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Well, transport process what we have been discussing in the last class was electro 

kinetics; I mean near the end of the last class, we started this topic of electro kinetics.  
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What we had on this power point slide here is by electro kinetics, what we mean is 

interaction between solid surfaces, ionic solutions and macroscopic electric field. And 

there are two types we have we were having investigated in the or we we have discussed 

in the last class, one is electrophoresis and other is electro osmosis. We started with this 

electro osmosis, and we later we we will get back to this electrophoresis, both are 

manifestation of electrostatic component of the Lorentz forces; Lorentz force on ions and 

surface charges and Newton’s second law of motion that we have already discussed. 

Electrophoresis we will come back to this later, electro osmosis is basically motion of 



electrolyte liquid with respect to fixed wall due to electric field applied parallel to the 

surface. 

(Refer Slide Time: 01:18) 

 

So, what we what we mentioned in the last class is that when there is a solid surface, and 

an electrolyte next to it. Electrolyte dissociates the that there is there is a dissociation of 

positive and negative ions, and there would be some sort there would be acquiring of 

surface charges on the solid surface. So, solid surface acquires surface charge when 

brought into contact with an electrolyte liquid due to various reasons. One was 

differential adsorption of ions from electrolyte onto solid surface, the second is 

differential solution of ions from the surface to the electrolyte, and the third is 

deprotonation of or ionization of surface groups such as surface silanol group of glass or 

silica.  

So, what we have is SiOH on the surface that breaks down into SiO minus and H plus 

and H plus goes to the solution. So, there is a there is a charge developing on the surface 

deprotonation is most common and depending on the pH of that solution that you have 

on the surface there would be a net surface charge density at the liquid solid interface 

which is a function of local pH and full you can expect full deprotonation to occur at pH 

greater than nine this we discussed in the last class. 
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What we had as a so the immediate effect of this is ions of opposite charge in the 

electrolyte are attracted, and the like charges are repelled; that means, what we had 

discussed in the last class is if there is a surface.  
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Then there would be some charge developing on the surface. And I said that these 

charges would be existing up to a distance maximum is point two nanometer to the depth 

of this solid solid material. And these charges will be attracting the opposite the counter 

ions. So, the counter ions would be attracted now these counter ions there would be a 



very thin layer of this counter ions which would be adsorbed on the surface. Apart from 

various neutral molecules which are also at the same time being adsorbed on the surface. 

So, there would be the counter ions there would be a compact layer of counter ions next 

to the surface immediately next to the surface. 

This thickness is pretty small and there would be a diffused layer of counter ions. So, 

there would be some co ions also present, but it is predominantly the counter ions. So, 

this is a basically a diffused layer of counter ions that would be existing at the same time 

and these counter ions can be pulled by putting an electrode here and here and applying a 

positive charge. So, so this this if if this acts as an anode; that means, if you put put a 

voltage across this two electrodes, then automatically these negative charges will be 

pulled to one electrode, and by that way there would be ion drag possible on the fluid 

that is existing on the channel, and by that method the fluid will start moving, because as 

i said in the earlier class also that in the navies stokes equation there would be a body 

force term arising from the arising from this ion drag. So, this this is something which 

we referred as electro osmosis. 
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So, what what we discussed in the last class quickly through this power point slide ions 

of opposite charge in the electrolyte are attracted and the like charges are repelled the net 

excess of mobile ions near the interface with charge opposite with with the charge with 

that is opposite to that of the wall is referred as electric double layer. These excess 



charges can be used to impart a force on bulk fluid through ion drag, which is exactly 

what I mentioned here. 

Now, counter ions reside in compact layer next to the wall which is referred as stern 

layer, and this this layer these counter ions reside in adsorbed state adsorbed state means, 

these these counter ions are not available for mobility not available for flow. On the 

other hand there would be a diffused layer of counter ions counter ions that reside in 

more diffused layer next to the wall, that is up to a distance away from the wall that is 

that is referred as the counter ions that counter ions that reside in more diffused layer and 

next to the wall these ions are free to move.  

So, we we had we had talked about something called a stern layer we had we had talked 

about something called a stern layer. Where there is this adsorption and these are pretty 

much mobile ions, and there is a diffused layer. There is a scientist by the name Chatham 

and there is there is some contribution from him. So, this this layer also is referred as this 

diffused layer also there there is some name attached to it. 
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Now, if we try to find out if we try to find out what what would be in the last class we we 

mentioned that our our aim is to find out. 
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What would be the concentration profile we if if we if we we call it C plus and C minus 

if we call it C plus and C minus as a function of z. What would be the concentration 

profile as a function of z? So, that that is what is important to us at this point. So that 

means, how the concentration will change with z, as you go z is, z is what? z is the 

distance from the wall in this direction. So, in this direction the distance from the wall is 

given as z. So, what would be the positive ion concentration and the negative ion 

concentration as a function of z that is that is what is of primary importance to us, 

because once we find that, then we can think of the body force these ions can apply.  

So, before we before we get to that. So, first we have to establish what is the 

functionality for C plus z and C minus z? Now if somebody plots if I if I try to plot if this 

is z and this is say concentration. So, let me let me put it this way say this is the C 0 that 

we have, what is C 0 c 0 was the concentration to start with there was; that means, C plus 

is equal to C minus is equal to C 0 to start with. So, at infinity or at further. So, at wall is 

here z is equal to 0. So, this is the wall. So, at away from this far away from this at 

infinity what would be the C plus and what would be the C minus they will fall on C 0 

you think of this. So, you have NaCl, now NaC C l has been dissociated into Na plus and 

Cl minus. So, Na plus and Cl minus. 

Now, C l this C l minus has been attracted to the wall and n a plus has been repelled, but 

the this find the concentration of n a plus and C l minus they will be uniform at bulk they 



they will be same at bulk so; that means, these C plus and C minus they will approach 

this value c zero at z is equal to infinity we or or not infinity z is equal to some 

substantial value which you consider as bulk which is not next to the surface. So, that is a 

value now what would be the C plus ion concentration or C minus ions concentration 

near the wall if we follow this particular picture if we follow this particular picture. We 

expect the C minus to be more and C plus to be less than C 0 near the wall am I right. So, 

that means, you can expect a plot something like this and a plot something like this both 

are merging to c 0. 

Now, one is for C plus and other is for C minus. As per this picture which one is what 

the bottom one is c bottom one is C plus bottom one is C plus and the top one is C 

minus. So, this is the function this is this is this is what I expect what we expect here and 

what we need to know is how do we how do we give a functional form to this. See how 

do you theorize this this I mean I can understand intuitively the concentration will 

change like this, but how will we put together a functional form for this c is C plus is 

equal to something e to the power minus z etcetera. So, we have to come up with some 

kind of functional form and for that I need to understand what the governing equations 

are. So, we have to get in to this governing equation boundary conditions. So, that we 

can give a functional form to this concentration profile. 

Now, here I must mention that we have to resort to this term called chemical potential, 

which we will be defining as mu. So, In fact, I mean since we we will be talking about 

this nervier stokes equation as well to find out what would be the ion drag at the later 

stage. So, that time viscosity we will define as eta for this for this analysis. So, because 

chemical potential it is it is defined as mu I mean, those you must be having sufficient 

background of thermodynamics, you know that how chemical potential it it is defined by 

mu. 

 Now I put put here one expression I mean I do not have I mean, I cannot give the 

derivation of it here, but you have to you have to accept what I say, but I can tell you 

what is a origin of this expression. Now I started a wrong place it is I mean, I use another 

page. 
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Do not worry This is an expression for chemical potential, where we have this plus and 

minus charges; that means, this ions are available and here this mu 0 this here, I have a 

mu 0 term which is basically the chemical potential in absence of an electric field 

chemical potential this is chemical potential in absence of electric field, and this C 0 this 

C 0 is the concentration or I would say this C 0 is the ionic density. Let us call it ionic 

density ionic density in absence of electric field. And what is this electric field this is the 

electric field that we are talking about pH i r r is just a position vector. This z this z is do 

not confuse this z ever with the small z that we have. So, to differentiate this I mean, I 

put a mark here this is the capital I mean, upper case z this upper case z is basically the 

what should I say the valiancy, this z would be one for n a c l, this z would be two for c a 

C l 2 it is that way. So, that is that is the value of this z. So, z would be the valiancy 

number and this e is the elemental charge e is called the element or elementary charge. 

Elementary charge basically what this means, is a charge of an electron charge of an 

electron it is value is 1.602 into 10 to the power minus 19 coulomb. 

So, this is this e is elementary charge this now what we have we have this T which is 

absolute temperature I am not writing it, you you know what T is and k B is Boltzmann 

constant. So, k B is Boltzmann constant I have already given you the value of Boltzmann 

constant before. So, I do not write it here. Now what you have here is what what what we 

have here is this chemical potential, this is constant throughout a system that is that is 



that is something which is which we have to honor chemical potential is constant 

throughout the system constant throughout a system throughout the system. 

This equation that I have written here for plus and minus this if if you write it as plus 

then this should be plus, if you write it as minus then this should be minus that is the idea 

f this expression. And this function r i mean, do not confuse this this r later on we will 

write it in terms of z. z is the direction say z is the distance away from the wall. So, that 

that is what is z now this r is a general position the the general coordinate system. So, 

that is why it is written as r. 

Now, this expression comes from the fact that chemical potential can be written as the 

derivative of free energy. Basically Del g Del n at constant pressure and temperature. 

You you you must have seen this expression in connection with chemical potential when 

you study thermodynamics. So, this is the origin I mean, this this is the place from which 

this expression can be drawn. I am not getting into this I am not getting into this, but you 

you can you can refer thermodynamics book to find out how how we can arrive at this 

expression. So, this is basically the guiding expression for this this chemical for this for 

this ion ion ionic or or charge profile above the surface. 

Now, what you have is since I said that chemical potential is constant throughout the 

system this you have to honor. So, what you have to write is delta of mu plus minus r this 

has to be equal to 0, which means; the derivative of this mu that has to be equal to 0. 

What the means, is if you if you utilize this expression what you get here, is this is the 

expression that you get if you if you have the grad of mu is equal to 0 then you get this as 

the expression next what you do is you have a boundary condition,. Let us write down 

the boundary condition here the boundary condition for this C plus minus at z is equal to 

infinity that is equal to c 0. That we already we have accepted that at the bulk, the co-ion 

and counter-ion concentration they are equal and that is equal to the c 0.  

So, you can use this boundary condign and you can come up with an expression for the 

which will appear like this. You will come up with an expression for concentration 

profile which will appear like this. 
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Now if we if we write the if we define a charge density. Charge density which is I mean, 

for a general case this charge density is given defined as rho e l. rho e l which is equal to 

summation of I is equal to one to infinity N I Z I into e. That is that is that is all the types 

of charges that are possible here, but here in this case since it is a symmetric electrolyte, 

symmetric for a symmetric electrolyte for a symmetric electrolyte the charge density is 

given written as Z e C plus minus C minus. So, that is the charge density that you can 

write ideally for all charges you need to sum them up, but since these are equal and since 

is a symmetric electrolyte; that means, n a n a C l breaking dissociating in to n a plus and 

C l minus. 

So, this the it is a symmetric electrolyte. So, C plus and. So, it would be C plus r minus C 

minus r. So, in that case if you bring in this expression that you already have for the 

concentration profile, if you bring in this expression what you get is that rho e l r this is 

equal to minus 2 Z e C 0 sin hyperbolic z e divided by k B T into pH I r why how are we 

getting sine hyperbolic, because it is E to the power minus something plus, E to the 

power plus something what is what is this E to the power here we have this expression. 

here we have this expression and here we have E to the power something. So, for minus 

sign it is e to the power minus and then E to the power plus. So, you end up with this 

expression for charge density which is equal to this quantity. 

Now, this charge density is which is something something which is important to us in 

nervier stokes equation, because if we try to if we try to write the nervier stokes equation 

like this derivative with respect to t, plus those convictive terms that is equal to the grad 



of p, plus I said that viscosity has to be written in terms of eta and not mu, plus if you 

have a hydrostatic head, plus this is the body force term arising from this ion drag and 

this is given by rho e l into e. So, this is the nervier stokes equation that you need to 

solve if you have to find out what would be the velocity profile where. What would be 

the velocity profile in this case? In in in this if you have an anode and a cathode and if 

you have this ions being dragged. So, then in that case you need to solve this nervier 

stokes equation where this rho e l term this is primarily operational.  

So, if you do not give a pressure if if you do not if your inlet pressure and outlet pressure 

if they are same if delta p does not exist there. So, in that case it would be just for a 

steady sate case it would be just an inter play of this term and this term. So, this would be 

interplay between these two terms, because; obviously, if the viscosity is more, then it 

would be difficult for the fluid to be dragged by ions. So, it would be an inter play 

between these two terms, and that will define what velocity you get for electro osmosis. 

So, this this this is how this rho e l is coming into picture and that is what we are we are 

we are trying to find out. Now we we will get to this nervier stokes equation little later; 

however, let me let me let give let me get some more feel of this what what are these 

individual terms. Let us first see what is e e is the electric field in continuum hypothesis 

in fluid mechanics you have already studied something called a velocity field. Do you 

understand what a velocity field is this is velocity field is defined based on a continuum 

hypothesis. I mean, people who are I mean, as a matter of fact if this also come comes 

under micro scale fluid flow discussion is that this I mean, there there there there are 

there are two two different concepts you already know one is eulerian formulation 

another is a lagrangian formulation right. Lagrangian formulation is when you track the 

particle I mean, the you you consider the fluid to be composed of several particles and 

you are tracking the individual particles as it proceeds. And and in eulerian formulation 

what you do is in the space, you you set up suppose in this in the in the space you set up 

a box and you try to find out how what the velocity of the fluid particles what what is 

that velocity of the fluid particles that are passing through this through this block. 

 So, that is that is what that is what is important to you that is the velocity that you are 

trying to find out. Now it is it then then it is called a velocity field, because you are 

assuming that the velocity changes in a continuous manner. So, it is not that some 



particle basically why this velocity is if if you think of this fluid come fluid is comprising 

of several particles.  

So, some particles are entering, some particles are colliding, some particles are leaving, 

may be the number of particles entering, a number of particles leaving, there is a 

mismatch of little bit with time it changes. So, this all this things are not considered in an 

eule[rian]- eulerian formulation in eulerian formulation you consider that there exists a 

field, there exists a velocity field; that means, that means it is it is it is like you have you 

must have you must in the in the first class itself we discussed about this this 

functionality I mean, when you when you plot this density or when you when you plot 

any function with the with the probe volume and we said that as you increase the probe 

volume if it I think I think that that was discussed in the first class itself. 

If you if you go if you get the probe volume too small, then you get atomic fluctuations 

that is affecting the measurements; and if you get the probe volume which is too big then 

the the mechanism itself the the macroscopic mechanism itself that leads to a fluctuation. 

So, your probe volume has to be within certain limits. So, when you when you make this 

continuum hypothesis you are assuming that you have a probe volume you you have a 

velocity here, you have another similar volume and the change in velocity from this to 

this is continuous. So, similarly you have a e e which is the electric field in continuum 

hypothesis. 

Now, you I am sure you remember there is a term called velocity potential which is 

which is referred as pH I. And you might you must have already you you already know 

that this velocity this potential it it is it is like a it is it is complimentary to something 

called a stream function, which you must have studied in fluid mechanics there exists a 

potential function which is called pH I, which is complimentary to stream function which 

is referred as. Now this pH I this pH I exists only when Del cross v is equal to 0, where v 

is the velocity field. This is this this exists only if del cross v is equal to 0 and then this 

then v is defined as minus of del pH I v is defined as minus del pH I that that is how it is 

defined, v is what is v v is the velocity field, And what does this del cross v means this is 

basically curl of a del cross v means, curl of velocity vector. And this refers to the 

vorticity of this velocity field the vorticity of the velocity field and if this is equal to 0 

then you consider this flow to be irrigational. 



So, then this the then in that case del cross v is equal to 0 and one of the primary primary 

criteria that you have a velocity potential defined. Velocity potential will only exist will 

will exist only if this del cross v is equal to 0, curl of this velocity field is equal to 0 then 

only, because potential flow exist only if the flow is irrotational. So, this is this is the this 

is the. So, that is how the velocity is then defined velocity is equal to minus of Del pH I.  

So, similarly in this context of this electric field, we have a very similar concept in 

electric field what you have is you write that delta cross e that is equal to 0. And if delta 

cross e is equal to 0, then you have electric field e defined as minus of delta pH I. Where 

this e is referred as this e is referred as electric filed which is synonymous to the velocity 

in our understanding and this pH I is referred as potential. So, just like we had for 

velocity we had a similar, criteria that if del cross v is equal to 0 then the flow is 

irrigational and. So, you can define a velocity field is equal to minus delta pH I, by the 

same token if del cross e is equal to 0 del cross e equal to 0 in this in in the in the context 

of this electric field or people who work with the pH lyricists who work with electric 

field they call this at in absence of a changing magnetic field. So, Del cross e equal to 0 

means, changing magnetic field is absent. So, this the under this criteria you can define e 

as equal to minus of delta pH I where e is referred as electric field and pH I is referred as 

potential. 
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So, with that understanding what you can write is then delta dot e is equal to rho e l 

divide by epsa. Delta dot e is equal to rho e l by epsa. Do you remember what we had 

what we had for delta dot v. What is delta dot v in fluid mechanics context continuity 

right Del u Del x plus del v del y 0 or or change in density if you want to put it. So, here 

delta dot e is defined as rho e l by epsa where epsa is constant no the the epsa is basically 

the what do you call it the permittivity right, epsa naught into epsa r you you got to brush 

up your understanding of this electric field. So, this delta dot e is equal to rho e l by epsa, 

and then if epsa is equal to constant if this is constant then, this delta dot e can be written 

as minus of delta square pH I. So, that is equal to rho e l by epsa, because that is exactly 

what we said e is equal to minus delta pH I e is equal to minus delta pH I. So, you can 

write minus delta square pH I is equal to rho e l by e epsa if epsa is constant. So, what 

you would be writing in that case, is now we have an expression for rho e l you 

remember. We have an expression for rho e l charge density which is this 2 z e C 0 sin 

hyperbolic this quantity this is an expression that we already have you must have already 

you might have written already on your notebook. So, if we use that what we end up with 

is. So, what you would be writing in that case is Del square pH I r I mean. for general 

position vector if that is what you would be writing that is equal to two z that valence 

number elemental charge C 0 divided by epsa sin hyperbolic again z e divided by k B T 

pH I into k B T into pH I. So, that is what you get. 

So, this is what you get for Del square pH I r. Now if you if you take a Taylor expansion 

of these sin hyperbolic term. If you take a Taylor expansion of sin hyperbolic term and 

you can write sin hyperbolic of u is close to u. If z e and the pH I right corresponding pH 

I divided by k B T or or or let us say z e i i write this as zeta I will explain what zeta is is 

much less than k B T. If this quantity is small; that means, this quantity the numerator is 

much less than the denominator in that case you can approximate this as sin h u is close 

to u. Now what is this why why do I write this as zeta and not pH I what is the difference 

what what is new here. See if we try to plot pH I versus z pH I versus z if we if we plot p 

versus z then you get a profile which is something like this. This is actually that stern 

layer that we had and then we see that the pH I is decreasing like this and then at z is 

equal to infinity this will go down to 0 this particular value of pH I this is referred as. 

So, this is referred as zeta this this this this value of pH I is referred as zeta. So, pH I 

drop like this I have not come up with an expression for pH I yet. So, I cannot I do not 



know what functional form it has, but one thing I know is that if you solve this equation 

you can get, because this dell square pH I this is basically I mean, in in other words it is 

del square pH I del z square for a one d system it is del square pH I del z square. So, if 

you integrate this two times you will get a functional form of pH I as you will get a pH I 

as a function of z, but before I before I solve before I solve this before I get in to that 

expression. I tell you that pH I versus z there exists form like this and at z is equal to 0 

not exactly at z equal to 0 I mean, here it is there is a change I mean, here it would be 

like this I mean there is a very small layer which is practically negligible. I mean it is 

difficult to measure experimentally that what is the thickness of this layer there whatever 

potential is existing that we call that we are referring as zeta.  

So, when it came to I mean, if somebody asks I mean, which pH I to take. If you if you 

want to ignore this then what pH I to take then ideally you should to take the maximum 

pH I that is possible maximum pH I is basically zeta. So, that is why you are you are 

writing it instead of writing any arbitrary pH I at any location at any this r basically the 

position. So, instead of picking up any z and write corresponding pH I you would be 

writing the maximum of it which is zeta. So, that is that is how we put the condition z e 

zeta which is much less than k B T. This zeta is referred as it it to has a very it is very 

famous in many ways, this is referred as zeta potential. Zeta potential and this thing can 

be measured I mean, the zeta potential can be measured this there are there are 

instruments to measure zeta potential, but that that is a different issue I mean, our our 

original aim is to find out what would be the velocity in this electro osmosis that that is 

what we are heading to. So, for that now we have this del square pH I is equal to rho e l 

by epsa and del square pH I k can written as in with proper the next step would be this 

and then sin h u can be can be approximated as u if this quantity is small that is what we 

take.  

So, if that is so then the sin this would be replaced by this the sin h would be gone sin h u 

would be replaced by u. So, what do you get in that case you get del square pH I r that is 

equal to 2 z e whole square C 0 divided by epsa k B T into pH I of r this what you get. 

So, this is also referred as 1 divided by lambda d whole square pH I of r. What is lambda 

d in that case, lambda d would be lambda d whole square is this quantity one by lambda 

d whole square is this quantity. 



So, then what is the idea here we have. So, we can write d square pH I d z square or or 

for one d situation you can write d square pH I d z square that is equal to 1 by lambda d 

square pH I z that is exactly what you can write. And if that is so then what would be the 

solution of this. Solution would be that pH I z would be equal to c 1 e to the power z 

divided by lambda d, plus C 2 e to the power minus z by lambda d see the from this point 

onwards we have introduced the small z which is different from the upper case z that we 

have been working. So, far this is upper case z we have worked. So, far is that valence in 

number and this small z, now is the distance distance away from the wall. So, mind in 

take it make note of it very carefully, and this small z that appears this this is a general 

solution for pH I z this small z is basically the distance from the wall. 
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So, now you have boundary conditions and what is the boundary conditions for for pH I 

z. You have pH I infinity is equal to 0, that is understood. We said that add infinity there 

will not be any potential, because add infinity you have n a plus and C l minus in equal 

numbers. So, you do not have any potential gradient. So, pH I infinity equal to 0. And 

you have the other boundary condition here is pH I 0 is equal to zeta, that is already you 

have I mean, I said that we we referred this as as the zeta potential the potential existing 

at the wall. 

So, with these two boundary conditions if you solve these equation. See moment I say 

that pH I at infinity is equal to 0 now here, at infinity this term will blow up. So, this 



term you cannot allow this to blow up. So, C 1 has to be equal to 0. So, you are ending 

up with this expression, and C 2 would be equal to simply zeta. So, you end up with this 

expression pH I z is equal to zeta e to the power minus z divided by lambda d. So, this is 

the expression that you have for pH I z. So, this is how the potential changes with z. e to 

the power minus z by lambda d this is a very neat expression you have very easy to 

handle, and more importantly now look at this lambda d term there is a name to this 

lambda d term. This lambda d is referred as Debye length. What is the importance of 

lambda d can somebody tell me I mean, can can you think about it you think about it. 

You have pH I z as a function of z and which is basically I mean, now we have now we 

do not consider the stern layer moment we said this boundary we said this boundary 

condition we are forcing it to be zeta at z equal to 0. So, we are talking about a functional 

form of a e to the power minus z by lambda d. So, what is the what is the importance of 

lambda d now where would this lambda d be. 

Think about this Debye length is is a very important term the zeta potential and Debye 

length i think you you need to do some study, when you when you go back when you go 

back after the class you do some study you find out what is zeta potential and what is 

Debye length these two are very important concept. So, what does this Debye length 

mean in when have an expression for potential like this. So, this this is the expression 

and then you have you have rho e l z in that case what is rho e l z. rho e l z we had a we 

had talked about it what is that here we talked about rho e l z. So, if we just multiply by 

epsa and take the second derivative. So, if we if somebody wants to know what is rho e l 

then what you will do is you will multiply these by epsa into del square pH I that is what 

it is that is what we are talking about. So, rho e l z would nothing, but minus epsa del z 

square pH I z; that means, what these term means, is basically del square pH I del z 

square. This is this is this is a notation lot of pHysicists use Del z this is basically del 

square pH I del z square.  

So, basically rho e l z is equal to nothing, but minus epsa Del square pH I del z square. 

And what would be del square pH I del z square if this is the pH I this is the expression 

for pH I then what would be del square pH I del z square. You take the second derivative 

of it, you will be seeing this as minus epsa zeta by zeta would be there anyways zeta you 

will have a lambda d square, because you are taking derivative two times exponential of 



minus z by lambda d. So, basically it is it is epsa zeta by lambda d square e to the power 

minus z lambda d that is what you get. 

Now, what we had earlier we have an expression for concentration profile as well. We 

had an expression for concentration profile which was like this in terms of pH I. Now if 

you bringing this pH I if you bringing this pH I here, and before that if you take this e to 

the power e to the power e to the power this quantity if we expand it in Taylor series and 

if you if you put this pH I instead of pH I you put this zeta into that that quantity what 

you will be getting in that case is c is equal to C 0 1 minus plus this z is the valence 

number e zeta divided by k B T exponential of minus this is distance z by lambda d z 

greater than 0. 

So, this is this is the this is the expression for concentration profile. And as a matter of 

fact as a matter of fact this concentration profile that we had obtained earlier. The 

concentration profile that we had I mean, not obtained I mean, we intuitively we said this 

is the type of profile we get. Now you can plot this using this expression using this 

expression you can plot that concentration profile. So, you have more or less you have 

some handle over these these these these parameter. Now this zeta this zeta I said that 

this is a potential. So, this zeta potential is a this zeta it is the property of the system that 

you are working with. 

So, when you when you pick up a wall when you pick up a electrolyte I mean, it is it is 

zeta is property of the system you have. This z is valence number whether you are 

working with n a C l or c a C l to it would be one or two it depends on that k B is a 

Boltzmann constant you figure out what that is t is the absolute temperature in absolute 

scale, exponential minus the distance away from the wall and lambda d is Debye length. 

Now Debye length we have where where did we bring in lambda d you remember when 

you go back to your notes, we were working with this expression. We said that sin h u is 

equal to u and we ended up with this expression and then suddenly from here I said this 

is equal to one by lambda d square pH I r. So, if somebody asks you what is lambda d 

then you have to write lambda d as square root of inverse of this quantity.  

So, it would be square root of epsa k B T divided by 2 z e whole square C 0 that entire 

thing under square root. So, you know what is epsa it is the property of the system k B T 

all you note 2 is 2 z is valence number e is the elemental charge whole square C 0 where 



how much is the that this you see how much ions you start I mean, you started with all. 

So, this this is a C 0 that bulk concentration. So, bulk concentration of ions. So, it is it is 

it is very straight forward. So, you can find out what is the concentration profile. So, you 

know all the terms here. So, this is this is what this is what would be the concentration 

profile now we have solved for what we solved for just a wall just a wall is there, the 

wall for some reason has picked up some positive charge with it and it is pooling 

negative counter ions here. It is pooling counter ions. So, I developed. So, so you have 

developed a potential pH I as a function of z. You have developed a C plus ion 

concentration as a function of z; you have developed a C minus as a function of z. So, all 

these things you developed next to a wall. What is above the wall we do not know I 

mean we are just working with a one d system above the wall, but when we talked about 

a flow through a channel then there has to be another wall above it.  
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So, if you bring in that system that system here; that means, for parallel plate geometry. 

If we talk about parallel geometry where is where the change is going to be. This 

equation I do not have any doubt with this equation will remain same pH I divided by 

lambda d square. That was a governing equation right one by lambda d square into pH I 

this was the governing equation and this governing equation remains the same. Only 

problem only change would be in the boundary condition what the boundary condition 

was you had taken earlier. The boundary condition you have taken is pH I at z is equal to 

0 is equal to zeta, and pH I at z is equal to infinity is equal to 0. This was the boundary 



condition you have for a plate and one d case above it one d situation which is above the 

plate, but when you have two parallel plates then there exists a symmetry in between. So, 

instead of this boundary condition what you would be taking is pH I at plus minus h 

divided by 2 is equal to zeta.  

Phi plus minus h by 2 is equal to zeta. What is h by 2? If there are 2 if this is the channel 

if these are the parallel plates this distance between two parallel plates if that is h. So, 

then your z starts from here, this is this is the place this is where the z starts from. So, 

this is equal to plus h by 2 and this is equal to minus h by 2.  

So, you will write pH I instead of pH I z is equal to 0 pH I at z equal to 0 is zeta you will 

be writing pH I plus minus h by 2 is equal to zeta all right. understandable now if that is. 

So, then where where would be the change in this case you will have I mean what was 

the general solution we had pH I z is equal to c 1 e to the power z by lambda d plus C 2 e 

to the power minus z by lambda d earlier we had this infinity and to satisfy that we said c 

1 is equal to 0. Now that is not the case in that case you will have both C 1 and C 2 and 

what would be the values of those, if he impose this boundary condition I think what you 

will be getting is c 1 by lambda d minus C 2 by lambda d is equal to 0. Am I right at well 

well well well at z is equal to 0, there is another boundary condition you there is a 

symmetry at the centre which I have not mentioned, due to symmetry at the centre pH I 

at z is equal to 0, d of that d pH I d z that has to be equal to 0, because there exists a 

symmetry at the centre. 

So, this becomes another boundary condition another condition another boundary 

condition here. So, pH I plus minus h by 2 is equal to zeta that is at the o wall and at the 

centre there has to be a symmetry. So, this has to be satisfied. So, play with this see what 

c 1 and C 2 you get I mean, I can give you the final form see here, here since you have e 

to the power something and e to the power minus something. So, you would be again 

ending up with instead of instead of e to the power minus z lambda d that you had earlier 

only you have this term right, only you have this term and C 2 was replaced by zeta. So, 

that is the only thing you had now you will have is pH I z would be equal to zeta cos 

hyperbolic z divided by lambda d divided by cos hyperbolic h by 2 divided by lambda d 

z starts from the centre and goes up there  



And similarly, you have to you will get an expression for rho e l z all right. So, this is 

what you get as a new new 1. So, what did we what did we have when we had just a 1 

single plate and we are concentrating z running from 0 at the wall to infinity that time 

was the pH I z. If I write it here what was the pH I z at that time pH I z is equal to zeta 

into e to the power minus z by lambda d all this z is distance from the wall here, the 

coordinate system changed the z starts from the centre, and the expression that we have 

is pH I z is equal to zeta cos hyperbolic z by lambda d and cos hyperbolic h by 2 divided 

by lambda d. 

 So, look at look at the change now here this this this this is what we had earlier for 

simple situation. And this is what we have now, because of this boundary condition the 

governing equation remains same clear to everybody. So, the if this is. So, then you can 

you can come up with rho e l once again and once we have rho e l in this case I mean, 

you know what rho e l is how rho e l is related to rho e l by epsa. how it relates to del 

square pH I. So, you have to take the second derivative of this pH I, and relate that to rho 

e l by epsa and get the rho e l. And once you have this rho e l then you can use this rho e 

l in that nervier stokes equation. 

So, you you must have seen the third process here, you have defined a velocity potential 

you have to come up with a rho e l, which is basically the charge density and then you 

introduce that in the body force term in nervier stokes equation, and then only you can 

come up with a velocity expression for velocity. And then you can say this is the electro 

osmosis osmotic velocity this is the velocity you can expect in electro osmosis for two 

parallel channels. Two two parallel plates channel between channel form between two 

parallel plates. So, we will continue this discussion we have not yet gone to nervier 

stokes we are just doing the preliminaries that is all for this class meet you next day. 


