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(( )) Biochemical engineering, this lecture as you saw, is titled Multiple interacting 

microbial population - prey-predator models. And, what we are going to talk about today 

is, something related to growth; something that we have done before but, in a new 

perspective. If you remember, we, when we did the growth, the chapter on the microbial 

growth, what we talked about was the growth of a single bacteria, or microbe, or a 

fungus also. What is the difference between, what we are going to do today, and what 

we, what we did earlier? The earlier, as I said, we had worked, or talked about just a 

single microbe, or bacterial growth. We had, if you remember, talked about different 

substrates, inhibitions and so on, but, in all these cases, we have just confined our cells to 

single microbial growth.  
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So, if I can go back, you know, to the old slide here, of a typical microbial growth in a 

batch reactor, this is how it looked like, if you remember. The cell number verses time, 

and this is the, there is the slight lag phase, for the, for the growth to start and then, there 

is exponential growth, and then, there is a stationary phase, and then, there is the decay. 

The, during the growth phase, the exponential part of the growth phase, only the growth 

of the bacteria occurs; during the stationary phase, what happens, the amount of bacteria 

that is growing, or microbes that are growing, or being incubated in the reactor, equals 

the amount that is dying; therefore, there is a stationary. So, there is no overall growth, 

but, there is, as far as the growth of bacteria, but, which equals the (( )) bacteria. And 

then, you have final death phase, where the death rates far overcomes the growth rates; 

as a result, there is a decline in the cell number. And, the reason I am showing this to 

you, because, is because, this is important, and we will, we will, show as, draw some 

more curves for you today, and then, we can compare how it looked, as compared to the 

single microbial growth case.  
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And, the most important model that we talked about is, and we used it several times, if 

you remember, just to recap, is the Monod growth model, which was obtained, or first 

derived by J Monod in 1950. And, it says that, mu being the specific growth rate, equals 

mu max, the maximum growth rate times substrate concentration, divided by K S plus S, 

S being the substrate concentration and K S being the growth constant. And, this is very 

similar to the Michaelis-Menten kinetics. Therefore, mu almost have the Michaelis-



Menten kinetics. And when, in the case, when substrate is present in a large amount, this 

mu, almost goes to mu max, where it becomes a constant; that it becomes independent of 

the substrate, and the reaction becomes zeroth order; when substrate is very low, then, it 

becomes, goes to a first order rate constant. So, here again, you know, this is, this is the 

plot of mu versus the substrate S, and for low concentrations of the substrate, it almost 

behaves like a first order; for very large concentrations in the substrate, here, it almost 

behaves like a zeroth order. 

There are other kinds of growth models that we had talked about, but, we are not really 

interested in Malthusian and so on. We really had not been using these models. There is 

a modified growth, Monod growth model, which includes some more, you know, the rate 

of decrease at high values of initial concentration, and different other models; but, this is 

what we need to stick to, and what we need to remember, the Monod growth model. 

And, we are going to use that today, again. Now, apart from the simple, very simple 

Monod growth model, what else did we study? We studied the effects of mass transfer, 

which is valid here, again, and we can apply these same techniques, and we can come 

back and talk about this at the end of this lecture. And, we had also looked at multiple 

substrates here, so, where two different substrates S, and S 1 and S 2, both are used to, by 

the growth, both are used for the growth of the bacteria, or the microbe X. And then, we 

had also talked about effective inhibitory substrates; substrates that inhibit; but, an 

allosteric inhibition also, which is, you know, the substrate reacting with the microbe to 

form X plus daughter cells, and that reacting again to form XS SXS S S, that gives the 

daughter cell plus XS; it can again give the X. 
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So, these are different kinds of inhibitions we have talked about. But, what is, what is 

important to know, it is that, even in this inhibitions, or this particular case of multiple 

substrates, we had always looked at, we had always looked at a single microbe, or a 

single bacteria.  
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What we are going to talk about today is multiple microbes, or bacteria. Now, you might 

ask that, what is different when you have multiple bacteria, or multiple microbes? Well, 

nothing is very different, but, something still is different, and what is not different is that, 



both of these microbes, or bacteria going to use up the substrate. Now, you might ask 

that, if that is the case, then, both these microbes or bacteria may be working 

independently; they might be consuming nutrients independently, and growing 

independently; then the, where is the problem? Well, there is no problem, if that is what 

happens; that is, both these microbes or bacteria grow independently. But, we are going 

to consider the case, when they do not work independently; or, in other words, the 

growth of one, affects the growth of other. And, that particular kind of growth is termed 

as interacting growth. So, that is why, I call multiple interacting microbial population 

and the, we give specific attention to the prey-predator model, and we will redo some of 

the old stuff, but in a much more complicated light and in a, in a more, throwing a more, 

I mean, looking at it from a more complex perspective.  
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So, let us start, start working on it. So, as I said, this is multiple interacting microbial 

population. So, the stress is on both multiple, and interacting. So, till now, we have 

discussed, we discussed growth of a, of single micro organisms, alright. Now, we are 

going to start discussing several different microorganisms, which interact, that interact 

during the growth process. Example, biological waste water treatment, cheese 

manufacturing; these are examples from everyday life, you know, where multiple and 

multiple bacteria, multiple microbes work together.  



(Refer Slide Time: 07:35) 

 

It turns out that, mixed populations of microorganisms are the rule, rather than exception. 

And, natural cycles, what is their role, actually? Why are these multiple interacting 

growth models, or multiple interacting bacteria important? So, natural cycles of carbon, 

hydrogen, nitrogen, oxygen required on plan, on the planet, require active participation, 

participation of many different microorganisms.  
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So, what about examples? Just talk about an example, which is symbiotic, symbiotic 

example, where the growth of one bacteria helps the growth of the other bacteria. So, one 



is the microorganism, and the other one is the other organism, and the function, what is 

the role, how this happens. So, let us consider this example of a flagellated protozoa; it is 

the first example. Flagellated protozoa; this is termites, and the function is, protozoa 

hydrolyze, the hydrolysis of cellulose, cellulose for termites, which the termites alone 

cannot digest. So, they cannot digest these cellulose molecules; and so, the protozoa 

helps in hydrolyzing into, hydrolyzing into glucose; and in return, what is the, what, 

what is done is that, they, they turn, the flagellate turned in the, turn in host, they host the 

bacteria turned in as host, they host the bacteria to provide...So, flagellates host bacteria 

and provide cellulase; cellulase is the enzyme that helps in hydrolysis of cellulose. So, 

essentially, this is what happens. So, the protozoas hydrolyze the cellulose for the 

termites; they, they are the ones which can hydrolyze the, (( )) and they hydrolyze the 

cellulose and because the termites cannot digest and the flagellates hosts the bacteria and 

provides the cellulase.  
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So, let us look at another example of the same symbiotic and in this case, it is a 

symbiosis between algae and protozoa. So, what is the function? Function is that, each 

protozoa holds around 50 to 100s of algae; and what does the algae do? It is well known 

what an algae does. What does it do? The algae uses light photosynthesis to fix the 

carbondioxide and free oxygen, so that, which the protozoa, this oxygen could be used; 

protozoa uses this, uses oxygen to oxidise nutrients and liberate C O 2. So, these are the 

two examples we looked at. So, first one is the flagellated protozoa and termites, and 



second one is the algae and protozoa. So, as I said that, each protozoa holds around 50 to 

100 of these algae and the algae essentially, what it does is, it uses light photosynthesis 

to convert, to fix carbon dioxide and release oxygen. And, this oxygen is taken up by the 

protozoa for its, you know, metabolic activities and it releases carbon dioxide, which is 

then, again, taken up by the algae. So, there is a symbiosis between these.  

So, you, this is one set of interaction, where the growth of one, one particular organism, 

helps the growth of other particular organism. So, you can have different cases, where 

the growth of one organism helps the growth of the other; that is symbiotic. Then, you 

can have cases, where they just work, as you know, hosts; but the growth of one does not 

necessarily, unlike in the algae protozoa case, where the growth of one, helps in the 

growth of other, you can have the cases, where the growth of one, does not necessarily 

help the growth of the other. But, what it does is that, it is sort of neutral; and then, you 

can have competition and the Darwinian model, which is what we will look at in a few 

more minutes, you know.  
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So, the next thing that we look at, is the Prey-Predator model and this is a more 

interesting model, because, if there is a, this, you know, growth of one organism does not 

hamper the growth of the other, is not as interesting. Here, what happens, there is 

competition and the survival of the fittest theory of Darwin comes into play. So, what 

essentially happens in a prey-predator model is that, let us consider a population; it is not 



even considered microorganisms; let us consider a forest population and you have grass, 

which is eaten by the herbivores, let us say, the cows and the cattle, and then, you have, 

let us say, crocodiles and, and lions, and tigers, which feed on these herbivores; so, the 

carnivores, which feed on the herbivores. So, you have the, you have the grass, the 

greens, and they are eaten by the herbivores, and the, and the herbivores are eaten by the 

carnivores. 

So, this is the, this is, this is the model for, for growth of this entire population. So, 

essentially, if I think of the forest population over here, you have the greens, which are 

eaten by the herbivores, and the herbivores are eaten by the carnivores. So, in this 

system, for example, as you can see, the greens are not eaten directly by the carnivores, 

but, this, only through the herbivores. Now, if the greens are assumed, let us, if you 

assumed that, the greens are in plenty, then the herbivores become the prey, and the 

carnivores become the predator. 

Even if greens are not in plenty, you can still assume that, the greens are in, are the, 

herbivores are the prey, and the carnivores are the predators; but, if they are in plenty, 

then, it is easy to assume that, one is the prey and the other is the predator. So, how is 

this model going to, going to work? What will happen is that, the herbivores eat on the 

carnivores. Now, the carnivore population, the ironic thing about it is, the carnivore 

population is dependent on the herbivore population; or, in other words, the carnivores 

need to eat the herbivores in order to grow, but, at the same time, if all the herbivores are 

depleted, then, they have no access to the green. It is the carbohydrates that are, that are 

taken up by the herbivores; as a result, which will happen, this entire prey population, 

system will fall apart. So, this prey population, sorry, the prey predator chain that we 

have, the prey predator cycle that we have, so to say, is a very important component of 

the food chain; the most important component of the food chain. And, in order to keep 

this cycle alive, we need to keep the, in order to keep the food chain alive, we need to 

keep this cycle alive. That is one of the important points. So, how do we keep this cycle 

alive? That is what we are going to look at.  
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So, let us look at the first, the case of two microorganisms, which are part of the prey-

predator model, in a way; one is E-coli and the other one is staphylococcus aureus. Now, 

experiments, if you do experiments with these systems, this is what you will see. So, let 

us see, this is my and this is, this is E-coli and let us see, this is staphylococcus aureus, 

and, this is staphylococcus aureus mixture; I will explain everything. This is the number 

of cells per unit volume; this is time; this, these two are E-coli and these two are 

staphylococcus aureus, aureus; the red line is for mixture, blue line is for alone, for E-

coli; similarly, black line is for alone, for staphylococcus aureus, and green line is for 

mixture. 

So, if you look at this curve, what is it that you find? What you find is that, when 

staphylococcus aureus is let, allowed to be, to grow alone, this is its growth rate, which is 

pretty high. Now, when you allow it to grow in a mixture with E-coli, its growth rate 

,decreases substantially. Now, look at E-coli; it is more or less the same, but, still, when 

you allow it to grow in mixture, it grows slightly faster than staphylococcus aureus. So, 

why does that happen? Let us try and understand why that happens. So, reason why it 

happens is because, E-coli over here, that you see, has a much higher growth rate than 

staphylococcus aureus, and the substrate that is available, it is available to both. So, E-

coli would eat up all the substrates, or much of the substrates that is available, and as a 

result, staphylococcus aureus cannot grow. So, this is the case, where the growth of one 

molecule, one microorganism, in this case E-coli, hampers the growth of the other one, 



staphylococcus aureus. So, these are interacting in that way. Now, what we want to study 

is, now what we need to do is, come up with a model of these kind of prey-predator 

model.  
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So, I want to give you another example. This is one example. The other example that I 

want to give you is, this protozoa versus a bacteria. So, cilates and this is a protozoa; its 

name is tetrahymena pyriformis and the bacteria is a aerogenous; this is the bacteria. 

And, the y, and the x, the y axis is essentially, number, number per unit volume; the x 

axis is time. So, we are trying to grow both of these together, in the same, same medium, 

let us say, and if I am to draw this one with black, the protozoa, if I am to draw this with 

black, this is how it looks like; goes up, down, up, down and up; if I am to draw the 

bacteria, this is how it looks like. So, this is, the green is this one and black is this one. 

So, what you notice over here? What you notice is that, whenever the protozoa is up, the 

concentration of the protozoa is up, the concentration of the bacteria is low; whenever 

the concentration of the bacteria is up, the concentration of the protozoa is low. So, they 

are going through a, some sort of a cycle, where, the concentration of these two together, 

is more or less a constant; but, each, when one is goes up, the other goes down; and, this 

is known as prey-predator oscillations. Why does this happen? Let us try and understand 

this qualitatively, why this happens. So, let us say that, the one is, the one is the prey and 

the other one is the predator. 



So, when the predator population goes up, it goes up because, it is consuming the prey. 

As a result, the prey population has to go down, when the predator population goes up. 

Now, what happens, as soon as the predator population, prey population goes down, 

there is less food for the predator now, and as a result, the predator starts to die. And, the 

predator reaches a point, when this predator starts to die, and decrease in number, the 

prey population goes up, because there is not enough predator that is eating up the prey, 

at this point of time. Now, when the prey population goes up, then, the predator 

population, predator starts to eat up the prey again, and then, it goes up again, and as a 

result of the eating up, the predator, prey population goes down and this cycle continues 

again and again. So, let us try and understand, you know, how to model this entire 

system.  
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So, the model that we talk about is known as the Lotka...The model was derived by these 

two scientists, Lotka-Volterra model. So, it is called the Lotka-Volterra model of prey 

predator oscillations. So, let us say, n 1 is the prey and n 2 is the predator. If I am to write 

a balance for n 1, a simple, ordinary, differential balance for n 1, so, I will write d d t of n 

1 equals a n 1; this is the growth of prey from the substrates that is here; could be a 

greens, or whatever it is eating; but remember, the prey growth is not dependant on the 

predator; prey is growing it, by itself, and the death of the prey; the only way, so, that is, 

that is with the negative sign; because this is the growth, so, there is the positive sign; the 

predator as I said, the death; so, that (( )) comes with the negative sign, and that is given 



by gamma some constant times n 1. Why n 1? Because, more the number of prey is, the 

possibility of more preys dying is, of course, more and therefore, it goes as n 1 times n 2. 

This one depends on the predator, why, because this is death from consumption by 

predator. Therefore, you have the growth here, and the death here, and so, this is the first, 

first part, that is the balance on the prey.  
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Now, if I am to do a balance on the predator, that would be d d t of n 2 equals, minus b n 

2, which is death of predator; why is it independent of the prey, because the death of the 

predator has nothing to do with the prey, in general; it has to do with the fact that, 

predators are dying naturally; plus, the birth of predator; remember, we had the death of 

the, death of, death of the prey, death of prey from consumption by predator. Now, the 

rate at which prey, prey is dying, should be similar, or proportional to the rate at which 

predator is growing, because, this food, the prey is, is being consumed and that food 

essentially gives rise to the predator; you know, that gives to the growth of the predator. 

So, this is, therefore, proportional to gamma times n n 1 n 2, which is the death rate; but, 

is it equal to the death rate? No, it is not equal. Let us multiply this by a, by a factor 

epsilon, because, not all the food that has been consumed by the predator goes in the 

formation of the predator itself. So, a part of it...So, epsilon is typically less than 1. So, 

growth of predator, through consumption of prey. 
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Now, if I look at these two equations together, probably, I will write them down, again, 

one after another, so that, it is easy. So, first one is d 1, d n 1 d t equals a n 1 minus 

gamma n 1 n 2, and the second one is d d t of n 2 equals minus b n 2 plus epsilon gamma 

n 1 n 2. So, if I look at these two equations, this is my model, prey predator model. If I 

look at these two equations together, what do I see? What I see is the fact that, I can get a 

steady state out of it. So, it is possible to have a steady state. So, if we equate the left 

hand side to 0, then, the first equation would give me n 2 equals a over gamma, a over 

gamma, that is it, n 2 s; and the second equation would give me n 1 s equals b over 

epsilon gamma. So, these are my steady states. Now, the next step that I want to do is, I 

want to convert this equation, these two equations, into dimensionless form, using these 

steady state values; or, in other words, this is called y 1 equals n 1 over n 1 s, and y 2 

equals n 2 over n 2 s. So, this is what I am going to do. 
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So, when I do that, the dimensionless equation that I get, is given by d y 1 d t equals a 1 

minus y 2 y 1 and d y 2 d t equals minus b 1 minus y 1 y 2. So, how do I solve these 

equations? If you look at these two equations, both are functions of time and each of 

them involves their couples. So, each of them are non-linear, coupled non-linear, coupled 

ODEs. Can I solve them as it is? The answer is, no, I cannot solve them as it is. But, I 

can solve them, in what is known as solution possible in phase space; so, not in this 

space of the variable t, not in the time domain, but, in the phase space, that is, y 1 versus 

y 2 space. So, y 1 versus y 2 space, that is where,the solution is possible. How do I, how 

do I do that? All I need to do is, divide the equation, let us say, if this is a and this is b, 

divide equation a over b, and you get, d y 1 d d y 2 equals a 1 minus y 2 y 1 divided by b 

y 1 minus 1 y 2. So, this is what I get. Now, can I solve this equation, the one that I have 

over here, that I have boxed out? The answer is, yes; simply by transposing the terms 

that contain y 1 to this side, and the terms that contain y 2 to the other side.  
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Let us do that and when we do that, I get b y 1 minus 1 over y 1 d y 1 equals a 1 minus y 

2 over y 2 d y 2. So, this is what I get, and so, I can go ahead and solve it. Let us do that. 

1 minus y, 1 over y 1 d y 1 equals a 1 over y 2 minus 1 d y 2. So, if I integrate this, on 

integration I get, b y 1 minus ln y 1 equals a ln y 2 minus y, plus c is the constant over 

here. Now, I can convert this into exponentials. So, y 1 to the power, y 1 over e to the 

power e y 1. So, this comes here, and this is, this becomes e to the power e y 1 whole to 

the power b, times y 2 over e to the power y 2 whole to the power a, equals e to the 

power c. So, this is my, this is my, this is my solution of this equation, that solution in 

phase space. So, it is possible to solve this, but, it is only possible to solve this in the 

phase space. So, when I solve this, you know, I get this equation and solve this in the 

phase space, what kind of plot do I get in the phase space? I can convert this back into 

my dimensional form, because y 1 and y 2, I know them, how they vary in the 

dimensional system.  
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So, simply write n 1 over n 1 s divided by e to the power n 1 over n 1 s whole to the 

power b, and this is n 2 over n 2 s divided by e to the power n 2 over n 2 s whole to the 

power a, equals e to the power c. So, what is the plot in the phase space? How, how does 

the plot look? This is how it looks; let us draw this. This is the phase space remember. 

So, there is no time here; one axis is n 2 and the other axis is n 1. So, let us watch the, let 

us say, this is my centre; this is my centre and this is n 2 s, so, centre is, or the point, 

steady state; so, n 2 s and n 1 s. So, this is my, this is my steady state. Now, how would 

the plot look? The plot would look something like this. What are these? These are the 

sort of limit cycles, you know. So, they are going in cycles again and again, and if I am 

to go back to one of the earlier plots over here, the prey-predator oscillation, see, this was 

how it looked in the variable space; if I am to plot n 1 and n 2 over time, this is how it 

look, it would look like; and, if I am to plot them against each other, so, look at this. 

What happens is, when this is maximum, this is minimum, or, in other words, if you look 

at it from the phase space, this is how it would look. So, this is large, if this, if this is, this 

is, n 2 is large, n 1 is small; or, if n 2 is large, here, it could be large, but, if this is, this is 

a part that it forms, a part of the limit cycle. So, it goes on and on, in limit cycles. Now, 

so, this is a circular thing in a phase space that happens.  

Now, what I have to figure out is this. Is this thing that you are looking at here, is it 

stable? Is it stable? And, that is a very important question that we need to answer. Why 

do we need to look at the stability of prey-predator models in the phase space? The 



reason we need to look at the stability of prey-predator model is just because, as I said 

that, we want the food chain to be stable; if the prey-predator model falls apart, then, the 

whole ecosystem will fall apart. The food chain is a natural way the, that has, through 

evolution, that has happened, to preserve the ecosystem as it exists today. Now, if the 

food chain falls apart, then, there is, there is a problem, and this is not just confined to 

bacteria and microorganism that we are dealing with, but also with the general food 

chain, and that is why, I gave this examples of the carnivores and the herbivores and the 

greens, to start with. So, what, what is necessary? It is necessary that, this dynamic 

steady state that is, that is produced, is sort of stable. 

I mean, the reason I call it a dynamic steady state is that, you see, it goes through the 

cycles. If it is, it is a very oxymoronic way of calling it the dynamic steady state; but still, 

I mean, you have a steady state, but, the dynamics of it goes around the steady state just 

as I showed; you have the steady state at the centre, and the, and the cycles go around it. 

So, the dynamics of it, in the phase space at least, go around it. And, that is why, there is 

a periodicity involved. We talked about the, how the wave formed, you know. I showed 

you the wave form of the prey and the predators. So, there is a periodicity involved, and 

there is...So, it is, you can, sort of, call it like a periodic steady state, or a dynamic steady 

state. Now, we need to understand, whether this dynamics that is there, the dynamic 

steady state, or periodic steady state, that is obtained, is it stable or not; because, if it is 

unstable, then, the whole food chain will collapse; not just because of the 

microorganisms thing, but, in general, and we are in trouble. 

So, we have to look at and investigate the stability of this system. We have looked at 

stability of problems, you know, we have looked in great detail about stability of 

reactors, and what is that we are going to, we had done step by step. So, you can go back 

and look at those lectures. I will quickly summarize. What you need to do is, when you 

take, look at the stability of a dynamic state, essentially, you need to take the dynamic 

equation, linearise it, get the Jacobean and then, look at the Eigen values of the Jacobean. 

So, what was the necessary condition for the system to be stable? That the Eigen values 

have to have a negative real part. So, what were the different, different points we looked 

at, and you know, different, different cases we looked at; one, when the Eigen value had 

a positive real part, and an, and a negative imaginary part, or a imaginary part as such. 

So, the system will be unstable, and it will have oscillation. The other possibility is that, 



the system will have a negative real part, and an imaginary part, in which case, it will 

have oscillations, but, it will be stable. 

And then, you can have a 0 real part and an imaginary part, in which case, it will be 

neutrally stable, but, it will have oscillation. You can have a real part, a positive real part, 

with no imaginary part, in which case, it is completely unstable and you can have, with 

no oscillations; and then, you can have a negative real part, with a 0 imaginary part, in 

which case, it is going to be stable and without oscillations. And, you can have a 0 real 

part and a 0 imaginary part, in which case, it is going to be neutrally stable, with no 

oscillations. Now, as you can almost predict in this case that, what is going to happen? Is 

it going to have a real part, positive or negative? We have to figure out, but, what about 

the imaginary part? You can almost predict in this case that, the imaginary part is going 

to be there. Why is that because, just as I showed you, the case, you know, the diagram 

over here, the prey-predator model here, as you can see, it goes through these 

oscillations. So, there is no way it can go through these oscillations, unless the imaginary 

part is there. So, there has to be an imaginary part, that we can almost predict. What we 

have to figure out, is the real part, positive or negative; or, is the real part 0? So, at long, 

you know, when we look it at long time, are these oscillations, they are going to be there; 

but, are these oscillations going to slowly decrease in amplitude and, and then, you 

know, become stable, the system is going to become stable? So, that is what we need to 

look at. So, for that, what we need to have is that, we need to go back to the system of 

equation. So, this is my system of equation, and this is equation 1; let us call this f 1 and 

this is f 2. What we need to look at is, we need to look at the Jacobean.  
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So, if you have forgotten, I will recap how the Jacobean is. So, A is a Jacobean that 

equals del f 1 del y 1 del f 2 del y 2 del f 1 del f 1, sorry, del del y 2 del f 2 del y 1 and 

del f 2 del y 2. So, this is my Jacobean; I will write it one more time. 
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So, A equals Jacobean equals del f 1 del y 1 del f 1 del y 2 del f 2 del y 1 del f 2 del y 2. 

Now, for our case, which is this, these are my f 1, f 2; I need to find what my Jacobeans 

are. So, let us go ahead and do this now.  
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So, A would be, the first term is del f 1, del f 1 del y 1 and that is simply a times, a times 

1 minus y 2; then, next term is minus...So, the, which is, del f 1 and del y 2, which is 

minus a y 1. Now, del f 2 del f del y 1, that is, b y 2 and del f 2 del y 2 is minus b 1 

minus y 1. Now, I have to find out, what my Eigen values are. What, how do I find that 

out? I have to, first, I have to calculate the determinant of A minus lambda I and equate 

that to 0; this will give me my characteristic equation for Eigen values. 
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So, let us form the characteristic equation first. So, A minus lambda I would be equal to 



a 1 minus y 2 minus lambda, minus a y 1, b y 2, b y 1 minus 1 minus lambda. And, the 

determinant of A minus lambda I equals, minus, equals lambda minus a, 1 minus y 2, 

times b 1 minus y 1 plus lambda, plus a b y 1 y 2, equals 0. So, the next step is lambda 

minus a 1 minus y 2, lambda plus b 1 minus y 1, plus a b y 1 y 2 equals 0. 
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Now, so, the characteristic equation is formed as lambda square, minus a 1 minus y 2 

lambda, plus b 1 minus y 1 lambda, minus a b 1 minus y 2 1 minus y 1, plus a b y 1 y 2 

equals 0; that is my characteristic equation. When I simplify it, I get lambda squared, 

minus a 1 minus y 2 lambda, plus b 1 minus y 1 lambda, minus a b 1 minus y 1 minus y 

2, equals 0. Now, I have to evaluate the lambdas at the steady state. So, steady state in 

my case means, y 1 s equals y 2 s equals 1. Why, because, y 1 was defined as n 1 over n 

1 s and y 2 was defined as n 2 over n 2 s, right. So, obviously, at steady state, these 

values are going to be 1. So, if I put 1 over here, this term, this term vanishes, this term 

vanishes, and what I have is, lambda squared, plus a b equal 0; or, in other words, 

lambda equals i imaginary times a b. So, this is my answer, you know, plus minus, sorry. 

So, this is, this is my answer. This is what I find that, plus minus. So, two values of 

lambda that I get are, plus and minus i; this is a conjugate roots, i square root of a b. 
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Which means that, the real part of lambda, which means that, the real part of lambda 

equals 0, and imaginary part of lambda equals plus minus square root of a b; which 

means what, that the system...So, if real part of lambda is 0 and imaginary part of lambda 

equals plus minus square root of a b, this means what? This means that, the system is 

neutrally stable, stable, with oscillations. So, the oscillations part, we had already seen, 

known and we had sort of predicted. And, what we find over here, the new thing that we 

find over here is that, the system is neutrally stable, if not asymptotically stable; it is not 

unstable, but, it is neutrally stable. So, it just remains as it is, and that is why, the pictures 

that we drew over here, this one, for example, and this one, this one. So, this one, these 

oscillations will continue and in the phase space also, it will keep going on in these 

circles. 
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Now, you can ask me, what are these different circles about? Why do you have so many 

different circles? It depends on initial condition. Remember, these are dynamic 

equations, we are solving. So, for one certain initial condition, will be on this trajectory; 

another set, it could be somewhere here, and, and if you keep changing the initial 

condition, you could go further away from the steady state; but remember, these are 

dynamic systems, so, they would all depend on the initial condition. So, these circles are 

for a particular initial condition; but, for a given initial condition, the system will 

continue grow, growing on this cycle forever; it is not going to come in and you know, it 

is not going to happen that, it is going to come in like this; that is not going to happen; it 

is going to go in, on and on, on these cycles; the reason being that, the real part being 0, 

the system being neutrally stable. Now, what we are going to do next is, competition and 

selection. So, we are looking at competition here also, but, this is remember, we, what 

we did here, over here, is the prey-predator model, in general; but, our interest is 

essentially, the chemostat.  
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So, what we are going to do next is, and very quickly is, competition and selection in a 

chemostat with limited substrate; substrate is not unlimited. So, it is a limited substrate. 

So, what does it mean? What does it mean, when I say that substrate is limited? What it 

means is that, in addition to the prey and the predator, I need to write a balance now, for 

the substrate which will do. So, let us say, one is the prey and the other one is the 

predator and one again is the prey and two is predator before. So, ds dt which is the 

substrate, is, if you remember, we wrote this chemostat equation before dilution rate D 

times S 0, the initial amount of the substrate present, minus S minus 1 over Y S mu S S 

times n 1. So, mu S is the specific growth rate of n 1. So, what is happening, substrate is, 

substrate is coming in and going out and the prey here, which is exactly, now, I gave you 

the example of the herbivores and carnivores and the greens. So, think of the substrates 

as the greens and the prey is eating on the substrate and growing. As a result, the 

substrate is being depleted and this is leading to the growth of this, of the prey. So, the 

prey n 1 is growing; this is, this is proportional to the growth rate, the consumption on 

the substrate and because of this growth process, the substrate is being consumed. And, 

how much is the substrate being consumed? That depends on the specific growth rates. 

So, larger is mu, more substrate is being consumed. So, larger is mu, more substrate is 

being consumed over here, is that clear. 

So, the next thing that we do over here is, write the balance for the prey. So, this is the 

substrate and this is the prey. So, that equals minus D n 1; this is entering the system 



because of the, you know, because dilution rate; or, in other words, the entry of the, and 

exiting the system and entry. So, essentially, this is essentially the exit term, plus mu S 

times of function, as a function of S times n 1. So, this is the growth of the predator, prey 

from the substrate; it is eating on the substrate and growing and this is the growth rate. 

And, that is why, it comes with the plus sign. This one comes with the negative sign, 

because it is exiting the system. And then, you have minus 1 over Y p mu p n 1 times n 

2. What is this? This is, comes with the negative sign, I will put the negative sign here, 

actually; this comes with the negative sign, which means that, this is the, not the growth, 

not the birth, but, the death of the prey. And, this is happening because, the predator n 2 

is eating on the prey. And, at what rate it is eating on the prey? At the specific rate. This 

is not a growth rate anymore; it is like a death rate; but, you people can still call it as 

growth rate, just mu p as a function of n 1 and Y p is the, you know, selectivity ratio. 

And then, we have to write the model for the predator. I can, I hope you can see it here; 

this is the model for the predator. 

Let me write this in green. So, d n 2 d t equals minus D n 2. That is, why is there no 

entrance? See, for the substrates, there is a entry term, D S 0; but, for the prey and the 

predator, there is no entry term, because no prey, or no predator is entering the system; 

only the substrate is entering and it is growing; prey and predator is, are growing and this 

is given by plus mu p n 1, mu p as a function of n 1 times n 2. So, the, these, this is the 

overall model that we have. Now, what we need to compute in the next few minutes, is 

the steady states. 
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So, there are three steady states for the system. Steady state 1 is n 2 s, if you go and solve 

it, you will find this, you know and the solution is not very difficult, equals 0, n 1 s 

equals 0, and S equals S 0. Steady state 2 is n 2 s equals 0, D equals mu S of S and which 

means that, D and mu S of S is given as mu X max times S over K s plus S and mu p of n 

1 is given as mu p max n 1 divided by K p plus n 1. So, this is one.  
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So, from this, you get steady state, I am still on steady state 2. So, this gives you mu d s 

as, this gives you S S as K S D over mu S max minus D and n 1 s equals S 0 minus S S 



times Y S and let me write steady state 3 quickly.  
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Steady state 3 is, what I get, n 1 s equals K p D mu max minus D and n 2 s equals n 1 s Y 

p mu S S minus D over D, and S itself comes out to be minus B, plus, there is plus 

minus, but, I will take only one of the roots, because the other root does not make sense; 

4 S 0 K S, this is half, where B equals 1 over Y S times D times K S minus S 0 plus mu 

max n 1 s. So, it is a little complicated solution, the steady state 3; steady state 1 and 2 

are very easy. Now, what you can do is, as we did in the previous case is, go and look at 

the stability of these steady states. How do you do that? You just form the Jacobean like 

we did before, and you have a 3 by 3 Jacobean, and you figure out how, how the Eigen 

values look like. And, the positive, if it is a positive real part, then, you know that, the 

Eigen values are, the system is unstable; if it is a negative real part, then, you know that, 

the system is stable; if it is 0, like we had had before, then, you know more or less that, 

the system is neutrally stable. 

So, this sort of concludes what we are trying to do over here, but, what I will do in the 

next couple of minutes is, just run through what we had done in the previous, you know, 

lectures, you know, in all these 24 lectures put together, that we had been doing. So, we 

started with, initially there was a introduction given on the fundamentals of biology, and 

so on and then, to enzymes, and we started with the biochemistry and thermodynamics of 

enzymes; we looked at different kinds of inhibitions, competitive, non-competitive, 



substrate inhibition, different kinds of inhibition; we looked at the effects of pH and 

temperature; and then, we moved on to immobilized enzymes. So, in mobilized enzymes, 

there were no mass transfer effects, and we moved on to immobilized enzymes; and in 

immobilized enzymes, we found that, there was mass transfer effects that were there; you 

know that, that would, that would hampering the growth of the, or the reaction kinetics 

of the enzymes; and so, we looked at the effect of mass transfer in immobilized enzymes 

and, and the effective of factor in immobilized enzymes. And, we looked at how kinetics 

is being, is being hampered; or, in other words, how the reaction rate is been decreased, 

because of the presence of immobilized enzymes, enzymes and the mass transfer rates 

there. And then, the next thing we looked at was microbial growth, the different phases 

of microbial growth, the model for microbial growth, and effects of mass transfer on 

microbial growth and so on. And, we also looked at the effects of multiple substrates and 

inhibition. And, today’s lecture, we looked at the effects of, not just multiple, not 

multiple substrate, but, multiple microorganisms and the interaction between them. And, 

there is a continuity between what we did, and then, we looked at bioreactors and, and 

design of bioreactors and stability of bioreactors, and just today also we did. 

We looked at what happens, when not just...So, we had looked before, at what happens 

when a microorganism grows in the bioreactor and the stability of the growth process. 

Today, we looked at the stability of interacting growth processes. So, two 

microorganisms are, are, are growing together; then, how does its interaction relate to the 

growth process? Does it hamper the growth of one? Does it accelerate the growth of the 

other? And, so on. Then, we moved, had moved on to different area altogether, and 

looked at receptor ligand binding; we had looked at, in great details, of the kinetics of 

receptor ligand binding. We had looked at a particular disease called familial 

hypercholesterolemia and we had tried and, tried to understand, how the receptor ligand 

binding, the kinetics of this, it influences this disease. And, we had studied in significant 

detail, the process of receptor mediator endocytosis, which is a very fundamental and 

important process in many, many, many physiological systems, and it and ligand 

receptor binding, plays a very important role. 

So, this is what we have been doing in a very, sort of a quantitative approach, this part of 

the course. Another part of the course deals with the more qualitative approach. I hope 

you enjoyed the process and had learnt something in the entire process of, you know, 



how to deal with biochemistry and biology, and bring in a chemical engineering 

perspective of transport and reaction into it, and make it more quantitative than we 

typically do. So, thank you. 


