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Welcome to this lecture of microscale transport process. What we have been discussing 

is immiscible flow through microchannel. We have introduced Laplace pressure and we 

have introduced certain stability criteria when you have two phases present together. I 

mean when they split into, when they break into droplets or bubbles that we have briefly 

touched upon. What I will do in today’s class first, first what I will do is I will introduce 

some dimensionless numbers. These dimensionless numbers are extremely important in 

this context. And then I will try to find out how we can calculate the pressure drop 

through a microchannel when we have this immiscible flow happening. What would be 

the pressure drop and what would be the size of the bubble or what would be the size of 

that annular outer liquid so, these issues we will address in today’s class. 
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So, first let me introduce some dimensionless numbers which are very important in this 

context. (No audio from 01:18 to 01:33) What we will be talking about here is something 

called bond number, capillary number, Weber number and this is the fourth one. Bond 

number, let me let me just give the (()) first with symbols let me put it how bond number 

looks and then we will try to find out what is the significance of this. (No audio from 

02:10 to 02:31) Rho is the density, g is the gravity of course, you can say density of 

which phase. So, this is this is probably density of the discrete phase. So, let us and let 

me point out there is another version of capillary number, this is not the end of this 

capillary number, there is another version of capillary number. 

In fact, the alternative definition of capillary number would be mu v d divided by 4 

sigma L, this is another definition, this is a different definition, this is not a product, this 

is one definition or this can be another definition. Here, you can this is these are 

dimensionless numbers, here also it is dimensionless you have multiplied it by d by 4 L d 

by 4 and L d by 4 divided by L. So, that is what you multiplied this way here d is the 

diameter of the droplet and L is the so, 1 is 1 is the characteristic dimension of the 

droplet and other is the characteristic dimension of the channel. So, this is an alternative 

definition which could be useful. 

Now, let us focus one by one on what we have what do they mean. Bond number 

basically compares gravitational force acting on the fluid with compare something with 

something so, with interfacial force. The way this us conceptualized is that the 

gravitational force, this would be dimensionally it would be rho g L q, how is it? So, we 

know that you for gravity for a hydrostatic heat, the pressure, the delta p is written as rho 

g into L that is how delta p is written h rho g so, delta p is rho g L so, this is the so, rho g 

L signifies the pressure. So, now if you multiply this with L square; that means, the area 

so then only you get a force so, if you want to call it gravitational force, then it will be 

rho g L into L square that is what here we have written here. 

Whereas, in the interfacial force, what do we have? Interfacial force is I mean how is 

interfacial force written it is written as sigma into L, you all know Newton per meter 

surface tension the unit of surface tension is Newton per meter and that has to be 

multiplied by the meter. So, you Newton so, you get it in Newton. So, you got to 

multiply by the L dimension L then only you get the force. And here you got to this 

represents a gravitational force. So, the ratio of these two; that means, rho g L cube 



divided by sigma L or in other words rho g L square divided by sigma. So, that is exactly 

what is bond number. 

(Refer Slide Time: 07:13) 

 

So, what does this mean? This means that when bond number is of course, I mean you 

got to understand here is that rho is the density of discrete phase, discrete phase means 

you are producing oil droplets in water or you are producing bubbles in water. Then the 

discrete phase here is air and the continuous phase is water. Discrete phase is the droplet 

or the bubble that phase is discrete phase so, rho represents that density. So, what this 

means is a very large bond number implies gravity dominates over interfacial force. (No 

audio from 07:34 to 07:41) So, very large bond number means a flat puddle of liquid you 

understand what that means a flat puddle of liquid. 

On the other hand I mean let me point out what happens if one number is very small then 

you will understand what this puddle of liquid means very small bond number this 

implies almost droplet spherical, spherical droplet or bubble. So, by looking at the bond 

number if the bond number is large, you can expect that it will be a puddle of liquid it 

will not form a sphere, it will not form a droplet, it will not take a spherical shape. On the 

other hand if the bond number is very small, invariably you know that there would be 

this there would be the shape of this discrete phase would be spherical because 

interfacial phase will dominate over the gravity force. 



Now, the problem would be if bond number is close to 1 then it needs detailed 

calculation to find the shape, you cannot predict the shape. Also in your calculation if 

you want to ignore gravity, then probably one justification of doing that would be that 

you are working with a small bond number. So, these are these are the few thing you can 

have. Now, let us get a feel for what could be a bond number in case of a microchannel, 

if we look at say a 100 micrometer droplet of water in oil, water density you assumed is 

1000 k g per meter cube and oil density you assume as 800 k g per meter cube. This and 

if you assume the sigma to be equal to sigma is of the order of say what is the sigma we 

mentioned in the last class or water in oil we have not measured mentioned anything. 

If we assume close to say 10 milli Newton per meter, I mean it if it of the order of 10 

milli Newton per meter, what would be the bond number, in that case? I think bond 

number would be of the order of 10 to the power minus 3. So, you can you can conclude 

that the droplet will be spherical. So, this is these are the some of the numbers that you 

can work with. 
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The next dimensionless number we had defined here is capillary number which we said 

is mu v by sigma and alternative definition would be mu v d by 4 sigma L. Now, here we 

have we do not have rho, here we had rho and we said rho is the density of the discrete 

phase, here we have mu. Let us first point out what capillary means because we have to 

you have to mention whenever such thing happens we have to mention that mu of which 



phase because we are working with two phases. So, here think of it this way that tau 

dimensionally tau is what? Tau is mu d u d y you call it. Now, d u d y if at the wall it is 0 

and if at distance L away from the wall it is v so, you can call this mu v by L. So that is 

the shear stress and the interfacial stress I mean if we look at the interfacial force, 

interfacial force is equal to sigma into L. 

You understand Newton per meter into meter, meter meter cancels, if it is Newton 

interfacial force. So, if somebody wants to find out what is interfacial stress? You will 

write this sigma L divided by L square force per unit area. So, this becomes equal to 

sigma by L. So, if somebody wants to find out the ratio of viscous stress, if somebody 

wants to compare say ratio compare viscous stress with interfacial stress, then this would 

be equal to mu v by L divided by sigma by L, L cancels out and so, invariably you end 

up with mu v by sigma. So that is the that is basically the definition of capillary number. 

(No audio from 13:34 to 13:41) That is basically the definition of capillary number. 

Now, here there the we have already mentioned that there is an alternative definition, the 

meaning of alternative definition would be that you are working with the alternative. Let 

us write this as alternative capillary number that is equal to (No audio from 14:11 to 

14:17) you continue with the shear stress term, the tau and you (No audio from 14:23 to 

14:32) here you would write this as sigma into pi D divided by pi D square by 4, what do 

we do here? On the top we instead of tau we can write this as mu instead of tau, you can 

write this as mu v by L that is that is what we have done earlier here, that tau is equal to 

mu v by L. 

However, here the interfacial stress is written as sigma by L square. So, what did we do 

here, which we are not doing here, you understand that. Here, we are keeping the 

dimension L that is used for viscous stress and the dimension L that is used to calculate 

interfacial stress as same. But for a droplet or a bubble flowing from microchannel the 

dimension of the droplet and dimension of the channel this is the length scales the 

characteristic length scales would be different. So, what you are doing here is, you are 

continuing here with mu v by L, but here instead of sigma by L what you are writing is 

sigma into pi D divided by pi D square by 4. That means, if so, this is how we are we are 

defining the interfacial stress. 

So, what you would get in this case is mu v by L divided by 4 sigma by D. 



(No audio from 16:19 to 16:45) 

Is there any other way you can get this 4 sigma by D? I think this is, what is the 

interpretation of 4 sigma by D, think about it. Now, the channel so, here what you are 

doing is here the channel dimension L and droplet dimension (No audio from 17:19 to 

17:26) D are separated. So, this implies provision for two different characteristic length 

scale; one for the shear rate and other for the Laplace the pressure so, this is this is an 

alternative definition. Now, there are couple of things you need to appreciate here regard 

to capillary number, before we proceed to the next dimensionless number we must point 

this out is that in shear flow large droplets are elongated. I mean it is understandable I 

mean shear we have already talked about this elongational, what we call it linear 

stretching and all kinds of things. 

So, basically you are stretching the fluid so, if instead of the fluid there is a droplet so, 

droplet will also be stretched. So, large droplets are elongated and so, when large 

droplets are elongated they; that means, that they will undergo Rayleigh-Plateau 

instability that we have talked about in the last class. That this will the moment you 

stretch this moment you have a droplet, moment you have an immiscible cylinder, when 

moment you have a cylinder that cylinder will break into smaller droplets because of 

certain instability. Now, so that instability will come into play there. 

Now, if you have this happening so; that means, I can say the large droplet will be 

fragmented into smaller ones till what time? You it will be fragmented, but fragmented 

to what length scale? So, it will be into smaller ones until this is important, until the 

radius is small, small enough. That the curvature with associated Laplace pressure 

balances the shear stress, what that means is essentially the capillary number is equal to 

1. So, until the radius is small enough that associated Laplace pressure (No audio from 

21:07 to 21:14) balances the shear stress. And this happens when capillary number is 

equal to 1. 

So, if somebody wants to find out what would be that limiting radius that this droplet 

will achieve I mean I have put two phases together and I am having that to having those 

two phases flowing through a tube, flowing through a small tube. I would like to know 

what would be that limiting radius to which this droplets would be fragmented that 

radius can be obtained by equating capillary number is equal to 1. 



So that means, the radius of the droplet can be so, what we mean here is that the radius of 

the droplet can be approximated by setting capillary number is equal to 1. And capillary 

number is equal to 1, in if you look at this if this is the alternative capillary number 

definition of alternative capillary number. And if this is equal to 1; that means, you get 

some idea of what is D, what is D? D would be close to 4 L sigma divided by mu u not 

mu v. So that would be the diameter of the droplet. So, this would be the diameter of the 

droplet, you can expect this is the limiting diameter of the droplet. 

Another issue is that you can check the capillary number and whether the capillary 

number is greater than 1. If you if you have a higher capillary so, in a particular flow 

when you have a flow through a microchannel or a flow through a channel let us put it 

and you calculate the capillary number. And if you see that the capillary number is 

greater than 1 or capillary number is high, in that case you can conclude that the shear 

can dominate in this fragmentation process. On the other hand if you have a flow through 

a channel where you see that the capillary number is low, capillary number is not 

significant, capillary number is less than 1. So, in that case you would be you can 

conclude that you cannot expect much if a breakup arising from the shear flow, by 

imposing shear you cannot break it into you cannot get into this fragmentation. 

So, this capillary number is an indication how effective shear will be to break the 

droplets. So, if you get a good capillary, if you get a good microchannel, if you get if you 

see that your capillary number is pretty high there so, you know one thing for sure that if 

you introduce the if you or if you can if you know that you have some shear environment 

in which you can introduce these immiscible phases and you can elongate it. Then you 

know that you will be able to fragment it. But the capillary number would determine 

whether you will be able to fragment it or not, then and you can see what is the limiting 

value of diameter that you can expect. 
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Now, let us go to the next dimensionless number which we called Weber number. Weber 

number first of all this compares, the Weber number this compares inertial stress with 

interfacial stress. Inertial stress this may arise in case of a jet, a elongated jet that breaks 

down it is not a viscous stress, it is inertial stress so that is how it is different from 

capillary number. So, if somebody is observing a jet and the jet breaking down so that is 

probably the case where you have this Weber number. Let us see how we get into this 

Weber number is there are two, there can be two interpretations possible; first of all 

Weber number is rho we said that rho v square L divided by sigma that is the form.  

There are two interpretations possible; one is that it is written as (No audio from 26:51 to 

26:57) it is written as kinetic energy which is given by rho v square that is per unit. So, 

rho v square is typically per unit volume. So, this multiplied by L cube so that is the 

kinetic energy, this divided by Laplace pressure which is basically not exactly the 

Laplace pressure. The way we interpret this is it is sigma divided by L into L cube. So, 

how do we look at it? Sigma by L is basically the pressure this multiplied by L cube. 

So, energy are we talking about the energy associated with Laplace pressure probably 

something that is what we are looking at. Or the other interpretation could be that you 

think of it as rho L cube, this gives you the mass and then you have v square divided by 

L this gives you the acceleration divided by sigma into L. So, this is an interpretation of 

inertial force divided by interfacial force. So, this is one interpretation you can think of, 



this also leads to rho v square by rho v square L by sigma. Or you can write this as 

energy corresponding to this quantity so, this is also another interpretation possible. 

Anyway the large Weber number implies elongated jet that breaks into breaks up into 

droplets far away from the nozzle. (No audio from 29:51 to 30:04) 

Now, if it is a small Weber number, this implies interfacial tension effects will lead to 

dripping of droplets without formation of pronounced jet. So, large Weber number 

means elongated jet that breaks up into droplets far away from the nozzle. And small 

Weber number means interfacial tension effects will lead to dripping of droplets without 

formation of pronounced jets. You do you understand what we are talking about? 

Suppose, I mean it will think of this way that I have a pool of some phase and you are 

introducing say another phase it cause be that it you are introducing air into a pool of 

water, it could be that you are introducing water in a pool of oil. I mean it could be one 

phase you are introducing into the another phase. 

So that would be in the form of some tube would be inserted into that reservoir into that 

pool. And then you are forming, you are calling a droplets bubble because the you know 

that moment you are introducing a cylindrical, you are introducing a cylinder that is if 

you have a flow, you are introducing a cylinder. If there would have been no other 

obstruction, the flow would have flow should have continued like a cylinder. But due to 

instability these cylinders will not it cannot continue that way, instead this cylinder 

breaks down. Now, where it breaks whether it breaks immediately next to the nozzle 

where it enters the where the nozzle enters into the pool or whether it will drip from the 

nozzle or it will go and break far away from the nozzle that effect can be found out from 

this from this dimensionless number. 

Probably, I here I am just briefly touching these I am just mentioning or I am trying to 

give briefly the significance of these dimensionless numbers. When you are actually 

working with it, probably the people who are really working on this dimensionless 

numbers they probably have better interpretation of it, but for that you need to play with 

this number for long. I mean you have to do theoretical study with these numbers then 

probably you can have that kind of handle. Here, I just touch up on the significance of 

these numbers in nutshell. 
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The next number that I have here of that last one in this slot is, this number here we 

mentioned that this number the expression is mu divided by rho sigma L to the power 

half. And this number compares viscous and inertial forces (No audio from 34:00 to 

34:11) in the motion of interface between two fluids. I have not I mean so far the work 

that I have done. I have not used this number if any of you have done that probably you 

can share your thoughts about this number. Basically, I just mentioned here that this 

number is there and there is a basically, these dimensionless numbers I mean if you come 

up with a system which were you think that there would be a dimensionless number 

would be appropriate. You can create your own I mean basically see dimensional you 

introducing dimensionless number helps you in expressing the results helps you in 

analyzing the results. 

So, I mean it is it is very open forum I mean people the researchers have studied several 

systems and they have introduced those numbers. In fact, if you go to internet these days, 

you can see earlier it used to be in the backside of the book the list of entire list of 

dimensionless numbers that are already people have which are recognized dimensionless 

numbers. Now, the system that you are working with you can find some dimensionless 

number will help you analyzing the results and that you are free to use that number. The 

point is that if people find that the systems other people are doing, other people are 

researching and they are, they continue to I mean the research they are doing, they need 

that same dimensionless number in various places. 



So, then probably this dimensionless number will be important and the person who had 

floated, who had put forward this number he would be recognized. So that is that is the 

whole idea. So, it is a very open forum and keep an open mind when you are studying a 

system you see what dimensionless number would should be appropriate. In fact, it 

would be a very it would be a puzzle, it would be a creative work if you can come up 

with the right definition of the system through these numbers. That is what we had as far 

as these dimensionless numbers are concerned. So, what I will do next is, I will get into 

the I mean first I before I get into the pressure drop calculation, let me point out couple 

of details a bubble in a let us say microchannel. (No audio from 37:58 to 37:05) 

Now, one thing at the that the analysis that I am going to present here, one thing I would 

like to point at the very outset is that the contact line resistance is not present, here that 

means, one phase completely wets the surface (No audio from 37:34 to 37:47) That the 

other point I mean I would like to work with these some of the I would like to play with 

numbers to see, what would be the importance of Laplace pressure and the pressure drop 

for a flow through a pipe? Pressure drop for flow through a pipe what was that? Hagen-

Poiseuille’s equation or what you have if you take that pressure drop and if you compare 

it with a Laplace pressure for that same channel? I mean for the similar dimensions I 

mean how these numbers look that let me let me point out here. 

If I write the pressure drop (No audio from 38:31 to 38:37) necessary to drive a liquid 

slug of length l, I am not talking about two phase I am talking about one phase, liquid 

slug of length l. Let us say small l at speed say capital U in a channel of radius. We are 

not a we are talking about a circular channel, circular cross section channel of radius R. 

You will find that this pressure drop is of the order of U l mu divided by R square. Now, 

if we consider the for a stagnant bubble that has that radius of curvature of R so with 

radius of curvature is equal to R. So, for a stagnant bubble, the capillary pressure drop 

(No audio from 40:23 to 40:32) across the bubble cap is 2 sigma by R that you already 

know. 

Now, if we set these two pressure drops I mean if we try to find out how these, what 

should be this l for example? Or in other words what I am trying to do is, I am trying to 

find out if somebody if some length of slug provides a pressure drop which is equal to 

this pressure drop. If you try to find out what would be that length of the slug length of 



the liquid slug that can for driving that length of the slug, you need a pressure drop. And 

you are trying to equate that pressure drop. 

So, you want to get a feel for what would be the length equivalent liquid lengths, liquid 

slug length equivalent of this Laplace pressure. If you want to do that you will find that l 

divided by R that is equal to 1 divided by mu U divided by sigma. In fact, you are now 

you are getting another interpretation of capillary number do you do not you, I mean l 

divided by R is equal to 1 by mu U by sigma. This you are talking this we said is the 

capillary number. So, this is another interpretation of capillary number that capillary 

number gives you comparison here. If you had what is the, what would be the length of 

the liquid slug that you can drive with the same pressure as the capillary pressure for that 

stagnant bubble. So, this is this is the value. 
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Now, if somebody finds out say for the velocity range let us talk about a range see U is 

say 1 micrometer per second to 1 millimeter per second. Let us put this as the range for 

U. You will find that if you take water and air and their corresponding interfacial tension 

and everything, you will find that the capillary number would be equal to 10 to the power 

minus 7 to 10 to the power minus 4 corresponding to this range of U, 10 to the power 

minus 7 to 10 to the power minus 4. So, can you imagine what would be the case in this 

case? Now, l divided by R is equal to what we are saying is 10 to the power 7 to 10 to the 

power 4 that is what we are saying. So, can you imagine what would be the length of the 



slug we are looking at? Length of that liquid slug which is equivalent to the Laplace 

pressure corresponding to the or the capillary pressure corresponding to that bubble that 

is of this order I mean what this means is l is much higher than R. 

So, this basically shows the level of pressure required to insert the meniscus in the 

capillary. (No audio from 44:16 to 44:27) So, the problem here I mean when it comes to 

having this two phase flow, the problem here is to, the problem lies in accommodating 

large radius of curvature (No audio from 44:49 to 44:55) of the interface between two 

phases in a small channel. (No audio from 45:10 to 45:16) Now, the calculation that I 

showed is not I mean what we are interested in at this point is probably the for a flow of 

bubble. That means, what we are we are interested in here is that if you have a if this is 

the wall and if you have train of bubbles; this is one bubble, this is another bubble then 

there will be another one like this. So, you have a train of bubble flowing. 

So, for the pressure drop for the flow of this train of bubbles that is again some more 

different the mechanism would be some more different because we need to understand 

how these annular region will behave that is also important. How this part will behave so 

that needs to be understood. So that and in fact, the pressure drop calculation for the flow 

over train of bubbles that should be that should come from that understanding of how 

these annular region behaves. So that is not been accounted so, what I mentioned here is 

probably the what you call back of the envelop calculations so, this not actually the 

rigorous one what we are interested in this. 

But I would like to point out I mean if somebody compares the Laplace pressure and the 

pressure drop, conventional pressure drop of a single phase and particularly in the 

context of flow in a microchannel, the what they will end up with these numbers that is 

what I would I am just trying to emphasize. Now, here we I mean what I will be taking 

up next is how to address this bubbles are moving at a velocity U and in this annular 

region here of course, at the wall the velocity has to be 0. And then there would be a 

velocity profile from here to here, mind it that these dimensions are small. So, there is 

there are certain existing theories I mean nobody is inventing new things here already 

there has been good amount of work done in the area of lubrication. 



So that those some of those theories will be invoked to understand this annular part, this 

annular part how these theories on lubrication can be, we will look into that how that can 

be invoked here. 
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Now, there are certain considerations we need to have here; one is that bubbles are 

already placed. I mean when you get into this pressure drop calculation your frame of 

reference is that bubbles are already placed axisymmetrically within the channel. (No 

audio from 48:48 to 48:53) What does axisymmetrically means is that if this is the axis 



(No audio from 49:00 to 49:06) if this is the axis then this bubble is axisymmetrically 

placed. That means, it is not that one bubble is sitting in one corner and then the annular 

region is it is perfectly, it is the cylindrical, it is perfectly I would say two circles they are 

forming the annular region and inside this is this is the bubble. 

So, this is axisymmetrically this bowls are axisymmetrically placed. The other 

assumption that you have is (No audio from 49:42 to 49:48) wetting annular film is 

formed around the bubble (No audio from 50:05 to 50:11) a wetting annular film is 

formed around the bubble and this is that annular film we are talking about. And this is 

wetting the wall of the microchannel. So, this is what you are assuming and you are 

assuming that a bubble is moving at a velocity U. 

Now, what we will do at this point I mean for probably in the next class what we will do 

is we will focus on this region. We will come up with a velocity profile for the liquid 

layer. Considering the this wall is moving so, you using this theory of lubrication we will 

be finding out the velocity profile within this layer. And that is going to be going to 

going to affect significantly the final derivation of pressure drop because what we are 

interested in here is the pressure drop to have these train of bubbles flowing through this. 

You now, what you if you look at these bubbles what you have to find what do you see 

here is that there is a curvature, I mean this is uniform this is symmetric. Now here it 

looks like a cap. So, this we will call a front cap and this we will call the back cap 

because bubble is moving in this direction. And as a matter of act this front cap and back 

cap they cannot be symmetric because they have to be asymmetric otherwise the bubble 

will not flow that is that is one condition you have. And then you have this part, this 

thickness we will call this as h infinity and then we will be considering h at various 

points. So, we will be considering h as a function of x and finally, the profile that you 

have that has to match with the cap part. 

Now, there are there are lot of other issues involved. In fact, the bubble here you will 

find that this the that is the it the force arising from surface tension that is not uniform 

everywhere, some places it is more and some places it is less. And that will be causing 

the surfactants to be loaded in one place and surfactant the absence of surfactant in other 

places. So, the there would be some imbalances coming up there. 



So, it is a complex I mean if you get into the complexity of course, there will be 

complexity if somebody wants to treat this as a black box. I just find out delta p 

empirically with the (( )) and with the with the flow rate I can do that. And if you want to 

get into the complexity there are several such complexities possible. I will try to address 

them as far as possible and my final M is to come up with a delta p that is delta p in 

terms of probably capillary number. Probably, in terms of things which for example, if I 

say it is in terms of h then you will ask me how will I measure h in the microchannel I 

cannot made the dimension even. So, how do you expect me to measure that? So, I will 

not do that, but come up with an expression that is the job of the researchers is to 

simplify the complex volt. So, we will we will continue this lecture in the in the next 

class. That is all I have for today. 


