation. Now, 

in this definition, at the bifurcation point, a real Eigenvalue crosses the imaginary axis 

from the left to right and n minus 1 Eigenvalues remain on left half plane. Then, if this is 

the case what happens? At this point, a basic steady state becomes unstable and a new 

steady state is generated. 

So, the situation is something like this, we have the real axis, it is a real axis and this is 

the imaginary axis and you will be having - let us say - n number of real valued steady 

state for a set of combination of the parameters. 

Now, for a particular parameter combinations, this steady state starts moving, if we 

change the value of the system parameters - let us say - this steady states starts moving in 

the right direction and for a particular value of steady state this crosses over the 

imaginary axis and comes to the positive real obtain or the right obtain. So, in that case 

that is a saddle point and at this point the whole solution one of the steady state becomes 

positive and the solution becomes unstable from the stable. 
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So, one can identify the saddle point by looking into this (Refer Slide Time 35:54). So, 

what is the saddle point? If you look into the equation for the roots of the Eigenvalues of 

a two-dimensional process, sigma square minus trace of A times sigma plus determinant 

of A should be equal to 0. 

If you look into the roots of this quadratic equation, this will be half, sigma 1 2 will be 

half, times trace of A minus b plus minus under root b square trace of A square minus 4 

times A c, so 4 times determinant of A. Now, if determinant of A is equal to 0, let us see 

what we get? We will be getting sigma 1 2 is nothing but half trace of A plus minus trace 

of A. So, therefore, sigma 1 becomes trace of A and sigma 2 becomes 0. 
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So, this is the condition where one of the Eigenvalues of the steady state, one of the 

Eigenvalues becomes 0 and steady state becomes from the unstable from the stable 

steady state, it becomes unstable steady state. 

So, one of the Eigenvalue becomes 0, what is the condition for one of the Eigenvalue to 

be 0? It is the determinant of A has to be equal to 0 in order to have a saddle node 

bifurcation, so this is the point of saddle node bifurcation. So, the condition is 

determinant of A should be equal to 0 and by setting this condition determinant of A is 

equal to 0, one can get the appropriate condition of the system parameters, so that one 

can get a saddle node bifurcation point and can identify so that is the saddle node 

bifurcation. 

Next, we talk about the hopf bifurcation. Hopf bifurcation point for A this occurs, for a 

set of parameter values real part of complex conjugate pair of Eigenvalues become 

positive and hence the solution is unstable. Now, if you again plot it on the real and 

imaginary axis, then you can understand graphically. 
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Suppose, this is the real axis and this is the imaginary axis and let us say it is a two-

dimensional system, so we have two Eigenvalues which are complex conjugate. Let us 

say this is one Eigenvalue, this is a matching Eigenvalue (Refer Slide Time 42:38), 

which have both of them are having the negative real part. So, both the Eigenvalues are 

having negative real part, so they will be lying on the left half plane. 

Now, by changing one parameter, so if you change the parameters one of this will be 

moving towards left and another will be moving towards right, so there may come that 

for a particular value of parameters, this may cross over the imaginary axis and moving 

into the right half plane. The point where it moves over the crosses over the imaginary 

axis and moves to the right half plane the Eigenvalues becomes positive and the steady 

state is no longer a stable steady state, it becomes an unstable steady state. 

So, therefore, if you look into the condition of hopf bifurcation, if you look into the 

equation sigma of the characterization of the Jacobian matrix, sigma square minus trace 

of A times sigma plus determinant of A is equal to 0 and the roots are become 1 by 2 

trace of A plus minus under root trace of A square minus 4 times determinant of A, so 

sigma 1 2 one of them becomes 0 - a purely imaginary. 

Now, at this point when trace becomes 0, sigma 1 2 becomes plus minus i omega, so in 

fact they move in the same direction. So, at this point where trace of A becomes 0, then 

both of these complex conjugate Eigenvalues will move from the left half plane and goes 



  

to the right half plane and they becomes and they will crosses over the imaginary axis 

and the real part turns out to be positive when the real part turns out to be positive, then 

they becomes unstable. So, the bifurcation point will be the condition, when it moves 

over the left half plane to the right half plane and the condition is trace of A. So, by 

setting the condition, trace of A will be getting a condition on the parameters, so that 

hopf bifurcation point can be realized. 

So, one can get an idea about the bifurcation points the hopf bifurcation point and the 

saddle node bifurcation point and based on that one can get an idea of the combination of 

the parameters so that one can land up into the critical points or the bifurcation point. So, 

in order to avoid the instability in the steady state, one can get an idea what will be the 

bifurcation point and what will be the values of the parameters to be selected. So, one 

can select the values of the parameter set by the bifurcation points and can ensure that 

the operator can operate or the plant can be operated at the stable steady state. 
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Next, we will look into a multi-dimensional problem; for a multi-dimensional problem 

we have just looked into the stability of a two-dimensional problem. For n dimensional 

problem one can use the Routh Hurwitz criteria for stability - the characteristic equation 

in this particular case - for an n dimensional matrix equation becomes a polynomial may 

be s, is the root polynomial of nth degree polynomial. 



  

So, this becomes a 0 S to the power n plus a 1 S to the power n minus 1 plus a 2 S to the 

power n minus 2 up to a n minus 1 S plus a n is equal to 0. This is the nth degree of 

polynomial which becomes a characteristic equation of this particular problem. 

Now, you make a 0 positive, even if a 0 is not positive then if it is negative, then 

multiply both side by minus 1 and make a 0 as positive, then the first test goes like this 

(Refer Slide Time 47:08). So, this is the test 1, test 1 says that, if all coefficients are 

positive, system is unconditionally stable - system is stable. If any one of the coefficients 

is negative there exists at least one root which has a positive real part and the system 

becomes unstable, that is the first test.  

If we will make all the coefficients in the characteristic equation to be positive, if it has 

been observed that all coefficients becomes positive, then the system is stable. If anyone 

of the coefficients is negative, now there exists at least one root which will be having a 

positive real part and the system becomes unstable. 
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So, that is the first test and then we go to a more detailed test that is test number 2, this 

test 2 is that if all coefficients are positive, from the first test - from test 1 - we cannot 

conclude anything about the location of the root, so we can say that the roots are positive 

but all coefficients are positive from test number 1, we cannot conclude anything about 

the location of the root. 



  

So, for that, to locate the root one has to form the Routh array, the Routh array is this, we 

write down the row 1 will be a 0 a 2 a 4 a 6, all the even coefficient row 2 a 1 a 3 a 5 a 7,  

odd coefficients row 3 capital A 1 capital A 2 capital A 3 A 5 like that, 4 will be B 1 B 2 

B 3 B 4 like that, fifth row will be C 1 C 2 C 3 C 4; likewise, then we will be having n 

plus one throw will be W 1 W 2 W 3 W 4. Now, these are the coefficients of the 

characteristic equation, then A 1 A 2 and B 1 etcetera, are expressed in terms of this 

coefficients. 
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So, we write A 1 as a 1 a 2 minus a 0 a 2 divided by a 1; write A 2 as a 1 a 4 minus a 0 a 

5 divided by a 1; A 3 as a 1 a 6 minus a 0 a 7 divided by a 1; We write b 1 as A 1 a 3 

minus a 1 A 2 divided by A 1; B 2 as A 1 a 5 minus a 1 A 3 divided by A 1; C 1 as B 1 A 

2 minus A 1 B 2 divided by B 1 like that. 

Now, examine the first column of the Routh array, this will constitute of a 0, a 1, capital 

A 1, capital B 1, capital C 1 like that. Now, conclusion is, if anyone of these is negative, 

then at least one root lies in right half plane and system becomes unstable. Number b is, 

second interpretation of this Routh array is that, number of sign changes in the elements 

of the first column is equal to number of roots to the right of imaginary axis. 

So, the condition is that, all the elements of the first column of Routh array should be 

positive for having a stable condition, as well as all the elements in the characteristic 

equation has up to be positive for stable conditions. 



  

If we look into the first column, if any one of these is negative, then at least one root lies 

in the right half plane and the system becomes unstable and number of sign changes in 

the elements of the first column is equal to number of roots to the right half plane of the 

imaginary right half or the right half imaginary axis to have the unstable condition, this 

completes the theorem of stability for an n dimensional system. 

So, by using the Eigenvalues of the characteristic equation and the next we will be taking 

about some of the example to demonstrate the chemical engineering system, how to 

utilize this method to identify the steady state and how to test the stability of this steady 

states and the conditions for the saddle node bifurcations and hopf bifurcations. 

Thank you very much. 

 


