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Lecture No # 28 

Intermolecular Forces between Particles and Surfaces – II 
 

Welcome back. In the previous lecture we talk about the different types of interaction forces 

or intermolecular interaction forces. As we told that in this particular lecture and probably in 

the subsequent one, we will continue talking about these interaction forces between two 

charge neutral polar surfaces. 
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So, we get started with the fact that the potential energy of interaction between two molecules 

or atoms due to induced dipole type or the dispersion force type Vander Waals forces is given 

as x is sort of you can regard as the separation distance, between the centers. And therefore, 

one has to understand that when these two molecules or atoms come in direct contact x will 

not be zero, because of the fact that if there are the separation distance between the centers. 

So as they come closer, their electron clouds first sort of start overlapping, which gives rise to 

short range repulsion, which is also known as the born repulsion. And this essentially we 

understand this corresponds to this part of the curve. Because, have there been no repulsive 



component at extending to 0 following this relation the interaction would have tend to minus 

infinity, which does not happen. 

So we also consider, stiff born repulsion at very close proximity, which is due to direct 

overlap of electron cloud or this is also, sometimes referred to as the so called Hard Sphere 

model.  Anyway so the phi dash r the repulsion of the component the potential energy one can 

write as let us, say use the prefactor l x to the power beta. So therefore, the pair wise potential 

or as we will be referring as pair potential between two atoms is given as l. We use the term 

phi dash.  

So let us, try to understand this is the pair wise potential energy of interaction. So, this is the 

pair wise potential energy of interaction between two molecules or atoms. And, whether the 

atoms or the molecules are of the all of the same species or they are of the different species. 

Even, if they are the same species by depending on a species to species, how the properties of 

individual atoms, individual molecules their molecular rate coming? That comes in through 

these two constant beta and l. So, these are materials specific constants. However, the generic 

nature of interaction remains unaltered irrespective of the exact system.  

So, that is important. So, let me just again repeat. So, this is the pair wise potential energy of 

interaction between to atoms or molecules. And this refers to the Vander Waals interaction. 

And this refers to the short range born repulsion. 
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Now, we will be interested to look at the interaction, the potential energy of interaction 

between two blocks. Let us say, 1 and 2 which has thickness d 1 and d 2 respectively and are 

separated by a distance d. So, this is very, very simple. So, you have a block this is block 2; 

this is block 1. The thickness of this block is d 2. The thickness of this block is d 1 and these 

two blocks are separated by a distance d.  

We are interested to find out the total potential energy of interaction between these two 

blocks. And for that, we will be assuming only the attractive or we will consider, only the 

attractive part of the Vander Waals interaction; so will be considering this. With the fact that, 

these two blocks the nearest they can come is when they come in contact. 
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But in that case we will assume that d is not going to equal to 0, but it will be some d 0 which 

essentially corresponds to this point. So, this point is the minimum distance at which it can 

come. So, since it cannot come to distance below this let us say, d 0 or x m or whatever. 

Therefore, there is these two blocks can never be subject to the repulsive interaction and it is 

perfectly justified to consider these attractive interactions only. 

So, one can also from this particular relation sorry I just forget to mention. One can from this 

particular relation, one can set del phi del x is equal to or del phi del x is equal to 0 to obtain a 

value of x m, which turns out to be equal to 2 l by beta raise to the power one sixth. So, this 

gives you the minimum in the potential curve and from that you can find out the minimum 

distance, where the two atoms or molecules can sort of come in contact. 
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So, there they this d zero we consider is essentially an equivalent of that between two 

surfaces. So, this is let us, point it out minimum separation distance between two surfaces. 

So, now in order to find out the interaction between these two blocks, what we do? Is we 

consider, a single molecule of 2 located at a distance z from the surface of block one. So let 

us, say this is one molecule which we consider and this distance is z. 

Now, we identify a location. Let us say, which is at a distance zeta away from the top surface. 

It is inside the block and we consider a annular ring over here. A thin ring of width del zeta, if 

you follow the construction, should be able to understand it very clearly. So, this is d g, this is 

y. And let us say, the width of the ring is del y.  

So, this is the thickness of the ring this is del z. And let us say, this is the width of the ring. 

Sorry for the slightly poor construction. This is del y. So, this d y, this is d z, this is a annular 

ring which we have considered, this is the center. The center is at a distance zeta away from 

the surface, the width is d zee, this is the thickness del y and this is y. We will be eventually 

doing a construction later, so I will just attach it. This line and this we mark as the distance as 

x. 

Now, I will repeat. We have picked up one molecule of material 2 and we have identified a 

zone of this nature a annular ring. The centre of this ring is over here, which is at a distance 

eta from the centre from the top surface of block 1. And the point or the particle which we 

have identified is at a distance z from the top surface of block one. So, this particle can lie 



within the limits of z equal to d to z equal to d plus d 2. That is the bounds over which the 

particle can lie. So, this is the z equal to d the particle can be here or at any location down all 

the way up to here. So, this is d 2 d plus d 2. For material one we have identified an annular 

volume like this  
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Now, the volume of this ring like thing, you have to keep this in your mind for a while. Or 

maybe we will have a quick smaller version of the picture over here. So, this is the location, 

this is z, this is eta, this is delta eta, this is y, this is delta y and this you join up to get x. So, 

this is the sort of the shortened version of picture which we will carry in our subsequent 

slides. 
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When in a class room I teach these this thing, I typically have this picture in one corner of a 

big black board, but that much amount of leverage you have to give me in a video lecture. So, 

I guess this picture you once again have a detail look two blocks of width or thickness d 1 

and d 2 and they are separated by at a distance d look at the origin of sets. So, here is z equal 

to zero and it increases in this direction. Here z is equal to d, here z is equal to d plus d 2.  

And, you have considered a ring like annular a space, which is at a distance zeta inwards 

from the, inward in the block one. So, the limit of zeta is essentially 0 to d 1, and that is the 

extent of the first object; extent of the second object, block 1. The expanse of block 2 is: z 

equal to d to z equal to d plus d 2. And we have considered an annual a ring width is del zee, 

height is it is the inner radius or inner perimeter is at a distance y, outer perimeter is at 

distance y plus delta y. And here is a shorten are a miniaturized version of the picture.  

Now, we calculate the volume of the ring element, d v which is 2 pi y del y into del zeta. You 

can find that out easily. So, this is (Refer Slide Time: 09:52) 2 pi y is the perimeter into del y, 

it talks about this face multiplied by the width del zeta. So, this is the volume.  
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So, number of molecules present in unit volume of any material, this is eleventh standard 

science is equal to numbers. I am doing it in the simplest possible way divided by volume. 

Which you can convert to numbers per mole into mole per mass into mass per volume. So, 

this is nothing, but Avogadro’s number. Mass per mole is essentially the molecular weight.  

So, if we are talking about material one and material a or whatever and volume per mass per 

volume is nothing but density. So, number of molecules present is in this ring. Ring element 

is this is per number of molecules present per unit volume. So, you just multiple this along 

with this volume of the ring. So, that turns out to be rho 1 N A by M 1, I will change this to 1 

multiplied by 2 pi y d y d eta. 



(Refer Slide Time: 19:46) 

 

Now we have, we know that the interaction or the attractive interaction (Refer Slide Time: 

08:20) between two molecules is beta into x to the power of minus 6. So, here the separation 

distance we have considered is x. So, any molecule we consider, which is which belongs to 

this ring is at a separation distance of x.  
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So, the potential energy of interaction between this molecule, this particular molecule and 

any molecule present in this ring is, I will write it down without using any symbol. Between 

the specific molecule of two and any molecule present in the ring is, rho 1 minus beta 1 2 

divided by x to the power 6. 
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So, beta 1 2 is the material specific property we talked about since we have two materials 

over here. 
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1 and 2 therefore, we have use the suffix beta 1 2. Therefore total interaction of all molecules 

in the ring, element with a single molecule of 2 z distance z from surface of one is given as 

zeta, we have already identified the extent of zeta (Refer Slide Time: 09:52) is from extent of 

one or the expanse of one is from zeta equal to zero to d 1.  
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So, we integrate between zeta equal to 0 to zeta equal to d 1, y varies from so what we 

assume that both the object sort of stretch to infinity in this direction.  
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So, y varies from zero to infinity and the integral is on minus beta 1 2 divided by x to the 

power 6 into rho 1 N A M 1 into 2 pi y del y del zeta.  
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Now, what we have from so, this is the expression of the total energy of interaction. The 

potential energy of all molecules present in the ring element with a single molecule of 2 

residing at a distance zee. So, this is all molecules I am a little sorry, this is not the total 

energy of interaction of all molecules present in the ring element, but total energy of 

interaction present in of all molecules present in block 1.  



That is why we do the integral so, the inner product, this is what is the potential energy of 

interaction between the specific molecule 2 and all molecules present within the ring element. 

That is why you multiple with the volume. So, if you do not multiply with the volume, the 

specific interaction between one molecule over here and one molecule in the ring element is 

given by: minus beta 1 2 i x to the power 6, where x is the separation distance. You multiply 

it by the total number of molecules present within the ring.  

So, that is the expression, which gives you the total potential energy of interaction between 

the specific molecule you are talking over here and all molecules. I am a little sorry I just 

messed up a little bit. All molecules within the ring is given by this. And therefore, the total 

potential energy of interaction, of all molecules present in the block 1, with a single molecule 

of 2 residing at distance z from the surface of 1, that is this particular molecule, is you do the 

integration in terms of y and eta for the entire expanse of the block 1. And this is the 

expression. 
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So, we now have to perform this integral. What we have looking again at the geometry, is that 

we have, x square from Pythagoras theorem is z plus zeta whole square plus y square. This 

you can write because the way we have defined our coordinate system this is the boundary of 

one, this is the boundary of two, this is d, this distance is z, this is eta, this is y, this is x. So, 

we have from Pythagoras theorem and this is here where you have the ring, it is del zeta and 

from Pythagoras theorem you have this.  
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Therefore, so if we mark this as the phi double dash.  
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So, phi double dash turns out to be this all these are constants. The minus sign originates 

from the fact that, we are talking about the attractive part of Vander Waals interaction which 

is always negative.  
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So, the interaction itself contains this minus term minus beta 1 2 divided by x to the power 6. 

So, you can see that, other than y d y d zee everything else this this this this, as well as beta, 

they are all constants and therefore, they have be taken out of the integral.  
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And the integral is now, reduces to this form. And which turns out to be, if you do the first 

integration or let us, break it up without, if you look only at this integral it turns out to be one 

fourth of you are encouraged to try it out. Therefore, the overall integral now takes the shape 

of, using the results of this. What you get is this is now one fourth integrating between eta 



equal to zero. So, this is what you get. So, this is the integral. So, the potential energy of 

interaction between one single molecule of  block two residing at a distance z from the 

surface and the entire, the all the molecules present within the block 1, which sort of stretches 

up to infinity in this particular direction. 
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So, beta 1 2 we have already mentioned, it is the coefficient which determines the strength of 

Vander Waals interaction and is a material dependent property. Now, the number of molecules 

per unit volume of material two, two is of course rho 2 n a by m 2.  
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Now we consider a thin strip of material 2 of width delta z, which contains the molecule we 

have been talking about. Therefore, the number of molecules present within this thin strip is, 

rho 2 N A M 2 into a where A is the, cross sectional area, which is this cross sectional area 

perpendicular to the deduction of this; so the total energy of interaction.  
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So, the total potential energy between all the molecules, present in this shaded zone.  
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With all the molecules, of block one is phi double dash which is the expression we have 

obtain for interaction, of one specific molecule. 
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We have talked about, with all the molecules present in the block one. 



(Refer slide Time: 33:58) 

So now we have two look into we consider, the all the molecules present within this,(Refer 

Slide Time:34:08) shaded region.  
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So, it is phi multiplied by rho 2 N A by M to A d Z. This is, the number of molecules that is 

present, because volume of the element is A d Z, which is present in the theme of strip. 
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Therefore, the total potential energy of interaction now, if you calculate, it is the total 

potential energy of, interaction between all the molecules of 1 with all the molecules of block 

2 due to attractive interaction is given as, G l w equal to: that is the expanse of the block 2 as 

we have already identified.  
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So, expanse of 2 is in terms of Z equal is to d to Z is equal to d plus d 2. 
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And so, this turns out to be minus rho 1, rho 2 N A square pi square beta 1 2 divided by M 1 

M 2 into 6 over here, this is pi 1 by Z cube minus 1 by Z plus d whole cube d Z.  
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So this is, phi double dash the expression of that we have multiplied by the number of 

molecules present within this thin strip.  
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So, you see this rho 1 was there. So, this gets multiplied by rho 2 as well as rho 1 rho 2 N A 

was here N A comes from here as well. So, you have N A square you had pi over here. So, it 

is setting this pi. You had beta 1 2, so beta 1 2 is also there. You had a sorry I just missed out 

this multiplier 6. 



(Refer Slide time: 37:41) 

Because you have a 12 over here, performing the integral; and you had a 2 in the prefactor, 

numerical prefactor. So, over all the expression 6 and just get it corrected, I just missed this 6 

out, and this. 
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So this 6 also comes in and you are left with this particular integral 6. So, if you now do the 

integration, you are left with or before we do the integral, let us, define A 1 2 which takes 

care of all the constants essentially rho 1 rho 2 pi square N A square beta 1 2 divided by M 1 

M 2 and this is what is known as the Hamaker constant.  

This is the Hamaker constant between 1 and 2. So, this is a material dependent constant, 

property of which depends on bulk properties of materials both the materials as well as the 

nature of interaction, at the molecular level. You can see the bulk properties that effect is the 

so, we talk about the bulk property, which is rho 1 rho 2 and the molecular weights or the rho 

1 and rho 2.  

The molecular weights are coming in as, function or effects the functionality as well as beta 1 

2, which text care about the nature of interaction at the molecular level. So, this is Hamaker 

constant. So, if you replace the expression of Hamaker constant in this integral, what happens 

is you have a pi square over there. So, a pi comes in denominator.  
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So, your expression for G l w now, reduces to 6 pi into 1 by and if you now perform the 

integral, what you will find is that it is sort of turns out to be, this will be d 1 I am sorry. This 

is d 1. So, be careful.  
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This is d 1 square, yeah just get it corrected. We missed out this d 1 and yeah.  
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So, if you do that integral it will be, so the final expression for G l w is minus A 1 2. So, this 

is the energy of interaction due to, between the two surfaces. So this is 1, this is 2 and so, the 

potential energy of a interaction is the potential energy of interaction between the two 

surfaces considering, (Refer Slide Time: 21:24) the attractive Vander Waals interaction. 

So, now you see that it depends, this potential energy of interaction depends on several 

parameters. That is, the separation distance, as well as the finite size of these two blocks. So, 

couple of things you can see immediately from the expression. That is firstly, we go on telling 

we have been talking that, this interaction of this Vander Waal interaction sort of becomes 

tends to 0, as the separation distance increases. 

We argued, particularly if you now, compare or try to remember what we had talked about 

while talking about the atomic force microscope its approach. And withdrawal that when the 

separation distances are very very far. So, this is your tip and this is where your scanning 

surface is, there is no effective interaction between these two due to Vander Waals forces.  

Well, what would that mean? That would essentially means that you set d tending to infinity. 

The separation distance between the two is 0. And now, if you substitute d tending to infinity 

so, please do not forget what is d, d is the sort of the separation distance between the two 

surfaces. The moment you substitute d is equal to infinity in the expression for the G w G l w 

let us, say we mark that as equation 1, you find that d is there in the denominator of all the 

terms.  



So, for the first case is for d tending to infinity, G l w tends to 0. So there is no Vander Waals 

driven force, when the separation distance is very, very high. The second thing that you may 

want to find out, if that we are talking about the interaction between two semi infinite blocks 

let us, say. So, what would be the condition for semi infinite blocks?  
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The condition would be, d 1 tending to infinity and d 2 tending to infinity. So, this is the 

condition for semi infinite block. And then in that case you can see that, G l w is minus a 1 2 

divided by 12 pi d square, because d 1 and d 2 either of them are present in the all the other 

three terms in the denominator. So, for d 1 tending to infinity and for d 2 tending to infinity 

all these terms tends to 0. And therefore, this is the potential energy of interaction. 



(Refer slide Time: 48:04)  

 

Now if we consider, the if you would like to find out the change in the force, when the two 

surfaces are brought to contact from initially infinite separation distance. So let us, say we 

talk about two semi infinite blocks which are initially at infinite separation and then they are 

brought in contact. So, based on the discussion we have already had, we understand that, 

these two are brought in contact this corresponds to d equal to d 0.  

Therefore, we are talking about the change in the potential energy. So, we are talking about 

the delta G l w which corresponds to the final G l w at contact and the initial one was d 

tending to infinity. And this gives you the delta G l w is minus A 1 2 divided by 12 pi d zero 

square. 

Now incidentally, if you remember so, these are the two blocks and now, these two are in 

contact. So, this is also a situation where in one of our earlier lectures we have identified that, 

this delta G l w can be represented as, gamma 1 2 l w minus gamma 1 l w plus gamma 2 l w. 

This is the energy per unit area of course. Therefore, what we can get is that, we can now, 

correlate A 1 2 in terms of 12 pi d 0 square gamma 1 2 l w minus gamma 1 l w minus gamma 

2 l w. So, the biggest advantage now is that, the expression of A 1 2 which we had, was in 

terms of beta 1 2.  
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Other parameters are all known, Avogadro’s number, density and the molecular weights are 

all known. But this beta 1 2 which sort of was signifying or was representing the strength of 

Vander Waals interaction was sort of a parameter which has to be experimentally determined 

or may be spectroscopically and determination of this parameter is slightly difficult.  
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Now in contrast, now you have an expression for A 1 2 which is, in terms of parameters, 

which can be microscopically measured. Because, we have talked in while talking about the 

different components of surface tension that, the different individual components of surface 



tension can be easily found out or interfacial tension can be found out using contact angle 

goniometry, using appropriate probing liquids. The only thing that still cannot be physically 

determined and you have to rely on some model is this d 0.  

Once you have and in many cases they are some standard numbers which are available. So, if 

you have d 0 now. Depending on the values of gamma 1 gamma 2 and gamma 1 2 they are l 

w components, you can easily determine the strength of the Vander Waals or the effective 

Hamaker constant. 
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Now in case, in another special case, in case both 1 and 2 are of same material. Then what 

happens is, we essentially get a 1 1 l w is equal to 0, gamma 1 sorry gamma 1 1 l w equals to 

0 gamma 1 l w equals to gamma 2 l w is equal to gamma 1 l w let us, say or gamma 1 l w is 

equal to gamma 2 l w. And then in that case A 1 2 gets replaced with A 1 1. So, this allows us 

to get an expression for A 1 1 as 24 pi d 0 square gamma 1 l w. 
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The other important thing is that, from this expression of A 1 2, we have minus 12 pi d 0 

square gamma 1 2 l w minus gamma 1 l w minus gamma 2 l w. We know that, for Vander 

Waals pure Vander Waals interaction, gamma 1 2 l w is always it can represented as gamma 1 

l w minus under root of gamma 2 l w whole square.  

So, if you expand that, you get gamma 1 l w plus gamma 2 l w minus two gamma 1 l w into 

gamma 2 l w. So, if you substitute this back over here now, this whole expression gets 

substituted back here, 1 is left with so, 1 gets A 1 2 is equal to minus 12 pi d 0 square into 

gamma 1 l w plus gamma 2 l w minus 2 under root gamma 1 l w gamma 2 l w minus gamma 

1 l w minus gamma 2 l w, because of these this and this. 

So, these two terms cancels out and you are left with the fact that, it is 24 pi d 0 square into 

gamma 1 l w into gamma 2 l w. Which gives that, A 1 2 is always positive and also 

considering the fact that the expression of A 1 is 24 pi d 0 square, gamma 1 l w. Similarly, the 

expression of A 2 will be 24 pi d 0 square gamma 2 l w, one can get A 1 2 is equal to under 

root of A 1 1 into A 2 2. We will start our subsequent discussion from this point, thank you. 


