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We will discuss the Dynamic Behavior of Chemical Processes. I have mentioned in the 

last class about this in brief, I mean what is transient behavior, how we can get the 

transient behavior. So, we will start from that only, we have a chemical process, this is 

input this is output, if we give a change in input variable, we will get some change in 

output variable. And that is the dynamic behavior and that we will observe in terms of 

the change in the output variable. 

 

So, we will consider the different forcing functions, first we will start with step function. 

So, first I am drawing the step function, what it how it looks the function, we will 

represent by f. So, this is f t and this is time t, initially, if the process is at steady state 

condition, I mean there is no change. Now, we are changing the input variable in this 

way. So, initially it was 0 definitely, we are considering here f as A deviation variable, 

that is why that is 0. F we are considering as a deviation variable here, f is not function 

here, f is variable note this point 



So, since f is the deviation variable, that is why at steady state, f equal to 0. Now, we are 

changing this, f value at suppose time t equals to 0 and the magnitude of this change is 

suppose A, this is a step function, which we have represented graphically here. Now, 

how we can represented mathematically, f t equals to A that is a step function. So, if we 

write the Laplace transform of this function f t, what would be the Laplace transform of 

this A by S.  

So, the Laplace transform of a step function is A by S where, A is the magnitude of that 

step function, what is the example of this step function. Suppose, we have a steam valve, 

we have one steam valve. Now open the steam valve at t equals to 0, such that Q changes 

by A units, we have a steam valve open the steam valve at time t equals to 0.  

So, that Q changes by A units, here Q is the steam flow rate and that is basically, f fine 

this Q is basically f. So, if we change the Q by A units at t time equals to 0, that is the 

example of a step input. So, we can change the load variable, disturbance variable by this 

fashion to observe, the transient behavior of the process, this is the first type of forcing 

functions, which is commonly used.  
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Second forcing function is rectangular pulse function, first we will draw the figure of this 

rectangular pulse function so, this is f t and this is time t, initially if f t is 0. Now it 

changes at time t equals to 0 by unit of suppose A, then it remains there up to time b then 

it returns to the old value, this is the graphical representation of a rectangular pulse 



function. Initially f t is 0 that means, the process is at steady state then at time t equals to 

0, the input function changes by magnitude A, then it remains, there for a time duration 

of b and finely it returns to the old value. 

Now, how you can represent it mathematically, f t equals to 0 and time t less than 0, f t 

equals to A, when time is in between 0 and b and again this is 0, when time is greater 

than b. So, this is the mathematical representation of this pulse function, this pulse 

function is basically the combination of 2 input functions, this is the combination of 2 

input functions. So, what are these 2 input functions, if we considers one function is f 1 

and another is f 2 then the graphical representation of f 1 is like this initially it is at 0 

level, this is 0 and this quantity is A.  

So, f 1 t equal to 0, when t is less than 0 and this is equal to A, when t is greater 0, 

another function is f 2 and this is suppose time t initially, it is at the value of A then it is 

coming back to this value and this time is b. So, f 2 t equals to 0, when t is less than b, f 2 

t equals to A, when time is greater than b can, we write this for the function second 

function f 2 can, we write this, we are considering this is 0.  

So, this is a initial value, we are considering 0 and this we are considering A that means, 

this is f 1 t minus b, here we are considering increasing, I mean it is increasing the step, 

here we are considering decreasing, initial value is 0 and this quantity is a by that way, 

we can write f 2 equals to f 1 t minus b. 
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Now, f t is a combination of these 2, f 1 t f 2 t minus b see minus sign is included here, 

because for f 1 function, we have considered that increase of step. But, for the case of 

second function, we have consider the decrease of step, that is why negative sign for f 2 

and positive sign for m 2 sorry, this is f 1. 

Now, we will take Laplace transform of this, Laplace transform of f t. So, Laplace 

transform of f 1 t minus f 1 t minus b, this is equal to f 1 bar s and for this, we can write e 

to the power minus b S f 1 bar S. So, f one bar S is 1 by A, S no f 1 bar is A by S, that is 

the step function only with the magnitude of A. So, A by S 1 minus e to the power minus 

b S, this is the Laplace transform of a rectangular pulse function, this is a final form for 

the pulse function. 

Now, what is the example of the pulse function, if we consider the steam valve, open the 

steam valve at t equals to 0. So, that Q changes by A units, hold at the new valve for the 

duration of b then return to the old valve, you just try to remember that configuration, I 

mean the graphical representation of pulse function again, I am telling open the steam 

valve at time t equals to 0. So, that Q changes by A units hold at the new valve for the 

time duration of b and return to the old valve, this is a example of a pulse function. Now, 

we will just modify that figure of pulse function, previously we have consider the time 

duration of b. 
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Now, we will consider the time duration of A, this is f t 0, initially then this is 0 and this 

time step is suppose A and we are considering here 1 by A, this is time t. So, what is the 

area is 1, A multiplied by 1 by A that equals to 1 and this is called unit pulse function, it 

is conventionally represented by del A t. So, this is unit pulse and it is represented by del 

A t 

Now, we use to consider limit A tens to 0 A multiplied by 1 by A, how much is this 1, 

we are just approaching 0, we are approaching the time 0. So, how much it will be then 

1, how we can represent it graphically, how we can represent this situation, graphically. 

The graphical representation of this is somewhat like this, this is time t equals to 0, this is 

0, this function is called unit pulse function sorry, unit impulse function.  

It is also called dirac function and it is conventionally, represented by del t, this is called 

dirac function or unit impulse function and it is represented by del t. So, what is the 

definition of this unit impulse function, it is defined as equal to 0 for all times accept for 

time t equals to 0. So, we can represent this again by minus infinity to infinity del t d t 

equals to 1, if we consider minus infinity to infinity then del t equal to 1 within this range 

within this time range. Now, what will be the Laplace transform of this unit impulse 

function. 
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Laplace transform of this del t equal to Laplace transform of the unit pulse function in 

addition, I mean, if we consider limit a tends to then we can write here, unit pulse 



function. So, this is unit pulse function that means, integration 0 to infinity limit A tends 

to 0, del A t e to the power minus S t d t, we are just considering the definition of 

Laplace transform. Integration of 0 to infinity limit A tends to 0 and this is the Laplace 

transform of unit pulse function. 

We will just take out the limit A tends to 0, integration 0 to infinity del A t e to the power 

minus S t d t. This is equal to limit a tends to 0, this part, we have already calculated how 

much is that 1 minus e to the power minus S A divided by A S, we have basically, 

consideration in the previous example the time duration b, but in this example, we are 

considering A.  

So, you just replace b by A and in the unit pulse in the discussion of pulse function, we 

have consider the magnitude that is A, here we are considering 1 by A. So, we have 

derived the Laplace transform of pulse function, that is A by S 1 minus e to the power 

minus b S just, we need to replace b by A and A by 1 by A then, we will get this 

equation, so how much it will be 1, how by the use of el hospital's rule.  

So, this is the Laplace transform of the unit impulse function can you give any example 

of this unit impulse function, I mean we can continue the same example say, we have 1 

stream valve can you give the example of this impulse function. It is impossible to 

realize perfectly, but we can give the example like this open the stream valve and 

instantaneously return to the old value open the stream valve at t equal to 0 and as soon 

as physically possible. There after return to old value, this is the example of impulse 

function. 
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Another input function is also used in process control that is ramp function that is ramp 

function, we can represent this function in this way time t initially, it is 0 then it changes 

like this, suppose the slope is A. Initially, it is 0 and at time t equals to 0, it changes 

linearly with slope A. So, if f t is ramp function then, it is 0, when t less than 0, it is A t 

when t greater than 0 and the Laplace transform of this is A by S square. So, what will be 

the example gradually open the stream valve.  

So, that Q increases linearly, gradually increase the stream valve. So, that Q increases or 

Q changes linearly and ramp ends, when the valve is fully open. So, these are the forcing 

functions, which are used to observe the transient behavior, definitely in presence of 

controlled scheme, but presently, we are not discussing the control part, we are just 

discussing the simulation racers, I mean the model output. 

Next, we will discuss the different how to solve the different model structures, 

practically most of the chemical processes are non linear in nature, almost all chemical 

processes, so non linear dynamics. Now analytical solution of non linear equations are 

not available. 
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So, how we can proceed, one option is we can solve the modeling equations numerically, 

if we have the non linear equations, non linear model, we can solve it numerically. So, 

keeping the numerical simulation of the modeling equations, we can proceed for the 

development of non linear model equations. Another option is we can linearize the non 

linear model. So, we can linearize the non linear model. So, linearization of non linear 

equations or non linear model and we can go for analytical solution, if we can linearize 

the non linear equations, we can go for analytical solution. 

Third option is we can develop the linear model for the non linear processes and we can 

solve the linear equations again analytically. So, there are 3 options, one is development 

of non linear model and go for solution by the use of numerically techniques, another 

one is linearize, the non linear equations and follow the analytical solutions and third one 

is develop the linear model structure and simulate analytically. But, this third option was 

used in the past. Now a days it is not used, due to the advancement of different 

mathematical techniques.  

So, this option is quite old. So, we will not discuss any more this in the first option, we 

have option to model the process by the development of non linear equations and the 

solution of those equations numerically, I hope you have studied the numerical 

simulations in your mathematics courses. So, we will not discuss about that in more 

details, I mean, we do not want discuss in this course the numerical simulation of non-



linear equations. Second option is linearization of non linear model structure, so that we 

will discuss in brief. 
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So, first we will start the linearization of single variable system, we will consider a 

simple ordinary differential equation represented by d x d t equal to function of x and t, 

suppose this is equation number 1, here x is the only variable, I mean dependent variable 

and t is the independent variable that means, x is also varies with time. So, we can omit 

the time t within this function, we can write in this form also, this is suppose equation 

number 2. 

Now, we will linearize this function f according to Taylor series expansion. So, we will 

use the Taylor series to linearize f x accordingly, if f x equal to f x naught here, f naught 

is the reference x, I mean reference value of x plus d f d x at x equals to x naught x minus 

x naught plus d 2, f d x square at x equals to x naught x minus x naught whole square 

divided by factorial 2. D n f d x n x equals to x naught x minus x naught to the power n 

by factorial n like this.  
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This is the Taylor series expansion of f x neglecting the term of order 2 and higher, we 

get f x is approximately equal to f x naught plus d f d x at x equals to x naught multiplied 

by x naught, you give this Taylor series equation, as equation number 3, the Taylor series 

expansion of f x, you put equation 3 for that and this approximate linearization, we are 

representing by equation 4. 

Now, this linear approximation is satisfactory, when x is very close to x naught, this is f 

x, this is x. Suppose this is the function f x, this point is x naught and corresponding f x is 

f x naught, now if, we linearize with respect to this point. So, this is basically, if this 

linear function is represented by plus d f d x at x naught x minus x naught. 

So, from this graphical representation, it is very clear that the linear approximation is 

satisfactory, when this x is very close to x naught, if we move away from this x naught 

this part is not linear at all fine. So, the deviation increases as we move far from x equals 

to x naught. 

Now, we can write equation 4 like this way also d x d t equals to f x naught plus d f d x 

at x equals to x naught x minus x naught. Because, f x equals to d x d t that is our 

equation number 2, we have just replaced f x equals to d x d t in equation 4 and then we 

get equation 5, this is a linearization of f x according to Taylor series expansion. 
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Now, we will take 1 example to linearize the model of that particular example. So, we 

will consider the example of liquid tank system, this is the schematic of the liquid tank 

system, liquid height and cross sectional of the tank input flow rate is f i and outlet flow 

rate is f naught. We have derived earlier the modeling equation for this system. The 

modeling equation is A d h d t equal to F i minus F naught, this equation, we can derive 

based on total mass balance. 

Now, this outlet flow rate is basically the function of liquid height the outlet flow rate F 

naught depends on the liquid height in the tank, we will consider 2 cases. In first case, 

we will consider F naught is proportional to h anyway, you give this as equation number 

6. In the first case, we will consider F naught is proportional to h that means, F naught 

equals to beta h, if we substitute this in equation 6, I mean if we substitute F naught 

equals to beta h in equation 6 then, we get A d h d t plus beta h equal to F i. If we 

substitute F naught equals to beta h in equation 6, we get this form and this is a linear 

ordinary differential equation. So, there is no need of any linearization, we can solved it 

analytically. 

In another case, we will consider this F naught is proportional to root h, F naught is the 

square root of liquid height in the tank that means, F naught equals to say alpha root h. 

Now, if we substitute again F naught equals to alpha root h in equation 6, we have a d h 

d t plus alpha root h equal to F i, if we substitute F naught equal to alpha root h in 



equation 6, we get equation 7, this is not a linear ordinary differential equation. So, 

which non linear term is present in this equation, the non linear term is alpha root h. So, 

we will linearize this alpha root h term using the Taylor series expansion, we will 

linearize this alpha root h term, using the Taylor series expansion and then we substitute 

that in equation 7. 
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So, according to Taylor series alpha root h equal to alpha root h naught plus 

differentiation of alpha root h at point h naught, here h naught is the reference height, h 

minus h naught. Similarly, if the second term, the second derivative will be like this at h 

equals to h naught h minus h naught whole square divided by factorial 2. We neglect the 

terms of order 2 and higher, neglecting terms of order 2 and higher, we get alpha root h 

equals to alpha root h naught plus alpha divided by 2 root h naught multiplied by h minus 

h naught. This is the final form of alpha root h after linearization. 

Now, we will substitute this alpha root h term in equation 7 substitute it, if we substitute 

in equation 7, then we get A d h d t plus alpha divided by 2 root h naught multiplied by h 

equal to F i minus alpha by 2 root over of h naught. This is suppose equation number 8. 

So, this is the linearized form of the non linear model or non linear modeling equation. 

Now, if we substitute h equals to h naught, if we substitute h equals to h naught equation 

7 and 8, they are identical, you see if we substitute h equals to h naught equation 7 and 

equation 8. They are same, equation 7 represents the non linear form and equation 8 



represents the linear form exactly at h naught, they are identical. So, that is why, we have 

mention earlier that the linear approximation is satisfactory, when x is very close to x 

naught. So, this is the linearization. Now, we will try to represent the model in terms of 

deviation variables. 

(Refer Slide Time: 44:27) 

 

We will represent this model in terms of deviation variables, how we can do that at 

steady state x is basically represented by x s, x at steady state, we will represent by x s, if 

x equals to x s at steady state then we can write d x s d t equal to 0, equal to function of x 

s see the steady state value of x is x s x s is basically constant. That is why the derivative 

of that constant term is 0 and this is the function of x, now we are replacing x by x s that 

is why that is f x s, this is say equation number 9. 

Now, according to Taylor series expansion, we can write f x just by replacing x naught 

by x s d x d t equals to f x s plus d f d x at x equals to x s x minus x s the linearization of 

f x, we got earlier here, we have just substituted x naught equals to x s and we get 

equation 10. Now, we will just subtract, we will subtract equation 9 from equation 10 

then we can write differentiation of x minus x s d t equal to d f d x at x equals to x s 

multiplied by x minus x s, this is equation number 11. 

In the next, we will consider one deviation variable that is represented by x prime equal 

to x minus x s x naught is the deviation variable and that is equal to x minus x s then 

equation 11 becomes d x prime d t equal to d f d x at x equals to x s x dot. Simply, we 



have substituted in place x minus x prime sorry, we have substituted in place of x minus 

x s x prime then, we get equation 12. Now, we will continue that example again that 

liquid tank system. 
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So, previously we got the linearized form for the liquid tank system, we got the 

linearized form in equation 8. So, the linearized form is A d h d t plus alpha divided by 2 

root h s multiplied by h equals to F i minus alpha by 2 root over of h s say this is 

equation number 13, we get equation 13 from equation 8 directly. 

So, for the liquid tank system, this is the linearized form at steady state, this equation 13 

yields A d h s d t plus alpha root h s equal to F i S to represent the steady state, we have 

included suffix S with all variables. Then we get A d h s d t plus alpha root h s equals to 

F i S now, we will just subtract equation 14 from equation 13, if we subtract equation 14 

from equation 13, we get a differentiation of h minus h s plus alpha divided by 2 root h s 

h minus h s equals to F i minus F i s. Now, we will define 2 deviation variables, one is F 

i prime that is F i minus F i S, another deviation variable, we will define that is h prime 

equal to h minus h s, these are the 2 deviation variables. 

Now, if we write the above equation in terms of deviation variables, we finely get A d h 

prime d t plus alpha divided by 2 root h s, h prime equals to F i prime, this is suppose 

equation number 15. So, for the liquid tank system after linearization, we got one 

equation and in terms of deviation variables, we got equation 15. So, this is basically, the 



linearization of non linear equations for a single variable system, I mean only one non 

linear equation is involved in this example. In the next, we will discuss the linearization 

of multivariable systems. 

Thank you.  


