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Welcome back, we just got started off started to look at the mathematical formulation of 

the spontaneous instability of an ultra thin film which is coated on a on a on a rigid or a 

solid substrate. 

(Refer Slide Time: 00:28) 

 

The film thickness is h, h is a function of x and t and so, essentially we are talking about 

a film like this where the thickness can vary specially as well as temporarily. The 

continuity equation we have seen is this, we have talked about in in detail, the governing 

equation based on the force balance remains to be the Navier-Stokes equations for x and 

z components which are given here, only additional term that what has come in is the 

effective interface potential which we have considered. 

Because of the non planarity of the top surface, we have assumed the axisymmetric 

fluctuations at the surface and that gives results to the Laplace pressure which is taken 



care by the long wave long wave approximated young Laplace equation which has this 

particular form. And we additionally have the kinematic boundary condition (No audio 

from 1:35 to 1:44) which sort of correlates the components of velocity at the liquefy 

surface that is it it combines u s and w s. 

(Refer Slide Time: 02:32) 

 

So, these are the all the equations that we will need to understand the, a mathematically 

or to distinguish how the instability of a thin film can be sort of used, or can be 

understood. The next thing that we will do is what is known as order of magnitude 

analysis, this is a very common practice (No audio from 2:32 to 2:41) that is done in sort 

of which gives an idea about the scaling or the orders and it is very common in heat 

transfer and as well as in fluid dynamics. 

So, if you I am sure you have done order of magnitude analysis in some setting or the 

other, if you have not done it just go through it from some text book of let us say fluid 

dynamics like, or heat transfer like Adrian Bejan for example, that if you look at the 

chapter on boundary layers in your fluid dynamics or in your heat transfer, I am sure you 

will come across this concept of order of magnitude analysis. Because, what you regard 

as the boundary layer approximated Navier-Stokes equation, where if you were talking 

about a 2 D flow, you preferentially neglect one of the terms, if you remember carefully, 

this term is neglected from the x component, it has nothing to do with our derivation; this 

term is neglected from the x component, Navier-Stokes equation within a (No audio 

from 03:58 to 04:06) boundary layer. 



And if you try to understand the origin, what this some chemical engineering text books, 

of course refer to this as the boundary layer approximation. But if you look carefully, this 

whole concept of the so called boundary layer approximation comes from nowhere rather 

than order of magnitude analysis. 

So, in other words, this sort of this analysis gives a relative scale of different variables. 

So, let us say we, I will also make your concepts give you some simple concepts, we 

have a film like this and this is our coordinate system we have chosen, x and z, we have 

identified that the film thickness is h (Refer Slide Time: 4:53). Of course, you have 

created the film, the film can be very very thin, because we are talking about a thin film 

where we have the interfacial interaction to be active. Therefore, there is no doubt the 

film thickness is very very low, but the film can be spread over a large area, because you 

(()) coding. So, you cannot create it over a few nanometer area, you are taking a 

macroscopic object over the entire area the film is nicely coated. 

So, what it means that the expanse of x is much higher than the expanse of z in your 

system. So, your x sort of stretches (No audio from 5:48 to 5:55) is the entire zone over 

which the film is coated; let us say this is of the order of L, L is some sort of a length, let 

us say this is L (Refer Slide Time: 6:15). 

In contrast, your expanse of z is z stretches from only 0 to h, and h is the film thickness. 

So, from the physics of the system, what you can say is that, first thing you can say that h 

is of course much much smaller than L. Because you are talking about a film, why you 

say this, this is this comes from the basic system configuration, film is film may be tens 

of nanometer thick, in contrast the film is cast over few centimeter square area. 

So, what it implies that the lateral dimension x is much much larger as compared to the 

vertical dimension h. So, we can write the order of x that is how it is written, o x that is 

the order of x is that of L and the order of z is that of h. Therefore, immediately what you 

can say that order of z is much much smaller than order of x. 

So, this is how a typically an order of a magnitude analysis would be proceeding. So, let 

us assume that, but this is a some sort of a very approximate approach to sort of get a 

qualitative idea about the magnitude of the scale of different systems. But still it works 

remarkably well for systems, for unknown systems, or to identify the important of 



different terms in a particular system, and that is why we will discuss the order of 

magnitude analysis. 

Now, let us assume that the order of u v that of u, and we also have the order of x to be 

L, order of z to be h. Now, if you look at the continuity equation which is del u del x plus 

del w del z is equal to 0, that is order of u by order of x is of the order of order of w 

divided by order of z, do not have to worry about the sign and all that, this is just a 

qualitative order, do not forget one thing, this is a simple rule of thumb, that is a 

continuity equation which is direct consequence of (No audio from 9:25 to 9:34) of mass 

balance. 

(Refer Slide Time: 10:25) 

 

So, no term can be neglected in this, in in a continuity equation based on order of 

magnitude analysis, but what it gives is this, use a fresh page, what we have is order of x 

is that of L, order of z is that of h, order of u we have are both assumed it to be the order 

of u, and then we have this is our continuity equation, therefore we get order of u by, 

now out of the four orders that are involved here in this equation, you see that three are 

known that is x, z and u are known (Refer Slide Time: 10:25). 

So, if you plug in those orders what you can get, the order of w is h by L times order of 

u, which means that, what does is the significant of mathematical statement, it means that 

the magnitude of w is much much smaller or the order of magnitude of w is much 

smaller as compared to u. 



So, if we are, if we assume h by L to be equal to epsilon, and further assume order of u to 

be equal to 1, what we get, order of w is of the order of epsilon. Now, after obtaining the 

order of w from the continuity equation, let us investigate the kinematic boundary 

condition with the order of magnitude analysis. 

So, this is the kinematic boundary condition we have, so the equation is (No audio from 

12:37 to 12:45), so we plug in the respective orders, order of h is now known h or z or 

whatever (Refer Slide Time: 12:33). So, this is h by order of t, second one is order of u s 

is of the order of 1, first term is this, second term is 1, this is h, and x is L, and w is also 

of the order of epsilon order h by L, so this is the order of the first term (No audio from 

13:27 to 13:47) (Refer Slide Time: 12:33). 

Third term, so you can see that the orders of the second and third term sorry this is u, this 

is u, and this is also u, but u is of the order of 1, so this is this is perfectly fine (Refer 

Slide Time: 13:58). So, you can see, there is second and third term, both have the order 

of h by L and the first term is h by order of t. So, these two now matches, so what comes 

out the order of time is of the order of L. 

And now, we know that h is a a L is large, therefore the time scale, the magnitude, the 

order of the time is large or in other words, the dynamics of the systems is slow, but it 

implies physically is the dynamics (No audio from 15:11 to 15:19) is slow. 

So, this is the other implication of the, is that this is the implication of performing the 

order of magnitude analysis on the kinematic boundary condition. Now, if we look at the, 

so it is large means that, we take that order of time is epsilon inverse, epsilon is small. 

So, the order of time is epsilon inverse and what it gives is, so these are the orders we 

have. 



(Refer Slide Time: 16:29) 

  

So, here are the orders we have, order of u is u, order of w is epsilon times u, we 

normalize the order of u to be equal to 1, therefore order of w is equal to epsilon, order of 

x is L, order of h is h, we normalize the order of h to be equal to 1, therefore order of L 

is, order of x is epsilon inverse and we also have order of time is epsilon inverse. 

So, having these orders now ready at our disposal, we now try start investigating the 

Navier-Stokes equation, the x component (No audio from 17:30 to 17:44) Navier-Stokes 

equation, so this is the equation we have (No audio from 17:47 to 18:14) (Refer Slide 

Time: 17:47). 

Now, if we plug in the respective orders, we will find the first term, we will have an 

order of 1 corresponding to u and epsilon inverse, the second term will have an order of 

the u is 1, again 1 and x is epsilon inverse, third one is w is a epsilon u is 1, z is 1, this 

term remains, we do not do anything, we because we have no idea about their order and 

out of these two (()) terms, the first term you see is u is 1 divided by x del u del x. So, x 

is epsilon inverse and again a differentiation with respect to x where epsilon to the power 

minus 2, and the second term is u is 1and z or h, this is z or h is also 1, so this order is 1 

So, if you simplify this is epsilon this is epsilon, this is epsilon, and this is epsilon square 

(Refer Slide Time: 19:23). So, based on an order of magnitude analysis for a thin film, 

we see that from the x component Navier-Stokes equation, all these terms sort of are 

insignificant. And therefore, the final equation, governing equation takes the form of (No 



audio from 19:48 to 19:58) (Refer Slide Time: 19:48), we define a capital P as a non 

gravitational pressure as p plus phi. Therefore, the equation takes this shape of del P, del 

capital P del x is equal to mu del 2 u del z square or in a compact form one can write P x 

is equal to mu u z z. 

So, this is what we get from an order of magnitude analysis of the x component Navier-

Stokes equation. Now, this is going to be the final governing equation and it is going to 

be very important also, now it is apparently a steady state equation. However, the reality 

is it is a pseudo steady state equation as a (No audio from 20:50 to 21:07) as u itself is an 

implicit function of time (Refer Slide Time: 20:50). 

(Refer Slide Time: 21:39) 

 

Now, let us investigate the z component Navier-Stokes equation (No audio from 21:35 to 

21:54), and the equation is del t u del w del x plus del w (No audio from 22:14 to 22:32), 

we have used the expression of the non gravitational pressure combining p and phi 

straight away (Refer Slide Time: 22:14). 

Now, if you plug in the respective orders, what you will find here is that this first term w, 

the order of w is any where let us have these orders here. So, order of w is epsilon 

divided by epsilon inverse, order of u is 1 epsilon, and order of x is epsilon inverse. So, 

this is w is epsilon, omega is epsilon, this is 1, this we leave untouched and this one turns 

out to be omega is epsilon divided by epsilon inverse epsilon inverse, remember that this 



type of a term del 2 w del x square, one looks at the order like del del x of del w del x 

(Refer Slide time: 23:00). 

So, first we will look at the order of del w del x, it is epsilon by epsilon inverse and then 

again look at it as del del x. So, it is epsilon divided by epsilon inverse and the final term 

is w is. So essentially we are looking at del del z of del w del z, w is of the order epsilon 

z is of the order of 1, so 1 into 1. So, overall what we find that, this has an order of 

epsilon square, epsilon square, epsilon cube, and this is epsilon (Refer Slide Time: 

24:13). 

So, all the terms sort of are insignificant, and what emerges out that d p d z is equal to 0, 

which means that P is not a function of z, now this is significant that is there is no 

distribution of pressure across the film in z direction (No audio from 24:58 to 25:17), this 

will be another very significant finding as a we will see. 

(Refer Slide Time: 25:39) 

 

So, now, that sort of brings us back to the governing equation which is this we will go 

back to this equation which is the simplified (No audio from 24:39 to 25:50) X 

component Navier-Stokes equation which is mu into del 2 u del P del x. 

So, we will write down the appropriate boundary conditions as the time comes. So, the 

other thing that is that I have just liked to highlight is that the consequence of, before I 

move further sorry I forgot to mention it, consequence of del P del t is equal to 0 is h 



sorry not del P, del P del z is equal to 0 is that h is a function of x t, but not a function of 

z. So, h is not a function of z, this is important. 

Now, this is the simplifier Navier-Stokes equation. So, you integrate it to once or with 

respect to z, you get mu del u del z is equal to P x z plus c 1. Now, first we invoke the 

first boundary condition, we invoke is the 0 shear boundary condition (No audio from 

27:39 to 27:51) which gives that at that the free surface, the shear stress is 0. So, at z 

equal to h mu del u del z is equal to 0, therefore you substitute the the what you get is the 

value of the constant of integration c 1 as minus P x into h, and the if you substitute that 

you get mu del u del z is equal to P x z minus h. 

You integrate it further, we get mu into u is equal to P x into z square by 2 minus z h plus 

c 2, at this point we invoke the no slip boundary condition that is at z is equal to 0, u is 

equal to 0 if you substitute that z is equal to 0 is equal to 0 what you get is c 2 equal to 0 

therefore, you get mu u is equal to P x into z square by 2 minus z h. 

So, I will just quickly repeat as to what we have been trying to do before proceeding 

further so that you do not get confused. So, what we started to look at after we got to all 

the relevant equations is that, these are the set of equations, set of the governing 

equations we have, we will continue our discussion once we do a quick recap at this 

stage. 

So, we are looking at the hydro dynamics of a free surface of a liquid film. So, what we 

are looking at (No audio from 30:07 to 30:16), interface this is what we are trying to 

investigate of a thin film and based on refer to the previous class, so you will understand, 

what are the equations we need to talk about. So, we have the equation of continuity, we 

have the x component Navier-Stokes equation, the z component Navier-Stokes equation 

the only additional terms you find are the effective interface potential or the phi which 

arises out of the interfacial interaction between the two interfaces, because we are talking 

about a thin film. 

So, this interaction that originates the, which can be Van der Waals or which can be 

other forces that will be taken care of through the expression of phi. So, please 

understand that this form, in this particular form, the present form the Navier-Stokes 

equation is not limited to Van der Waals interaction alone. It it is the Navier-Stokes 

equation which incorporates the effective interface potential that is it is valid for any 



system where there is an additional interfacial interaction. Now, the expression of phi 

you have you can have terms which can represent only the Van der Waals interaction, or 

you can have additional terms also that can take care of a additional interactions, let us 

say acid base, polar or (()) interactions. 

Now, you can use this form of Navier-Stokes equations for all your fluid dynamic 

derivations you have done so far, because do not forget that phi will definitely be a 

function of h which is the film thickness. And if your film thickness is higher, in most 

cases what is going to happen that h will have some exponential power and it will be in 

the denominator. So, in most cases what we, what is very likely to happen is that for 

higher values of h, phi will tend to 0. Therefore, this term has no significance in in the 

macroscopic derivations or deductions and therefore, we often tend to neglect it, but 

there is a absolutely no problem if you have this term (()) in your macroscopic 

derivations as well. 

Subsequently, we talked about the fact that the interface we are talking about is not a flat 

interface and therefore, we have the surface fluctuations or the undulations which results 

in a liquid interface which is non planar. Therefore, you have these resulting into local 

Laplace pressure distribution and since we have a Laplace pressure, so we invoke the 

equation, the young Laplace equation for an axisymmetric undulation, we we assumed 

the undulations we are talking about where the surface are axisymmetric. 

Then, all we did was to invoke the condition for what is known as the log wave 

instability that as essentially implies that del h del x is very very less or it is close to 0. 

So, once you plug that in into your expression of the young Laplace equation for an 

axisymmetric surface, this is the form of young Laplace equation that you are left with. 

Then we talked about the about the fact that, now that you have undulating top surface, 

therefore the surface components of velocity u and w are not 0 and therefore, they are 

finite. So, we needed an expression which will sort of combine the function or provide 

functionality between u s and w s and that is precisely what is given in the form of this 

kinematic boundary condition, the derivation we have done in the previous class. So, if 

you are still confused and like to like to request you to repeat that video once more, tell 

your instructor to repeat the video once more so that you get an insight of what the 

kinematic boundary condition is. 



So, these are the five governing equations what we have based on which we would like 

to investigate mathematically, the necessary condition or the criteria for the or or how the 

a a free surface of a thin film, thin liquid film behaves. 

So, this is what we how we started off, then I introduced you to the concept, I guess it is 

known to most of you the concept of the so called order of magnitude analysis, which 

essentially gives you some sort of an idea about the expanse or the relative magnitude of 

the individual terms. So, we just briefly talked about how to perform an order of 

magnitude analysis and I told you to refer to some derivation related to boundary layers 

in any standard text book like (()) or even (( )) may be, but (( )) for sure and Adore 

Began of course, so are the key figures of order of magnitude a, popularizing the order of 

magnitude analysis easy transfer, book or convection heat transfer, that is the book which 

where he talks about the boundary layer, the the order of magnitude analysis in very 

detail and use it for various, deriving various mathematical functionalities. 

So, once we started to look at the order of magnitude analysis, we individually did the 

order of magnitude analysis of all the equations that we are considering, the first we used 

the order of magnitude analysis in the continuity equation which gave us the fact that, the 

order of w that is the z component velocity is much much smaller as compared to order 

of u. 

And then, we looked into the order of magnitude analysis of the kinematic boundary 

condition which told us that the order of time is epsilon inverse that is time is slow, then 

we looked at the order of magnitude analysis of the x component Navier-Stokes equation 

which gave us this simplified form that all other terms are much much smaller as 

compared to these terms. So, this is our final governing equation, and we also looked at 

the order of magnitude analysis of the z component Navier-Stokes equation which gave 

us del p del z is equal to 0, which eventually tells us that h is not a function of z. 

So, with that we started to look at the simplified x component Navier-Stokes equation, 

and we have integrated it twice, already with respect to z and invoked appropriate 

boundary condition, the first boundary condition we invoked is that of a zero shear 

boundary condition which tells that at a free interface the shear stress is 0. So, we plug 

that into get the first value of the first constant of integration and the second boundary 



condition, we have invoked is the no slip boundary condition at the film substrate 

interface which gives us c 2 is equal to 0. 

(Refer Slide Time: 37:52) 

 

So, at this point before we started this quick recap, we have reached up to this stage 

where we have got an expression that mu u (No audio from 37:45 to 38:00) (Refer Slide 

Time: 37:50), now what we can do is that we understand, so this equation gives an 

expression of u in terms of h (No audio from 38:16 to 38:38) z. 

Now, if you plug in (No audio from 38:42 to 38:51) z equal to h, what we actually get is 

the value of u at the free interface. So, for z is equal to h from this equation, we will get 

the value of u s and which turns out to be, u s is equal to 1 by mu into P x h square by 2 

minus P x h square, or it turns out to be minus 1 by 2 mu P x h square. 

Now, we relook at the continuity equation (No audio from 39:47 to 39:58) which gives 

del u del x is equal to minus del w del z. Now, we have an expression of u is equal to 1 

by mu into P x z square by 2 minus P x h into z. Now, if you look carefully in this 

expression on the right hand side, P x and P x into h or or P x and h, both are functions of 

x, z is not a function of x. 

So, what we do, we take this expression of u and find out the partial derivative del u del 

x. So, from here we get, del u del x is equal to 1 by mu into P x x z square by 2 minus P 



x into h del del x of P x into h into z, which now we have the del u del x is equal to 

minus del w del z. 

(Refer Slide Time: 41:59) 

 

So, we do that substitution and we get del w del z is equal to minus 1 by mu P x x z 

square by 2 minus P x h x z. If we now do, again do an integration what we are left with 

now is w is equal to minus 1 by mu P x x z cube by 6 minus P x h x into z square by 2 

plus c 3, at this point we invoke the third boundary condition which is that of a solid 

impermeable wall that is at z is equal to 0, w is equal to also 0, which gives c 3 is equal 

to 0, therefore we are now left with another expression of w in terms of z. 

So, if you now substitute the expression, if you now substitute z is equal to h in the 

above equation, what you will get, you will get an expression of w s which turns out to 

be minus 1 by mu into P x x h cube by 6 minus h square by 2. 



(Refer Slide Time: 45:04) 

 

So, what we have now is in the, from the previous expression we got. we have an 

expression now of u s in terms of h (Refer Slide Time: 44:35), which is we have an 

expression for u s from here which is, and we also have an expression for w s now (No 

audio from 45:16 to 45:35) (Refer Slide Time: 45:16). So, once we have these two 

expressions in hand, we can now invoke the kinematic boundary condition and which is, 

which has this form which is here and which is (Refer Slide Time:45:55), which gives 

del h del t plus u s del h del x is equal to w s. 

Now, if we substitute the expression, so what the strategy now is to substitute the 

expressions of u s and w s into the kinematic B.C and once you do that, what you get is 

del h del t del h. So, you substitute the expression for this P x h square by 2 mu into h x 

is equal to minus 1 by mu h cube by 6 P x x minus h square by 2 h P x x, you just 

substitute this expression over here on the right hand side which contains the w s and on 

the left hand side you have u s into del h del x. 

So, once you do that, all you do is you need to do a little bit of algebraic manipulation, 

particularly on the right hand side. So, it is minus 1 by mu h cube by 6 into P x x minus h 

square by 2 into, so this this differential we now one to break up, h P x x plus h x P x, 

because both h and P are functions of x. 



So, if you do that, you find that these two terms actually combine, this and this, and it 

results in, and this term on the other hand has a h x P x multiplied by h square which also 

this term has h x, P x h x into P x multiplied by x square (Refer Slide Time: 48:26). 

So, this is a also has the same pre factor of minus half, but this minus gets added with a 

plus. So, this term results in, this second term results in a plus P x h square by 2 mu into 

h x and the first term actually is now half minus 1 6th. So, it is essentially 1 3rd mu h 

cube into P x x, so this is what you get del h del t minus P x h square by 2 mu into h x as 

this. 

So, you do a transposition and you get del h del t minus h square by mu into P x h x 

minus 1 3rd mu h cube P x x is equal to 0. 

(Refer Slide Time: 50:18) 

 

And this one, so I will just write down, rewrite the expression for taking it into a more 

compact form h square by mu P x h x minus 1 3rd mu h cube P x x is equal to 0, we will 

just write del h del t minus 1 3rd mu to 3 h square P x h x plus h cube P x x is is equal to 

0. 

What are you really request you, and this is what I tell also to my classroom students 

when I teach this here at Kharagpur is that, please go through this derivation, you do it 

yourself once, other than just listening to it. 



So, note down the best approach to go about it would be to, note down the whole 

sequence of derivation, take a pen and a paper and do the whole sequence once clearly. I 

am sure it will it will make things very very clear to you, there is nothing great thing is 

there, only a couple of manipulation from this form to that form, you use continuity some 

some place, you some other equation some place. So, apparently if you are just sitting 

back, relaxing and listening to this lecture, I am sure it will hardly make any sense. But 

the moment you take a pen and a paper and try to do this derivation yourself derivations 

yourself, I am sure it will be very very clear to you, there is nothing really great that that 

is going on over here. 

And so, if if you combine this now, you find that this can be very compactly written as, 

this can be very compact nicely and compactly written as minus 1 3rd 3 mu into h cube P 

x x is equal to 0. So, this is the final characteristic, this is the final equation in a, in the 

conservative form. 

Now, we need to worry about what is P, it is the non gravitational pressure which is 

essentially p plus phi. Now, there are two things when we had been talking about the 

instability of a surface, we had been talking about the two types of pressure, or two types 

of factor, one is the Laplace pressure due to the curvature. So, P will come from the 

Laplace pressure, so this will be provided from the Laplace pressure and phi essentially 

takes care of the interfacial interaction. 

So, we will get the expression of phi from the interfacial interaction, now we are running 

out of time in today’s class. So, I would request all of you to please go through the 

derivations up to this point in great detail so that you are you are conversant with what is 

happening, you understand what, how exactly this whole thing comes, and we will pick 

up our subsequent discussion from this point, thank you. 


