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Dynamic Behavior of Chemical Processes (Contd.) 
 

In the last class, we just started the discussion on Dynamic Behavior of first order system 

that we will continue. 
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So, the topic is dynamic behavior for first order process introducing step change in input 

variable. So, you know the first order system can be represented by the first order 

differential equation and we have considered this equation, previously a naught y equal 

to b f t this is the model first order process. And transfer function we got, that is G s 

equal to y bar s divided by f bar s equal to k p divided by tau p s plus 1 and we have 

considered step change in input variable with magnitude A I mean f t equal to A and in 

Laplace domain this is A by s. 

So, y bar s becomes k p A divided by s tau p s plus 1 inverting this, we get y t equal to A 

k p 1 minus exponential of minus t divided by tau p up to this we had discussed in the 

last class. Now, we will try to plot the y versus time. So, to plot this equation I mean we 

will make the plot in terms of dimensionless quantities. So, dimensionless quantities 

means, we will consider y t divided by A k p versus t divided by tau p we will make a 



plot between y t divided by A k p versus t divided by tau p. This is the dimensionless 

quantity, which we will consider along y axis and this is also the dimensionless quantity 

which we will consider along x axis. 
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So, what will be the plot y t divided by A k p and t divided by tau p say we are 

introducing a step change with magnitude A. So, what will be the final steady state, final 

steady state we can find considering t tends to infinity. So, if we consider y t divide by A 

k p with t tends to infinity how much it is 1. So, final steady state value is 1 and this is 

the, starting state I mean t time equals to 0 is a starting point. Now, the dynamics of y t is 

represented graphically by this curve. 

So, this is the dynamic response of the first order system, if we introduce a step change 

in the input variable with magnitude f magnitude A. Now, you will note down few 

points, this is basically a self regulating process. Previously we have considered one case 

that is, pure capacity process and that is non self regulating process. If we take one 

example, then I think it will be clear, why this is self regulating process, we can consider 

a liquid tank system, input is f i output is f height is h. 

So, if f i increases then what happen, height increases then hydrostatic pressure increases 

which in term increases the out flow rate. And after a time period and equilibrium is 

established, upper a time period and equilibrium is established and at that equilibrium 



state the value of y t by A k p is the new steady state value, that is the reason for which 

we are considering this is the self regulating process, this is the first remark. 

(Refer Slide Time: 08:48) 

 

Second remark, what is the slop this response at time t equal to 0 can you calculate the 

slop at time t equals to 0 I mean d y t divided by A k p d t by tau p at time t equals to 0 

how much is this, exponential of minus t by tau p at t equals to 0, so slop is 1. 
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If we see this dynamic response then this state line has the slop of 1, what will be the 

corresponding t by tau p value, if slop is 1 what is the corresponding t by tau p value 1 



because, this value is 1 so, it is 1. So, can we say that, if the initial rate of change of y t 

wire to be maintained the response would reach it is final steady state value in 1 time 

constant, can we say if this is 1; that means, t by tau p 1; that means, t equal to tau p. 
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So, we can conclude that, if the initial rate of change of y t wire to be maintained, then 

the response would reach it is final value in one time constant. Because, t divided by tau 

p is 1 so; obviously, t equal to tau p this is the second remark. Next we will go for the 

third remark. 
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But, what happens originally I mean if we see this plot if this is the response, then only 

the final steady state value we obtain at t equal to tau p, but that is not the original case, 

the dynamic response is this 1. So, at t equal to tau p how much is the y t by A k p value, 

can we calculate that. 
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See we have the equation y t divided by A k p equal to 1 minus exponential of minus t 

divided by tau p. Considering t divided by tau p equals 1, we get y t divided by A k p 

equals 0.632, considering t by tau p equals 1 we get y t divided by a k p 0.632; that 

means, originally the process reaches 63.2 percent of it is final value. So, this is 0.632 

originally in one time constant, the process reaches 63.2 percent of it is final value. 

So, write we can write in this tabular form, that when t equals tau p this value is 0.632. 

Similarly, considering 2 tau p and using this equation, we get 0.865 I mean in the two 

time constants, the process reaches 86.5 percent of the final. Similarly, if we consider 3 

tau p we will get 0.95 4 tau p this is 0.98 this is our third remark. 

Fourth remark, we discussed one thing that, the gain equals change in output divided by 

change in input. Recall this correlation, which we discussed earlier, gain equals change 

in output divided by change in input. So, for this system, what is the change in output, 

what is the change in y that is k p multiplied by A. Because, we have seen earlier that 

considering t tends to infinity y t divided by A k p equals 1; that means, y equals A k p 

and how much change we introduced in the input that is A. 



So, this gain becomes k p and originally we have considered in the transfer function k p 

at the gain. But, remember that this is the steady state gain and this is we determined 

considering steady state only. So, these are four comments, we can make on the dynamic 

of first order system considering step change in input variable with magnitude A. 
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Our next topic is variable time constant tau p and gain k p, so for we have discussed 

considering time constant and gain as constant quantities. Now, we will consider one 

case, in which we will observe that tau p and k p are not constants. So, for we have 

considered tau p and k p both are constants. Now, we consider one example and we will 

observe that these two are variables, we will consider one that simple liquid tank system 

input flow rate is f i and output flow rate is f, suppose f is proportional to square of liquid 

height. 

So, f equals to alpha root h, we derived the modeling equation for this system 

considering f equals alpha root h I am writing that modeling equation which we derived 

earlier f i. Then in this equation this is the non linear term we linearized it considering 

Taylor series. And finally, we got A d h d t plus alpha divided by 2 root h s h equals f I 

we got this equation in linearized form and considering the deviation variables, we can 

write this equation in this form A d h prime d t plus alpha divided by 2 root h s h prime 

equals to f i prime. 



Now, we can represent this equation introducing tau p and k p by this form tau p d h 

prime d t plus h prime equals k p f i prime. Now, here tau p equals 2 A root over of h s 

divided by alpha, if we compare these 2 equations we get the expression for tau p equals 

2 A root over h s divided by alpha. Similarly, we get the expression for k p that is k p 

equals 2 root over h s divided by alpha. So, this is the expression for time constant and 

this is the expression for gain are they constant or variable. See for a particular f i value, 

suppose that is f i s 1 we get the corresponding height that is suppose, h s 1. 

Now, if we change this f i value to f i s 2 we get different height, that is suppose h s 2; 

that means, we can conclude that, this h s where is depending on the f i s value the h s is 

obtained. So, we can say that this tau p and k p both are not constant in this particular 

example, they are the variables. So, this is all about the dynamic of first order systems, in 

the next we discuss the dynamics of second order systems. 
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So, next topic is the dynamics of second order systems what is the definition of second 

order system, second order system is 1 whose output y is modeled by the second order 

differential equation. So, the output is y t and this should be modeled by second order 

differential equation. Now, we will consider a second order differential equation. So, for 

the second order process, the modeling equation we can represent by this form a 2 d 2 y 

d t square plus a 1 d y d t plus a naught y equals b f t a b both are constant coefficients. y 

is the output of the process and f is the input to the process. 



Now, if we divide both sides of this equation by a naught, we get a 2 divided by a naught 

d 2 y d t square plus a 1 divided by a naught d y d t plus y equals b by a naught f t. This 

equation we get by dividing both sides by a naught. Now, we will represent this 

equation, by this form. 
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Tau square d 2 y d t square plus 2 zeta tau d y d t plus y equals k p f t. We will represent 

this equation, the previous equation in this form tau square d 2 y d t square plus 2 zeta 

tau d y d t plus y equals k p f t here, tau square equals a 2 by a naught, 2 zeta tau equals a 

1 by a naught and k p is b a naught. 

This tau is called natural period of oscillation of the system, tau is the natural period of 

oscillation of the system and zeta is here, dumping factor zeta is called dumping factor 

and k p is the steady state or static gain, considering y and f both are deviation variables. 

We finally, get the transfer function of this second order system, taking Laplace 

transform of this equation as G s equals y bar s divided by f bar s equals k p divided by 

tau square s square plus 2 zeta tau s plus 1, this is the transfer function of the second 

order system. Now, the second order system transfer function includes one term that is 

dumping factor. 
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Dumping factor provides a measure of the amount of dumping in the system that is the 

degree of oscillation in a process response after a perturbation. Dumping factor provides 

a measure of the amount of dumping in the system, that is the degree of oscillation in a 

process response after a perturbation. Now, small value of zeta what is indicates, small 

value of zeta means little dumping small value of zeta implies little dumping, but a large 

amount of oscillations. 

Suppose, this is the output and the response we are getting in this way, another response 

is like this. So, in this case we can say large dumping, in the second case small dumping, 

when the dumping factor zeta becomes 0, when zeta equals 0 in that case the oscillation 

occurs with constant amplitude. So, zeta becomes 0 belongs undumped system, it means 

oscillation with constant amplitude, for the case of undumped system, we observe 

oscillations with constant amplitude. 

In another case we considered zeta less than 0 what it indicates, oscillations with 

increasing amplitude. So, it belongs to unstable system, for this case the output is 

somewhat like this. So, for all stable systems zeta should be greater than 0. Now, earlier 

we have considered first order systems, presently we are discussing the second order 

systems now, what processes are called second order systems. 
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So, we will discuss now the systems with second or higher order dynamics, how we can 

obtain the second or higher order dynamics, that will discuss now. If 2 or more first order 

systems are connected in series, then we obtain second or higher order systems, if 2 first 

order systems are connected in series, the overall dynamics is second order dynamics. If 

we connect more than 2 first order systems in series, we obtain higher order dynamics. 

So, this is the first option I mean by this way we can get the higher order dynamics. 

So, under this category the processes consist of two or more capacities and they are first 

order systems in series. If a process incorporates a controller, then also we can obtain 

higher order dynamics say for example, we have a first order system, if one controller is 

employed with this first order system, then the overall response may be second order 

response. If a process includes a controller, then we can obtain second or higher order 

dynamics and this is the example, if we consider a first order system that includes a 

controller then the overall response may by second order dynamics. 

Thirdly few processes are inherently higher order, few processes are inherently second 

order systems, but this is very rare in chemical engineering and we will not discuss this 

third option. We will discuss only first and second options. 
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Now, we will discuss the types of second order system response. Previously, we obtained 

the transfer function for the second order system in general form, that is G s equals k p 

divided by tau square s square 2 zeta tau s plus 1 this transfer function we derived earlier 

for the second order system. Now, we want determined the poles of the second order 

system, for determining the poles of the transfer function, we write tau square s square 

plus 2 zeta tau s plus 1 equals 0 for determining the poles of the transfer function or 

poles of the system, we write tau square s square plus 2 zeta tau s plus 1 equals 0. 

So, if we represent the pole by p then p equals minus 2 zeta tau plus minus root over 2 

zeta tau whole square minus 4 tau square divided by 2 tau square, see this is the 

quadratic equation. So, we can easily obtain the poles, we have represent the poles by p 

and the expression for the p is this 1. So, we will get basically 2 poles p 1 equals minus 

zeta divided by tau plus root over of zeta square minus 1 divided by tau, another pole is p 

2 and p 2 equals minus zeta divided by tau minus root over of zeta square minus 1 

divided by tau these are the 2 poles. Now, we will categories the system response, based 

on the value of zeta, we will now categories the system response based on the value of 

zeta. 
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So, first we will consider zeta greater than 1, in case 1 we will consider zeta greater than 

1. If zeta greater than 1 then we obtain two distinct real poles, you see from the 

expression of p 1 and p 2 if we consider zeta greater than 1 we get true distinct real 

poles. The corresponding system response is called over dumped response, this is case 1 

where we have considered dumping factor greater than 1 and dumping factor greater than 

1 implies two distinct real poles. 

In the next case we will consider zeta equals 1. So, what about the poles, two equal real 

poles I mean you can say 1 pole. So, we can write 2 equal real poles, it means 1 real pole 

and that is minus zeta divided by tau, we obtain for the case of zeta equals 1 a single pole 

and that is minus zeta divided by tau. Then the corresponding system response is called 

critically dumped response. 

So, when zeta equals one the response is critically dumped, in third case we will consider 

0 less than zeta less than 1 in the third case we consider zeta is in between 0 and 1 in this 

case what about the poles, we get two complex conjugate poles and the poles are p 1, 1 is 

p 1. And another one is p 2 the expression for p 1 is this one p 1 equals minus zeta by tau 

plus i root over 1 minus zeta square divided by tau, another pole is minus zeta by tau 

minus i root over 1 minus zeta square divided by tau. So, when zeta is in between 0 and 1 

the corresponding response is called under dumped response. 



So, this is the under dumped response. So, these are three different cases, depending on 

the value of zeta. Now, we need to take the invert of inverse of Laplace transform to 

obtain the expression for y in time domain, that will discuss in the next class, the 

expression for y in time domain thank you, what you are saying. 

Student: ((Refer Time: 49:33)) 

Yeah, that I will correct. 


