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Continuation of what we are doing on receptor Ligand binding in the last lecture. So, 

what we looked at in the last lecture was a case of receptor binding to a Ligand. So, I 

talked about the receptor being on the cell surface, a part of it inside the cell surface cell 

you know in the cytoplasm a part of it outside the cytoplasm the Ligand comes and 

swims in you know binds to the receptors. So, then we looked at the kinetics of receptor 

Ligand binding and we looked at the simplest possible kinetics which is the case of R 

plus R receptor binding to the Ligand directly R plus L giving R l. So, and then we talked 

about free free receptors and total number of receptors and free receptors in the 

complexes form. 

So, today what we will do is, we will look at other kinds of kinetics. So, this is a 

simplified kinetics that may or may not occur all the time. But in a realistic situation you 

can have other kinds of kinetics coming in. Before we do that let us very quickly go 

through what we did in the last class because I hurried a little bit towards the end of the 

lecture.  
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So, this is a kinetics that we looked at L plus R giving C complex and then the complex 

will then you know, that is that is what is the required over here and K 1 and K minus 1 

being the forward and the backward grade constant for the system and this is how we 

wrote the kinetic equation, the basic balance equation for the complex D. So, d C dt of C 

equals a forward reaction K 1 times C R times C L minus K minus 1 C C if you 

remember it. 

Now, what we said that we do not want to express this in terms of concentration. We 

want to express this in terms of numbers. So, N R being the number of receptors, N C 

being the number of complexes so, free receptors is N R, N C being the number of 

complexes and N R T is the total number of receptors which includes both the complex 

and the free receptors. 
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So, then we said that how do we convert these concentrations into numbers. So, Ligand 

is obviously, in a concentration because it is in the liquid form, but we found out a way 

of converting this to numbers because the total amount of Ligand C L naught equals the 

amount of Ligand that is present right now plus the amount of Ligand that is reacted with 

the receptor to form the complex. 

So, that is given. The concentration of that is given by n times N C over N A. N being the 

number of cells per unit volume. So, if N C is the number of complexes per cell then N N 

and N is the number of cells per unit volume then N times N C would be the number of 

complexes per unit volume. That you divide by the Avogadro number to give the get the 

molar concentration of the complex that is formed. And so, therefore, that you. So, the C 

L that you have the concentration of the Ligand is initial concentration minus this value 

or in other words initial concentration is current value plus whatever current free Ligand 

plus whatever has formed complexes correct. So, then we can substitute it back.  



(Refer Slide Time: 03:11) 

 

So, now, we can have this entire equation almost as a, in the form of a number right. And 

then we said that we can go ahead and solve it we can go ahead and solve this also as 

you as you can see over here this is a second order equation in N C. And this could be 

solved is in partial fractions, but we meant we wanted to wanted our life little simpler 

and we made a simplifying assumption which is that C L naught is much, much larger 

than this. So, this could be taken as a constant and it becomes a first order equation. So, 

we had this first order equation over here and then N C naught, we assumed N C naught 

to be 0. So, we had exponential part and then we figured out how to evaluate the half 

time and this is the plot and so on. 
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So, I just want to do the last part, bit yes I think this is where I was little fast. So, N C is 

the you know, so, if N C naught is 0 then you have the exponential variation and we 

figured out how to evaluate these constants. 
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Now, the thing that I want to talk about is this one the last thing I did which is a 

Scatchard plot. So, scatchard plot is essentially a steady state diagram. So, for example, 

here when you are plotting this, this is this is your basic expression the one in the box. 



Now, when you are plotting this over here you are doing an unsteady state plot, but this 

scatchard plot is the steady state version of it. 

So, steady state means this expression with time going to infinity. So, the steady state 

would be N C would be N R T C L naught over K D plus C L naught. And that is a very 

important number for us or a important expression for us because it is easy to measure 

because you know, it is always harder to measure dynamic dynamics of a process 

because we have to keep measuring at every time instant at every time interval whereas, 

for steady state you can let it happen as far as long as you want and then you can 

measure it. So, this so, this steady state is easier to measure and that is why it is 

important in our calculations and you will see that this is what we used mostly. So, N C 

A steady state would be N R T C L naught K D plus C L naught clear? So, that is what 

we do when we plot in the do a scatchard plot. 

So, this is what we start with. So, this is the N C max this is what we call N C max. 

Why? Because that is the maximum as you can see over the from the plot over here. That 

is the maximum value of N C that is attainable. So, the maximum value is attained at 

steady state. So, we call this steady N C max and that is given as N N R T C L naught 

over K D plus C L naught. This I can rearrange you know dividing the both sides by C L 

naught, I can rearrange this as N C max over C L naught equals N R T over K D minus N 

C max over K D. And this I can plot because easily because I can measure N C max. So, 

I can what I do is I vary in my C L naught. That is the Ligand concentration I use 

different Ligand concentrations. Let it happen for as long as it happens. Then take this 

steady state, measure my N C max. How will I measure? Because I told you the other 

day that we will label these Ligands. So, we label Ligands. We will limit fluorescence or 

something some kind of labeling if it is a fluorescence some kind of labeling then, we 

can measure the complexes straight away. 

So, at steady state we measure how much complexes have been formed and we plot this 

N C over C L naught versus N C. We plot this and then we can get the rate constant. The 

rate constants K D as well as N R T fine from the slope and the intercept. So, the slope 

will give you minus 1 over K D. The intercept will give you N R T over K d. So, you can 

evaluate both N R T and K D fine. This is known as the scatchard plot and it is a very 

important plot because we will keep referring to this. What I want to mention to you is 

that scatchard plots can come in different ways you know. I think I gave you the 



assignment also where you had to plot the scatchard plot. So, scatchard plot in come can 

come in various ways. The only thing that is common or unifying between these different 

ways is this scatchard plot appears appears a is the fact that these are steady state plots 

steady state plots of complex versus Ligand in some form. 

So, you can keep varying the form of this scatchard plot, but it still remains a scatchard 

plot you know as long as the complex versus the Ligand is in one axis it is you have the 

complex and the other axis you have the Ligand fine. So, this is I think the problem that I 

gave you and I hope you did that. So, today we start something. So, this was all these 

analysis that we did was for the case where we assumed simple reaction kinetics R plus L 

giving a complex and we assumed that it is a second order in the forward direction of 

first order in the backward direction. Now, that may not be the case all the time. So, that 

is what we are going to look at. So, as you see on the screen what this this is called 

deviations from bimolecular kinetics.  
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So, what we had looked at till now is bimolecular kinetics so, deviations from simple 

bimolecular kinetics. So, R plus L giving C is the biomolecular kinetics and this is if I 

am doing a scatchard plot again this is a scatchard plot. So, N C over C L naught versus 

N C. So, this is scatchard plot and this scatchard plot is something like linear. Just as you 

we plotted it here right this is this is the linear scatchard plot because N C over C L 

naught versus N c. So, this linear this line in the middle that you see corresponds to the 



corresponds to the bimolecular kinetics. Now, this line below is this curved line and the 

line above this corresponds to deviation from the bimolecular kinetics. So, it does not 

have to be necessarily bimolecular and what we will do in today’s lecture, we will study 

that why could it does it not have to be necessarily bimolecular? If it is not bimolecular 

what is the options how does it react? And try and understand this and this is known as 

cooperativity. Positive cooperativity and negative cooperativity and in earlier course you 

know we had studied this if you remember that oxygen plus hemoglobin you know.  
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So, this was the reaction that we studied oxygen plus hemoglobin is H b O 2 in one of 

the earlier cases and what we figured is that 1 can assume it to be 4 O 2 plus H b 4 

because hemoglobin comes as a molecular for H b 4 O 8 K 1 K minus 1. So, this is very 

important physiological reaction. As you all know the reaction between oxygen and 

hemoglobin and that is how oxygen is carried into our blood through oxyhemoglobin and 

this is the formation of the oxyhemoglobin. So, this is what is written standard. This is a 

variation on that. this is the variation on that. So, this is a standard bimolecular form. 

This is bimolecular. standard bimolecular form. 

So, this is assumed that one molecule of oxygen reacts with one molecule of hemoglobin 

that that was the assumption. But then later it was found out that these hemoglobin 

molecules remain in cluster of four. So, therefore, one molecule of oxygen cannot react 

with the cluster of four. It has to be four molecules of oxygen reacting with the cluster of 



four. So, the bimolecular form is no longer preserved over here. So, it is one molecule of 

haemoglobin reacting with four molecules of oxygen essentially. 

But in reality, this is also a hypothesis. In reality what happens is that, when you write 

the oxygen hemoglobin equation you find that if I am to write it in a certain way say for 

example, S o 2 that is the saturation of oxygen it turns out it goes as O 2 to the power N 

divided by this O 2 to the power N something like this. So, where N equals 2 point 1 or 2 

point 3 or 2 point 3 4 something like that which means that it is neither it is neither 4 

molecules nor 1 molecule, but some fractional molecule reacting with hemoglobin which 

what does it mean? What does it implies that that the fractional molecule 2 point 3 4 

molecules of oxygen are reacting with hemoglobin? Of course not. What it means is that, 

there is co-operativity between the molecules. Co-operativity means that the affinity 

towards. 

So, first say for example, so, you have the hemoglobin which consists of four 4 4 of 

molecules and you have together cluster of it and you have one oxygen combining with 

the first hemoglobin molecule. What follows is after that, there is a certain change of 

affinity of that process of the of the system which means that the second oxygen 

molecule may not be attracted towards the second hemoglobin molecule as much as the 

first one was or may be more attractive. Whatever is the case. In most cases this is less 

attracted or more more attractive whatever is the case, but the point I am trying to make 

over here is that there is a change in the affinity. 

So, for the first molecule, it reacts as if it is simple bimolecular. The second molecule in 

in the presence of the first reaction having occurred does not react any further as if it is 

simple biomolecular. There is an alteration in the thermodynamics of the process. There 

is the alteration in the basic which leads to the alteration in the basic kinetics of the 

process. 

So, this is known as co-operativity that having one of them having reacted in the vicinity 

if you have gone to have the second reaction. The second reaction may be more favoured 

or less favoured. And they form, that you come up with the concept of the positive 

cooperativity or negative cooperativity. Positive cooperativity means there is a positive 

that is a more favoured effect. So, positive co-operation between the groups of molecule. 



So, the presence of the first group for the first complex actually facilitates the formation 

of the second complex. Negative cooperativity means the presence of the first complex 

actually retards the formation of the second complex. So, this is the concept of co-

operativity is that clear? I think for many of you it might be a new concept, but the point 

fact of the matter I am trying to you know trying to convey over here is simple. It is that 

you have for most cases we assume a simple bimolecular kinetics. But, when clusters of 

molecule react with each other then simple bimolecular kinetics is no longer preserved, 

not necessarily preserved. You can have the first reaction the first set of reactions 

favouring or hindering the second reactions. 

Similarly, once two clusters, two 2 reactions have occurred for example, in the case of 

haemoglobin once two reactions have occurred, the second set, third set of reactions may 

be favoured or hindered. So, depending on that you can have positive cooperativity or 

negative cooperativity. And if I go back to this screen now you will see that this is the 

case. So, central line in the middle this is the scatchard plot again N C over C L naught 

versus N C. This is the case where there is just normal bimolecular b m represents 

bimolecular reversible R e v b m binding reversible bimolecular binding.  

So, this is the case, but simple bimolecular binding is there. This is the case where 

positive cooperativity is there. K D K K D is the dissociation rate constant. So, if I go 

with I think K minus 1 let us see I think yeah K minus 1 over K 1 is a dissociation rate 

constant the dissociate not the rate constant the equilibrium rate constant, dissociation 

equilibrium rate constant. 

So, positive cooperativity as you will, as you as I just as I showed you for the case of 

hemoglobin is what did I say that positive cooperativity means that the second reaction is 

more favoured than the first reaction. The third reaction is more favoured by then the 

second and so on. So, for earlier formations actually favour the later ones fine which 

means that the K D apparent the dissociation rate constant apparent dissociation rate 

constant is less than the bimolecular rate constant. Is that clear? Because if the 

dissociation dissociation dissociation is what backward or forward?  

So, if the backward rate constant is actually lower than the than the previous case then, it 

means that dissociation is less favoured and association is favoured. That is formation is 

favoured you know binding is favoured. So, this reaction oxygen plus hemoglobin over 



here is is pushed in the forward direction more for the second case. So, the third case it 

would be even more pushed in the even more forward direction. So, I gave you this 

example of hemoglobin to explain this. So, how these four molecules bind one after 

another is it clear. So, that is the concept of positive cooperativity.  

So, positive cooperativity means that, the dissociation rate constant, apparent 

dissociation rate constant is less than the bimolecular dissociation rate constant. 

Similarly, you can have negative co-operativity and I will, we will have examples here 

itself where the apparent dissociation rate constant is greater than the bimolecular rate 

constant which or in other words it means that the dissociation is being favoured. Now, 

dissociation is being favoured, the association is being less favoured.  

So, this is this is what we have the negative cooperativity. So, what we want to study is 

that as I said that what we did in the last class was a simplistic case, a simplistic case of 

simple bimolecular kinetics. And if you have a simple bimolecular kinetics as I showed 

that the slope of this is simply going to be minus 1 over K D and the intercept is going to 

be N R T over K D. And you can evaluate K D O and N R t, but if it is if it is positive 

cooperativity or negative cooperativity then what happens? These slopes are these are 

convex or concave in shape and then you cannot make such simplistic or straight forward 

calculations from the slope. 

So, you have difficulty in figuring out what the apparent, even the apparent the K D 

apparent that you have is. So, what we will try to understand is how these what is the real 

chemistry behind this question of co-operativity, how does it happen? and and try and 

understand and quantify these phases.  
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So, we will look at each of these cases slowly. So, the first case is Ligand depletion and I 

already talked about this in the previous class. What did we talk about in the Ligand 

depletion case? What is that? You assumed that the Ligand is present in present enough 

yeah that is present in excess, but that is not necessarily true. The Ligand is obviously, 

going to be depleted unless you have lot of Ligands. So, in real cases the Ligand 

depletion can occur. So, that is case A. 

So, that can lead to this kind of deviations from simple bimolecular kinetics right. The 

second possibility is that the multiple receptor populations of different affinity. So, which 

means that, the same Ligand can bind to multiple receptor. You can have 2 kinds of 

receptors 2 populations of receptors; R 1 and R 2 and the same Ligand can bind to these 

multiple receptors. So, in which case there is; obviously, a deviation from the simple 

bimolecule still might be bimolecular, but each of these might be same bimolecular, but 

the simple one Ligand one receptor bimolecular kinetics is no longer there. The third 

case is multivalent Ligand binding which means that earlier we had one Ligand binding 

to one receptor one Ligand molecule you can have more than one Ligand molecule 

binding to one receptor molecule.  

So, that is the third possibility and the fourth possibility is receptor aggregation. So, in 

receptor aggregation what you have is receptors themselves can aggregate in form of 

complex before they bind with the Ligand. So, receptors may form complex with each 



other before binding to the Ligand. So, as you see over here an example is given. So, two 

receptors R and R they bind to form RR and then they react with the Ligand L to form 

LL LRRL and then they again react to find another Ligand L to form LRRL. So, what. 

So, this is exactly similar to the hemoglobin thing you know. So, hemoglobin 

hemoglobin what happens is essentially if I can write this or if I have to do this four 4 of 

them.  
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So, this is how it happens. H b 4 O 2 then, H b 4 O 2 reacts with O 2 again this is exactly 

that that thing. So, it is like a Ligand aggregation thing or receptor aggregation thing is O 

4 then H b 4 O 4 plus O 2. So, this is how it happens. So, you have the, say let us say this 

is the receptor for your case. So, you have four of those receptors aggregated together 

and the Ligand come one by one and bind to them.  

So, this is receptor aggregation. So, so go back to the screen. So, this is this is what you 

have. So, these receptors have aggregated and it does not have to be two. I gave you an 

example of two. It could be three receptors, four receptors here. For haemoglobin you 

can imagine the four receptors being aggregated. So, four receptors may be aggregated 

then the Ligand will come one by one and bind and finally, we will still have the one 

receptor for one Ligand. 

So you will have R N L N that kind of molecule. So, the molecule formed over here is R 

N L N where N equals two, but you can have N equals 3 4 and so on. But the point that I 



am trying to make is that when you have these kinds of in terms of molar ratio you can 

still have the one is to L ratio of R N L. In the final thing, but the kinetics changes 

whenever you do something like this. This kind of aggregation occurs the kinetics is no 

longer simple bimolecular kinetics. So, that is the thing that I am trying to convey you 

over here. So, let us look. So, what we will do is we will you had these four different 

cases. 
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So, I will try to look 1 by 1 at all the cases and I might leave out some and which might 

give give an assignment. So, the first case I gave was, talked about was the Ligand 

depletion. So, let us assume that Ligand depletion does not occur we and does occur. So, 

we had an initially assumed that Ligand depletion does not occur or what how did it help 

us not assuming that Ligand depletion occurs. 

Reduce the order of (( )). 

Reduce the order of kinetics from second order to first order easier for us to solve now 

what will happen? It is very straight forward. We will simply have a second order 

kinetics if I go back to the screen. So, my earlier assumption was that C L equals C L 

naught because this term was very valid, very small and this is no longer valid. So, what 

I do over here is let us go back to the equation otherwise you will not remember here 

sorry here this is this is my equation after I had I had converted all the concentration into 

numbers.  



So, this is the equation I have. So, what I want to do to this equation; I want you to you 

know do this on your copy, may be you write down this equation and unless you do this 

quick you would not be able to follow what I am trying to say. So, write this equation for 

and D d T of N C equals K 1 N R T minus N C times C L naught minus N over N a N C 

minus K minus 1 N C done. 

So, So, this becomes the second second order if C L naught if I do not make any 

assumption. But before that I want to make want you to make this dimensionless and this 

is something that we need later. So, now, I want to make this dimensionless using these 

dimensionless groups which is, u equals N C over N R T. Tau equals K inverse T K K 

minus 1 T K minus 1 is first order rate constant. So, the tau is dimensionless. Eta is N R 

T over N A C N n N R T over N a C L naught or n N R T over N a because that has the 

units of concentration right. N N R T, N is number of receptors per unit sorry N R T is 

number of receptors per unit cell N is number of number of cells per unit volume. So, N 

times N R T would be number of receptors per unit volume that divided by Avogadro 

number would be molar, molar concentration. 

So, that you divide by C L naught it is dimensionless and alpha is C L naught over K D. 

Is that dimensionless, C L naught over K D? Yes that is because K D has K is K minus 1 

over K 1 K k minus 1 has units of inverse time and K 1 has units of inverse concentration 

inverse time. So, K D has units of concentration fine. So, what you what do you get if 

you put that? If you, so, what I want you to do now is, put these dimensionless constants 

in to your equation the equation four that you wrote. 
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Equation 4 was so, then u equals (( )) naught over K d. So, this is N R T del u del tau N 

R T over K minus 1 equals K 1 N R T 1 minus u and C L naught minus K minus 1 times 

N R T times u. Then it should be alpha K naught K D. Then, if I cancel if I cancel N R T 

K minus 1 all through equation. 
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Then you will get del u del tau equals 1 minus u u (( )) alpha K. Alpha will come in the 

outside here if we checked it. So, you have K 1 N R T is this what I is this right or is 

there some term missing here? 



(( )) will be K minus. 

Which one? This one? This side. 

Yes sir. 

Into K minus 1. No yeah that is why it will come in the denominator then and then you'll 

have K D over here from that yeah into K minus 1 and this is correct right alpha alpha D 

over this. So, basically what I have to do is I have to actually it might be it might be 

better to just keep this as C L naught instead of alpha D and then divide the whole thing 

by C L naught yeah. So, so then I think you will get alpha yeah because. So, you divide 

the whole equation everything by both sides by K minus 1 N R T C L C L K minus 1 N 

R t. So, this side it will cancel out you’ll get K minus 1 N R T over here. So, let me do 

that. So, you’ll get del del u del tau equals K 1 K 1 over K minus 1 which is 1 over K D 

into 1 minus u and this is C L naught minus N n R T C L naught I can take out. So, this 

will have 1 minus eta times u right minus u fine. 

So, and this will give me alpha. So, this is 1 minus u times 1 minus eta u times alpha 

minus u all right. So, then you will have. So, this is the basic equation and I now need to 

solve. So, what is going to be my initial boundary conditions and so, on initial or 

boundary condition whatever it is. So, initial my initial condition earlier was that N C 

equals N C naught at T equals 0. So, now, if I put back into my dimensionless variables, I 

will have u equals u naught equals N C naught over N R T at T equals zero fine. So, this 

is my equation that I now need to integrate. So, these are you need the steps. These are 

the steps. So, so these are the steps and. So, these are what I got and this is what I need to 

integrate now. 

So, how do I do that? We discussed this already in the last class. You can use that use 

partial fractions and integrate it and because this is the second order and it is already in 

the form you can break this up and get one full partial fractions in u and then it would be 

two exponential fine and we will do that in a minute. Before we do that we are going to 

do something little above which is the steady state solution of this. So, this thing that you 

have over here we will look at the steady state. So, the steady state is simply 1 minus eta 

u alpha equals u steady state fine. So, why are we looking at the steady state? So, that we 

can do they do the scatchard plot (( )). So, let us now go to the screen yeah.  
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So, so what we have over here is the scatchard plot. So, this is u u over alpha equals 1 

minus u times 1 minus eta u is the scatchard plot and this is how it varies. So, as you can 

see over here, what we have here is that two variables are here. So, one is alpha and the 

other one is eta. Two parameters sorry u is a variable and we have two parameters in the 

system. So, earlier we had how many parameters we had we had plenty of parameters 

actually we had the forward rate constant backward rate constant N n R T N a C L naught 

plenty of parameters. So, six parameters we had.  

What we had been able to do through these dimensionless these dimensionless numbers 

and groups over here is that we have been able to reduce the number of unknown 

parameters from six to two because it is always hard to be able to evaluate these 

unknown parameters and now we have been able to reduce them from six to two. 

Now, let us look at this expression carefully u over alpha equals 1 minus u times 1 minus 

eta. You got this expression one of these say steady state plus. Now what is alpha? Alpha 

is is. So, this is as I told you just a little while back that this is scatchard plot and there is 

no need that to assume that scatchard plot is simply going to be N C over C L naught 

versus C L naught. All steady state plots that involves the complex concentration and the 

C L naught that is a Ligand concentration and the complex concentration are scatchard 

plots. So, this is also a scatchard plot and there is no need to presume the scatchard plots 

are only going to be N C over C L naught versus C L naught. So, if you look at this plot 



what is u over alpha look at the dimensionless variables given on the screen. So, u over 

alpha is N C over C L naught times K D over N R T. 

So, it is essentially again N C over C L naught. So, the original scatchard plot had N C 

over C L naught versus N C. So, this is also N C over C L naught times some parameter 

and what is u? U is N C over N R t. So, simply it is the same kind of thing. Now, what is 

eta? That is something you have to pay a little attention to it. Eta is N n R T over N a 

over C L naught. So, what does this eta signify to you just look at the screen and tell me 

what does this eta signify to you? And the answer is right there in front of you on the 

screen. So, you just have to look and tell me. So, just look at these plots over here for 

different values of eta what does it signify? 

It signifies about the (( )). 

About what? 

Concentration of Ligand. 

Yes. So, essentially look at eta eta is N R T N a over C L naught. So, N R T N a N n R T 

N a over N a is fine, denominator a of C L naught which means that if C L naught is very 

large if the Ligand concentration is very large eta goes decreases and it goes to 0. So, as 

you see over here that is why I purposely drew this for eta going to 0 point 01 it goes 

back it collapses to the linear first order kinetics and for eta larger larger and larger more 

is a deviation from the first order kinetics. That that is all I wanted to say over here. That 

is the reason I drew this scatchard plot. As I just wanted to convey the fact that if you go 

away from eta from eta equals 0 your deviation from the simple linear kinetics is more 

and you have this kind of things.  

So, that is the scatchard plot now can we this model that we over here yes here. sorry 

This model that we have over here we can we integrate it in time of course, we can as I 

said through partial fractions and we can get the temporal variation. Also, we are always 

more interested in steady state concentrations of scatchard plots. The reason I just 

mentioned this because they are easier to quantify. 

Experimentally scatchard plots are easy to draw because you can just leave the system as 

far as long as you want in your, let let it I you know let let the experiments happen for 



four hours, six hours, eight hours, ten hours. And at the end of which you can go and 

collect where as if you want to do a dynamic study you have to collect at every time 

point you know, every thirty minutes or twenty minutes you have to collect and it makes 

it difficult. 
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So, this, but again you know you can always do that. So, again this is this is this is the 

solution of the unsteady state model and what I have done over here is, this is the case 

for eta equals zero which means that simple linear kinetics and these are the deviations 

from that and as you see that as you keep increasing eta, the deviation keeps increasing 

more and more. And also, the deviations in dependent alpha two, but here I think this is 

small typo over here. excuse me errors are are the errors errors means basically 

deviation. These are not errors, these are deviations as you look on the screen at the 

bottom of the screen here I think this is typo. 

So, for eta equals 0 point 1 the error is 1 percent and eta equals point 1 no I think it is 

sorry the typo is eta equals zero point zero 1 the the deviation is 1 percent and for eta 

equals point 1 the deviation is around 3 percent. So, these numbers and then as you keep 

increasing your eta is going to see, that the huge difference this is almost what forty 

percent difference and this is error is around 40 percent not error is essentially these are 

differences. So, this forty percent and this could be around seventy percent or so. So for 

so, what this is trying to show is that the that near eta equals 0. So, this I am sorry this 



this 1 eta should be eta equals 0 point 01. So, for that the deviation is 1 percent for eta 

equals 1 and the deviation is 3 percent. 

So, the next case we look at. So, if you go back and looked at the four, look at four 

different cases was. First one was Ligand depletion, second was the multiple receptor 

and third one is multivalent Ligand. So, the next case that we look at is the multiple 

receptor two or more receptor populations. Now what do you what does your intuition 

tell you you know. So, the first case we did was very straight forward where we had the 

equation and the model and all we needed to do is fiddle around with the C L a term. But 

this we do not have a model for for multiple receptors. So, if I am to if I have to ask you 

to write a model. So, what does your intuition tell you? How would you write a model 

for multiple receptors? You have one set of Ligands, but let us say two set of sets of 

receptors. How would how would you do that? One possibility and the simplest 

possibility is that the receptors would not interfere with each other where they bind 

which means that receptor one binds independently with Ligand and receptor two binds 

independently to Ligand. That is the that is a possibility. 
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So, this is this is the possibility that we explore over here where receptor one and 

receptor two bind independently to each other. And if they bind independently, how do 

you, how do you model it? The model is still not there on the screen. So, how do you 

model it? Let us go back to the old model and then you can tell me how you are going to 



model it. This is this is the old model I have right. Now I tell tell you that very very 

clearly that the receptors do not interfere with each other. So, what will happen? 
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So, you will have these two sets of reactions L plus R 1 giving C 1 and L plus R 2 giving 

C 2 right. So, D C 1 D T would equal. Let us say this is K 1 1 and K 1 minus 1 and K 2 1 

and K 2 minus 1 fine. So, then this will be my K 1 one C L C R minus K minus 1 1 C C 

1 and D C 2 D T would be K 2 1 C L C have R 2 minus K minus 1 2 C 2 over. 

Now, if the receptors so, from these set of systems are these two inter dependent on each 

other? This is a question you have to answer a and under what circumstances they are not 

really inter dependent? b Two questions. Are these two equations that I wrote in a curly 

brackets here are they dependent on each other? Yes they are because through C L what 

conditions does they not inter dependent? 

(( )). 

Large if there is no Ligand depletion if Ligand is in excess then C L each of these C L 

you can write it as C L naught over here. So, for C L not very large, replace C L by C L 

naught fine. We can replace C L by C L naught and then what happens is these two 

systems become decoupled. So, typically the Ligand concentration is more or less large 

if it is not large then what what you are suppose to do? You are suppose to solve these 

two coupled equations together. The two coupled equations that you have on you have 



here you have to solve these two together that is the possibility. I might give you a 

question like that, but if the Ligand is large enough then, you can solve, decouple them 

you can solve them separately and what will happen you will get the same solution for 

each of them right. So, the maximum N C max that you that you got previously 

depended only on one Ligand concentration and one receptor concentration 

concentration. 

Now, they are going to be two of them and you can add them up if these two are 

completely independent then what you see over here is not complete independent. But if 

the Ligand concentration is very large then, they become completely independent you 

allow each of them to react in their own way get the steady state value and you add them 

up. That is that is a possibility, but that is not the always the possibility that is one of the 

possibility that can happen. So, this is the case where each receptor acts independently.  

So, as you see on the screen the first part C L naught. So, this is this is the case where 

everything is C L naught. So, there is no Ligand depletion at all and C L naught N R T 1 

over C L naught plus K D 1. That is the first one and then C L naught N R T 2 over C L 

naught plus K D 2. Now, I I tell you one thing I give you an assignment you can do it in 

and submit it you are suppose to submit one assignment today. 

No whatever. You submit the assignment you know, whatever you did you submit the 

assignment and I gave you this assignment for the, for next week. I I probably add in 

another problem tomorrow. So, this assignment is this is the case where we consider two 

or more receptor populations. Previous case what did we assume Ligand depletion. This 

case there what we have done here there is no Ligand depletion. What I want you to do 

is, couple these two cases a and b. That is Ligand this depletion plus two or more 

receptor population’s fine. And then get the model for that and the solution and come up 

with the steady state. Is that clear? You can write, all of you down yes.  

So, first case we did was Ligand depletion. Second case we we are doing now is two or 

more receptor population I want to, want you to couple these two and come up with the 

model. I model, I already wrote, but you solution of the model essentially and the steady 

state value of two or more receptors in the presence of Ligand depletion. Clear? 
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So, then the receptors cannot act completely independently like it does over here fine. 

So, even here when you have a steady state solution, steady steady state solution or 

steady state value for this as you see, given on the screen what happens you know, you 

were doing this whole experiment in a beaker with two sets of receptor, one set of 

receptor and let us say two sets of one, two sets of receptors and one set of Ligand at the 

end what you can you probably have? How do you how do you how do you measure? 

how do you measure how do you measure I mentioned this. By labeling the Ligands 

right. You label the Ligands with some sort of fluorescence or something and once the 

complex is formed you have the labeled complex right. So, you have one one set of 

Ligands and two sets of reactor receptors and you have labeled your Ligands for 

example. 

Now, the complex is formed you can get the total amount of complex that is formed at 

steady state right. But it is going to be very hard to be able to separate out the kinetics of 

these two. Why is that? Because what you will see at the end of the day is a labeled 

labeled Ligand. Now, there is a way when you draw the scatchard plot you may be able 

to separate out these two the kinetics of these two reactions. That is reaction of Ligand 

with receptor one as against reaction of Ligand with receptor two. You may be able to 

separate it out through scatchard plot, but only in the case when these two are very 

dissimilar or the kinetics of these two are very dissimilar. What I mean by dissimilar is 

that for example, one of them for example, is very slow, the kinetics of one of them is 



very slowest compare to the other then only can you can you separate them out and we 

will look at this now.  

So, is as I said and it is the on screen that it may be may not be possible to distinguish 

between the two kinetic constants, the dissociation constants here unless they are very 

different from each other and by very different at least by one order of magnitudes. So, 

one has to be ten times larger than the other at least. 
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So, this is this is the this is a this is the thing you know, with the assumption that this is 

not what you are suppose to write the model. But this is the model with the assumption 

that Ligand depletion does not occur. So, then these two equations become independent 

with each, to each other and you can solve them and this is the solution you get. So, this 

is the I want you to get same kind of solution, but with these two coupled systems and 

yeah. 

So, yeah I think these are the second order coupled equations. You probably have to use 

what do you think would you be able to solve this analytically the equation that I if I can 

go to this page over here? This this thing that I gave you this these two equations do you 

think you can solve it analytically? Here we could solve it analytically the one that we 

did. But do you think these these two we would be able to solve analytically? Just as a 

hint you know to help you with the process. Do you think you can solve this 

analytically? Or numerically of course, you can solve second order second order system, 



but what about analytically can you solve this? Once you put you have to go back and 

put your N a and all that stuff you know, convert this into numbers like we did did all the 

process, but after that what if it is a single second ordered equation you can solve it 

analytically. 

Now, I have coupled the system then what? I showed you last the single Ligand 

depletion case. Can you or can you not? Anyway, let us not debate over that you do that 

as an assignment, but for this case where Ligand depletion does not occur you can get an 

analytical solution. So, each of them becomes like what we got before and this is an 

analytical solution. Remember the initial condition is given as N C 1 equals 0 and N C 2 

equals 0. So, that any other term that was say drop out and you have these two. 

Now, so, but what I am, I was trying to tell you is experimentally you cannot separate out 

N C 1 from N C 2. Is that clear? When you are measuring you can only measure N C 

because you would be able to get the labeled Ligand. Now, how do you separate these 

two rate constants? Then, if you can only measure and see and how then what is the way 

to separate out these two rate constants? The way would be to look at the slopes and we 

will do that in in the next few minutes. So, look at the slopes and look at if there are 

differences in the in the slopes and what you will find is that, if if one of those 

dissociation constants is ten times other then there are differences in the slopes. 

So, this is how it looks like the diagram that you see on the screen. So, this is the 

dynamics of the process. So, this is this equation the final model that I wrote over here 

that one solved. So, this is the case of a single receptor. This is the old solution solved 

sorry. This this one solved and and this this this one is the last one, the two points.  
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So, as you can see over here that with two receptor model what we have done over here 

is K D we have taken a system where there is a large difference in the dissociation 

constant. We have purposely taken this where there is a two orders of magnitude 

difference one is hundred times the other. As the result what happens you see a very 

distinct slope, difference in slope. Can you explain why this is happening? The and This 

curve is the x axis is time, the y axis is the total amount of complex that has been formed 

and x axis is time. 

Now, you have to tell me. So, given the value the K D 1 and K D 2 values are given. So, 

you have to tell me that what is happening? May be we stick to the go back to the screen 

and look at the screen here. So, what is happening over here you know, these two slope 

being very different, why are the two slopes very different? And what can you infer from 

the difference of slopes? K D 1 is K D 2 is hundred times K D 1 what does that mean? 

you know Not that complicated. 

(( )). 

Which 1 you have to tell me specifically not one of the term. K D 2 is dissociation rate 

constant. So, if K D 2 is higher which means what? K D 2 is higher; much much higher 

than K D 1. Which means out of receptor one and two what is the process what is really 

happening here? Let us forget the, look at the curve because it is important to look at the 

curve. 
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But from the curve, let us try and understand what is happening, what is the process that 

is happening here? Say K D 2 is much, much higher than K D 1. K D K 2 K minus 1 let 

us say 2 over K 1 and K D 1 is K minus 1 1 over K 1. So, if K D 2 is much, much higher 

than K D 1. It implies that K 1 2 let us call this and K 1 1. 

So, one possibility is that K 1 2 is much, much lesser than K 1 1 or K minus 1 2 is much, 

much greater than K minus 1 1 whichever way. What does it imply? That what does it 

implies here that the second if second association rate constant for the second is much, 

much lower than the first. So, as soon as you put the whole stuff in there you know, into 

your beaker the receptors are there and you put your Ligands in there. What, what starts 

to happen is that receptor one starts to react. Receptor one starts to react with the Ligand 

and then if there is a large difference in magnitude. So, receptor two hardly reacts with 

the Ligand. So, receptor one starts to react dynamically. This is what happens receptor 

one starts to react with the Ligand and then it saturates out. 

So, all the receptor ones receptor one that are there are being combined or reacting with 

the Ligand. They are being taken up and complexes are been formed still a point where 

no more receptor one is available is that clear? So, till now till a point where no more 

receptor one is available and then the receptor two starts to react with receptor one with 

Ligand. So, if there is a hundred to 1 ratio then if I go to the screen and we will see if 

there is a 100 to 1 ratio then what happens? When this this is reacting for the first 



receptor one is reacting. So, ninety nine percent of the receptors that are reacting and are 

receptor one and only 1 percent are receptor two and that continues more or less till 

steady state is b. 

So, this time over here, whatever the time is let us say 0 point 1 five minutes of a 

something one 0 point 1 minute whatever the time is, is a time when the first process that 

is receptor one combining with the Ligand has more or less reached the steady state and 

then the second process starts. So, ideally what would happen is, if there is a one 

receptor only receptor one would be there. This will saturate out over here, flatten out 

over here, but that does not happen because that is second receptor staying there, 

standing there and that starts to react and form this. 

So, this difference in the slope can help you figure out what the constants are and as you 

can see over here look at this numbers N R T 1 over N C max is point 3 and N R T 2 

over N C max is point seven. This is very intuitive. The reason being that N R T 1 plus N 

R N C max is what the maximum number of complex being can that can be formed. The 

maximum number of complex equals the total number of receptors that are there if there 

are, no other resistance is in the system. The total number of receptor one at the limit at 

best can what can happen is total number of receptor, all the receptor one can react which 

it does and also all the receptor two can also react which may or may not happen, but all 

receptor one will definitely react. 

So, if that happens then N C max will be N R T 1 plus N R T 2. As a result N R T 1 over 

N C max is zero point 3 and this is point seven and the summation of these two would be 

one or in other words N C max would be N R T 1 plus N R T two. So, the total number 

maximum number of receptor complexes that can be formed is a sum total of the two 

kinds of receptor. 
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Now, the last thing we will do today is look at this Scatchard plot over here sorry not this 

scatchard plot. This is the still the unsteady state plot, but this is written done in terms of 

1 minus N C over N C max why 1 minus N C over N C max because, if you if you look 

over here this there is this terms over here this constant terms over here and if you do the 

1 minus N C minus N C max and what will happen is that you will get the exponential 

parts and you can take the log of that. 

So, is the same kind of variation as you see exactly the same thing it is only that the plot 

has reversed itself because it is in the log scale and you know minus and all that. So, you 

have 2 diff, varying slopes and from these two varying slopes you could be able to you 

would be able to separate this thing out. Now what I want you to do is quickly of again 

we have a class 1 more class today. 
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But write write down problems for now and this should be a second problem for 

assignment. Show by rearranging the equation N C equals C L naught N R T 1 over C L 

naught plus K D 1 plus C L naught N R T 2 over C L naught plus K D 2. 

So, this is essentially N C max 1 plus N C max 2. Show that by rearranging this equation 

you can determine the four parameters N R T 1 N R T 2 K D 1 K D 2 for two receptor 

populations from the scatchard plot. Assume that one of them is matching. So, you can 

assume one to be hundred times I had in the other. So, what I did I showed you the 

scatchard plot and I all I am trying to tell you is that how can you exploit this this steady 

states steady state equation that is there to get how can you exploit this to get the four 

parameters N R T 1, N R T 2, K D 1 and K D two. So, we will stop here and we will 

continue later today. 


