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Design of chemostats, but before we do that we will do what I promised in the last class 

which is a brief review of the history of reactors, chemical reactors. 

(Refer Slide Time: 00:28) 

 

So, if you look on the screen here that the history of chemical reactors. You know it is 

essentially talked about this chemical reactors are of two in major kind. So the batch 

reactor the history of that is when we started is the dawn of human civilization with 

process of cooking and so on. The second one is the plug flow reactor which started in 

the late 18th century. Then a big conceptual leap so the plug flow reactor was being used 

from the late 18th century and so essentially the major difference between a batch and a 

plug flow is that you had continuous inflow and the outflow in the plug flow. Whereas, 

in the batch you just have to put the things in and wait for how long the reaction took. 



So, the reaction could have taken a day or two days and still you have to wait to get the 

products. Where as in the plug flow reactor, you have a continuous inflow and outflow. 

Now a big conceptual leap came in the form of a CSTR reactor, which sort of combined 

the advantages of the batch reactor with that as the plug flow reactor. The advantages of 

the batch reactor is it is a easy portable vessel, whereas the plug flow reactor is a long 

tube and it is hard to carry from one place to another and stuffs like that. So, that was a 

advantage of the batch reactor, the advantage of the plug flow reactor is it is continuous 

inflow and outflow. So these are the two advantages. So, the CSTR model CSTR thing 

what it did is combined the advantages of the batch the portability and the factor that it 

requires less space of the batch reactor with the advantage of the plug flow reactor which 

is the continuous outflow and inflow. 

And this was remembered not you know at some point of time once discovered things so 

this was not there before that. And this came in 1908 I said this in the last class. This was 

discovered by two german scientists bodenstein and wohlgast in 1908. It turns out so this 

was the this is a big conceptual leap as far as the whole idea of chemical reactions, and 

chemical reactors was concerned. Because as I said it you know it is portable it is takes 

less space and as at the same time it. It has continuous inflow and outflow and that kind 

of revolutionize the whole chemical reactor mean the whole chemical industry. 

 And if you now look at chemical industries all most all chemical reactors are CSTRs or 

continuous inflow you know continuous stirred tank reactors, only a few percentage of 

them you know a small percentage of them would be batch reactors. Now 1908 it turns 

out is a very event full year for the history of chemical engineering or chemical reaction 

engineering. Because you had the tubular reactor model, the plug flow reactor model 

rather. And in 1908 again it was irving langmuir who founded the flux type boundary 

condition. The which what is now was known as danckwerts boundary condition but, it 

is no longer known because there are difficult in problem issues there. So, as I said that 

langmuir was he got the noble prize later, because of his work with the kinetics langmuir 

kinetics adsorption kinetics. But this was another of his pad break breaking you know 

finings the flux type boundary condition. The reason being you know for us it might 

seem very mundane at this point of time to think of a flux type boundary condition. But 

think of it when somebody was discovering it 100 years back to come up with the 

concept of the fact that you know whatever is coming in through convection at one end 



the equals what is going out in, because of convection and diffusion at the other end is 

quite a leap. The reason being that the concepts of convection and diffusion were not as 

properly underlined at that point of time. It was only underlined around 1937 and I come 

to that paper which dealt with that, but so they that is that there is a little bit of fuzziness 

around these concepts of convection and diffusion and to come up with the boundary 

condition in 1908 which is stayed for more than 100 years. 

Now and nobody has proved it incorrect yet is quite a conceptual leap so that was done 

by langmuir in 1908. So, and he the so that that is a very important boundary condition 

and it came to be later known as the danckwerts boundary condition. Which it should not 

have been, but we did some unraveling of the real history of behind this. So, it turns out 

that after danckwerts this condition this danckwerts boundary condition not danckwerts 

let us call it the flux type boundary condition was rediscovered a few times. So, the first 

time it was rediscovered by forster and geib two more german scientists in 1934, and in 

maybe the you know it is not really rediscovered. May be because bodenstein and 

wohlgast wrote their paper in german so forster and geib would have read those papers 

most likely 1934. 

Then it was again rediscovered gerhard damkohler another of the most famous chemical 

engineers of along with Langmuir. I think he is probably the most famous chemical 

engineer of his times and our times. So, he rediscovered in 1937 it was not rediscovered 

actually what he did was this is the land mark paper the 1937 paper of gerhard 

damkohler. And it was published in german. And what he did in this paper was he 

reviewed the like we are reviewing the whole history of chemical reaction engineering in 

1937 paper he reviewed the entire history of chemical engineering including langmuirs 

work and forster, and geib’s works and you know the whole history of bodenstein and 

wohlgast discovering the CSTR. 

You review the entire work of chemical reaction engineering that was available till that 

point of time then danckwerts rediscovered. And he was truly trying rediscover you 

know trying to show the world that you know that he discovered it because he did it. So, 

there is a fundamental difference between what damkohler did and forster and geib did 

and danckwerts did because forstein and geib and damkohler they referred to the earlier 

papers of Langmuir. And showed that these are they have discovered these boundary 

conditions whereas, danckwerts buried everything, he buried all of the previous work 



and he pretended that he had discovered the boundary condition. 

And that pretension worked really well, because you know these papers of the forster and 

geib and damkohler were all kind of buried by the political events of the time which was 

the second world war. So, because there was germans and there was enormous amount of 

hatred gains germans at that point of time, and you know the whole world opinion 

against germans at that point of time. So, their works were lost nobody was reading and 

the german science nobody was paying any attention to them so their works were 

practically lost. And then danckwerts in 1953. He sort of claimed to rediscover the 

boundary condition and now it has been un urged much before it was not us, but around 

20 years back it was been found that danckwerts did not discovered this boundary 

condition. 

And people stopped calling it the danckwerts boundary condition. They just so and there 

is a enormous confusion. You know whether you want to call it the langmuir boundary 

condition, and forster and geib boundary condition. So, just people decided we will call it 

the flux type boundary condition. But if I think I wrote it in the last class but, i’ll write it 

one more time. 
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So, the boundary condition simply goes as so whatever is coming in u times C equals 

whatever is so u times C in equals. Whatever is going out minus D times del C del X so 

you have the tubular reactor over here, and you are trying to find out this is X equals 0. If 



you are trying to find out what is the boundary condition at X equals 0 so this is my 

boundary condition so whatever is coming in at this point is because of convection u 

times C in. You can call it even u in times in, but u is suppose to be the same on both 

sides so u times C incoming in. Because of the convection because equals what goes out 

because of convection u times C C minus plus what goes out of because of diffusion and 

diffusion term is minus del C del X so this was essentially the flux type boundary 

condition and we still continue 100 years down the line we still continue to use this 

boundary condition it is a quite phenomenal impact breaking boundary condition. 

So you know we if we are trying to write something like if you second order you know 

differential will come to that, but if you are writing a second order problems and you 

need a second boundary condition. So, what would be the boundary condition at the 

other end? So, X equals 0 this is my boundary condition. What would be then my 

boundary condition at X equals L? It would be typically it would be del C del X equals 0 

why if L is large as compared to say the radius of the reactors do if the, if the length is 

very large what does it mean what means is that all the reactants has reacted and there is 

no reactant left at the end to leave. This means that all reactants have reacted that there is 

no reactant left so these are the boundary condition anyhow so let us go back to the 

history. 

(Refer Slide Time: 09:52) 

 

So, then again as I said the 1937 paper of gerhard damkohler that was the one of the most 



important papers in the history of chemical reaction engineering and it is a two 

dimensional convection diffusion reaction equation so we for the first time wrote the two 

dimensional convection diffusion reaction equation and this as paper is written in 1937 in 

german. And then it was later translated into English. And what are other things it did 

and let us recount, because so in this paper. He introduced the idea of radial and axial 

diffusion so just as I said you know the whole ideas of different kinds of diffusion and 

convection were not very clearly outlined of way back in those days. 

And it was damkohler who was who first introduced the idea of radial diffusion and 

convection axial diffusion and how they are different. So, it is not at really understood at 

that point of time how the radial and axial diffusions are different, than he introduced a 

parabolic velocity profile, till then with a plug flow reactor right plug flow reactor 

model, p f r model. What is the p f r model? Intel it means that, the velocity profile is flat 

within the within the reactor. And the but the velocity profile is not really flat because 

when you have flow inside the tube the velocity profile is parabolic. But if you 

understand that that in a plug flow reactor there is no way I mean there is difficulty at 

least to introduce a plug flow radial velocity profile. 
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Let me show you why because what you have is u del C del X equals minus R of C, this 

is your plug flow reactor model. Now this is in X so this is my reactor, and this is the X 

direction, and this is the r direction. Now if u equals u naught 1 minus r over R square 



then it is, how do you solve it ? You know so if I put it back over here 1 minus r square 

over R square so this R of C how do you solve it you see what I am trying to say the 

difficulty of solving it why, because the differential in the X direction and then you have 

a term in the radial direction. So, how do you solve it? There is no way to solve it so the 

only way of being able to incorporate a radial velocity profile is to actually is to actually. 

(( )). 

Actually go for a two dimensional description so which is what damkohler, did you 

know he went for a two dimensional description and as a result of which he could 

incorporate the parabolic velocity profile. He included radial and axial diffusion and he 

included the flux type boundary condition. So it was the first time somebody looked at 

the chemical reactor in a very comprehensive way incorporating convection radial, and 

axial diffusion parabolic velocity profile, as well as flux type boundary condition which 

includes both convection and diffusion effects as the at the entrance. 
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So this was the 1937 paper and then the whole idea you were aware of the idea of 

residence time distribution theory. So, and surface renewal in residence time distribution 

theory so they came around like the same time from danckwerts you know paper. But 

again it turns out that the forster and geib was actually the first one to discover the RTD 

theory. The residence time distribution theory the whole idea that you know that some 

fluid the different fluid elements in a reactor will have different residence times. You 



know so you can say that the reactor residence time is tau, but that does mean that the 

entire fluid in the reactor spend the amount of tau in the reactor. 

What does the residence time mean? You know when I say that the residence time what 

is the residence time mean the amount of time you spend here so the residence time of 

the B tech student here is 4 years or the residence time of a Phd student is 4 years 

something like that so which means that the amount of time that you spend from input 

inlet to outlet. But when I say that the residence time in a CSTR is tau strictly speaking 

the not so this was it was discovered essentially by forster and geib that strictly speaking. 

It is not that all every element of fluid in the reactor is actually spending the tau amount 

of time. 
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So, typically the residence time distribution is you now goes something like this so this is 

how residence time changes. So, the average of this you know if you take the whole of it 

and divide it then the average of it is tau, but some elements as you see her[e]- over here 

some elements of fluid the so this is the amount of elements of the fluid, some elements 

of the fluids spend very small time again. You know some very small so the bell shaped 

curve and only a fraction says spend a very large amount of time in the reactor. So the 

when I say that reactor is the something you have to remember, when I say there is a 

reactor residence time is tau. It does not mean that everything in the reactors spends tau 



amount of time it means that the average amount of time spent within in the reactor by a 

fluid element is tau. 
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So, this whole concept was actually started by forster and geib in 1934, and then it was 

again you know danckwerts is a great rediscoverer so he was he rediscovered and this 

theory in 1953. But he had some inputs also which is he generalized, that it was in a 

forster and geib’s paper in 1934 which I got translated through somebody, and read it 

and it was a very localized concept. But danckwertz generalized it for the whole reactor 

thing and it really you know the his presentation was good. Then last important things 

that came in the whole CSTR business was a concept of micromixing, which is mixing at 

the molecular scale. Because reaction takes place at the molecular scale, and if reaction 

has to take place in the molecular scale. Then there has to be mixing at the molecular 

scale right because if a and b two reactants are there and unless they are mixed with the 

molecular scale they cannot react. 

Is that clear? Because the reaction has to take in the molecular scale. So, the concepts of 

micromixing maximum mixedness and complete segregation. Complete segregation 

when there is no mixing at all between the two components. So, these were propounded 

by as zweitering in 1959. So, I think that concludes our brief review of the history of 

chemical reactor models what we will do now is that we will so much of this theory as 

you see is related to CSTR because as I said CSTR was a big conceptual leap. 
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So what I will do now we will start try and look at the CSTR for a bioreactions. So, the 

CSTR for bioreactors is called chemostats, and this is let me show you the picture and try 

and explain. So, this is the central thing that you have over here is a chemostat. So, it is a 

CSTR which means it is a continuous stirred tank reactor, which has two parts with one 

is continuous another is stirred and for four parts. Actually continuous stirred tank 

reactors. So, the continuous means there is a continuous inflow of feed and a continuous 

outflow of product, stirred means it is being stirred by a a stirred over here, tanks so it is 

a tank and then it is a reactor so the four elements come together. 

So as you see that the way it works for the chemostat is that, it is the feed reservoir over 

here from which feed is being continuously pumped into the reactor. So, then you have a 

buffer solution which is also being pumped, because these are being bioreactions you 

have to maintain the p H at the certain values could be 7 could be 5 could be 6 whatever. 

but you have to maintain the p H at a certain value so you have a p H controller and a 

buffer solution being sent in. You have you know air being taken out and replenished so 

those kind of things we have stopped about this you know you need a certain amount of 

oxygen into the system and so on. 

So, air being taken out and you know replenished in stuffs like that here and then the 

product. So, the air taken out here and replenished from here just a while air comes in 

here just for the oxygen you know that you need to supply and you know the nutrient that 



is the carbon, hydrogen, nitrogen in liquid form are a part of the feed reservoir in the feed 

reservoir itself. So, the product is taken out now the product will include these 3 X S and 

F what is X? X is the cell are growing. S is the substrate and feed is you know everything 

else apart from the substrate and the cell. 

So, that part of the feed which is not either substrate nor cells. V is at any point of time 

the liquid volume in the reactor, why is V important not the volume of the actual 

reactors? Beause the residence time of the reactor the average residence time as we call it 

now depends on the volume of the reactor and not the V. In volume of the liquid sorry in 

the reactor and not the actual volume of the tank. Because the rest of the tank that has air 

in it is not of any use. So, V here and then the product is taken out and pumped out and 

take put in a product vessel. So, this is a whole flow chart of this system, and is there any 

question or do you want me to stop up for anything here or shall we proceed? We should 

proceed. 

So, the next question that comes in is that we have to in order to understand the 

dynamics of this process we have to write balances for this. So, the balance would be 

straight forward similar to the CSTR balance that you have written except that it is for 

two components here. So, what are the two components you are going to write the 

balances for? One there will be let us go slowly. So, how many balances do you think 

that you will have to write? The first balance would be the overall balance of volume 

which is the volume accumulated or volume held back in the reactor, and volume coming 

in and volume going out so that is a overall balance then what else we have. 

Component Balances. 

So, one would be the substrate balance. So, the two major components as you can see in 

the picture over here, that X S and F so one would be the substrate balance S then would 

be the cell balance X so essentially three of these. 
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So, let us go and do it so the chemostat as you can see over here is an ideal CSTR. 

Because it is stirred and you know of everything and continuous, and so on. So, the first 

you need to do a total volume balance. So, the total volume balance is very straight 

forward d V d t equals F in minus F out feed coming in minus feed going out. So, the 

next balance we do is the mass balance for the cells and mass balance of the cells is 

simply if you take this. For example, it you have to multiply it with the cell concentration 

so d d t of X V this and these two plus. 

They are the generation of cells so that is the only difference between the other 

component, and the cell is that there is a generation. I mean overall volume is not been 

generated where cells are being generated so d t of X V equals F n times X naught is the 

amount of cell that is coming in the feed. So, the feed itself can have some cells minus F 

out times X is the amount of cells that is in the outlet products, and mu times X is a 

specific. You know mu is a specific growth rate per unit cell mu times X is the total for 

the total amount of cells times, the volume you know so because the volume of the liquid 

should come in over there. 

Sir the communications death of cells. 

Equation is. 



Death of cells. Death of cells death of cells has not been included, but you can add 

another term minus beta X that we did last time. So, you can just add minus so you 

instead of mu you can, you can replace mu by mu hat where mu hat is mu minus beta it 

is fine. So, it is straight forward so the last thing that we need to do is the mass balance 

for substrates fine so which is d V t of S V equals F n times S naught minus F out times 

S minus mu X V over Y. Because I explained this several times in the last couple of 

lectures Y is just the el ratio of X over S. Now typically F you know if you want to 

typically in CSTR what you would like is that the inlet is equal equals outlet and if that is 

the case F in equals F out. 

Then d V d t is 0 so as a result of which the V is a constant fine and you can do a lot of 

simplifications in these equations. Because V is a constant you can take V out of this 

equation you can take V out of this equation fine, and you can get rid of b in some other 

places because the one of the over V will come in here. So, when you do the 

simplifications you get d X d t equals F over V X naught minus X plus mu X it looks like 

a lot simpler equation and just as he said that if you want to include the death of cells 

replace mu by mu hat where mu hat is mu minus beta being the specific death rate of 

cells. So, and the last thing would be the substrate balance equation for the substrate d S 

d t equals F over V S naught minus S 1 over Y mu X fine. 

So what would be our step now so once we have done this. So, what would you like we 

will like to find out how it would changed? But what would be your step? What would 

you do you think we should do now. So, if F is a constant and known then how many 

variables do we have just two variables, and two equations so what we would intend to 

do is essentially solve this, but how do we solve this? I mean you know what kind of 

solution do you want first let me ask you that. 

(( )) 

What is that. 

(( )). 

Possible for what for every thing. 

(( )) 



Well I do not think analytical solution is possible one of the things, you can try to do is 

get an invariance. I taught you have to get invariance in the last class, you can get an 

invariance, and then you can get an analytical solution for combination of X and S 

naught for X or X separately. But what we want to do first is the easy step out which is 

up in the steady state solution of it. 
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So F over V is called the so we do that. So, let us define some quantities first F over V is 

called the dilution rate of the cells F over V is a dilution rate of the cells, and what is the 

unit of Sover V F over V? 

(( )) 

Hm what. 

(( )). 

Inverse of time which means it is inverse of the residence time of the system so F over V 

is 1 over tau, which is the inverse of the residence time of the system. So, when you do 

that? You can put here d t and d t of X equals dilution rate d e you know instead of 1 

over tau. In this chapter or in this course we will use the dilution rate d instead of the 

residence time. So, D is 1 over tau X naught minus X plus mu X and d s d t is a d e S 

naught minus S minus mu X over Y fine. Now mu is we are going to assume a Monod 

growth kinetics as I said it is a most popular and most useful growth kinetics there are 



plenty others as. I showed you in someone of the earlier lectures but, this is the one that 

is that we are going to try and use for now. 

Now as I said that you know sometimes I might ask you in the exams for example, to do 

the similar kind of thing with other growth kinetics. I can give you more complicated 

growth kinetics or I can give you growth kinetics where inhibition is involved or all other 

kinds of things possible. But then but you have to be aware of how this is the process so 

what we’re going to do from now on todays class and next class is slightly hard and you 

should pay attention to the process, what is really happening and how to do it? Because 

then you should be able to do it for other kinds of systems so that is fine. 
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So we put the monod growth kinetics in and so then we go for the steady state solution. 

So, at steady state this is your basic equation. So, d X naught so if you look at this here 

so we put a steady state out here so D X naught equals D minus mu times X for the X 

equation and then similarly, for the substrate also you will have another one. Now the 

and the first approximation that we can, we make assumption that we make is that it is a 

sterile feed. It is we are solving it for a sterile feed sterile feed means that there is no cell 

in the feed that is coming in. It is an assumption of coarse because typically there are 

cells, but we are just trying to solve it for this system. 

We will solve it for other systems also without sterile feed but, let us try and solve it for 

with sterile feed is it clear the sterile feed means, that X naught there are no cells in the 



in the incoming feed so when you do that you simply get D equals mu the dilution rate 

equals mu. Now mu is this specific growth rate remember so it goes as mu max times S 

over K S plus S which equals the dilution rate. So, if you have a fix dilution rate. So, 

what this means is? For a sterile feed for the system to have any sort of meaning full 

solution, if you have a dilution rate that is fixed then yours steady state substrate 

concentration has to be this. You see what I am saying why is that? Because see if X 

naught is 0 then d minus mu times X is 0 what is the solution of this equation. 

The two solutions of this equation one is that X naught it is X itself is 0 then the other 

one is that D equals mu so if D is not equals mu, then the other solution is X naught X 

equals 0 which means that no cells are being produced which is worth less because I am 

running the whole reactor to produce cells. So, the only feasible solution in this place is d 

equals mu. Now when you put mu max X over F plus s equals D then the steady state 

substrate concentration is D K s over mu max minus D fine. Provided that X s s is not 0 I 

mean of coarse and mu max is greater than D mu max has to be greater than D because 

you see why, because mu if mu is greater than equals D then this fraction over here is 

always less than one so mu max obviously has to be greater than D. 
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So, from the second equation that is the equation for the substrate this is this is what we 

get. Now the substrate concentration and you know D equals mu for X naught equals 0 

so you can substitute back over here D equals mu in this equation. So, you know over 



here and then you can get your X that is the steady state concentration X s s in terms of 

these. As this because we wrote our S s s before if you remember in the last slide I will 

just wait for a few seconds because some of you are writing so and then I will show you 

if you need to so if we wrote the S s s in the last slide. 

So you can substitute your S s s from the last equation that we wrote before in to this and 

is it clear to all of you or do you want me to go through this steps. So, all you need to do 

is let me just quickly see show. So, all you need to do S s s is given here as D K s over 

mu max minus D all you need to do is substitute for S s s in from that equation into this 

equation. And you put D equals mu over here, and then you will get X s s that steady 

state concentration of cells in the system goes as if we forget the Y let us you know 

ignore the y then it goes as s naught minus D K s over mu max minus D and. 

You know this we already did D max equals mu max D equals mu max S naught over K 

s plus S naught D equals mu max S over K s plus X so D max would be the maximum 

value that the D can take is mu max S naught over K s plus s naught. Why because the 

maximum values that the S can take is s naught for the feed concentration clear to 

everybody, and if there is any point you need to stop me please stop me and i’ll explain 

one more time . 
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So if that is clear then as in this equation as mu max goes to D you see over here. Then 

what will happen this is goes to 0 the denominator here goes to 0 and this goes to infinity 



as a result solutions are possible for mu D greater than mu max and D less than mu max 

is it clear see. What was what did we get from our initial assumption of sterile feed? We 

got that D equals mu fine and one of the things we said is that D is typically if D equals 

mu then D would be less than mu max, because mu max is always greater than mu. So 

we are actually working in this space of D less than mu max, but just to make sure that 

you know to make sure that this a there’s a feasible range.  

So, D equals mu max there is no solution because this whole thing blows up the solution 

is only possible in the D less than mu max, D greater than mu max. But obviously we are 

working in the space of D less than mu max clear no confusion. So, this is what I said 

that we are working in the space of D, D less than mu max because it is not possible for 

D if D equals mu max mu. Then it is not possible for D to be greater than mu max 

because mu max is obviously greater than mu . 

Now for X s s equals 0 D greater than mu max which is not in the you know which is not 

in the it is in the feasible range, but it is not of any interest to us if no cells are being 

produced. it is of no interest to us so this is a just another possibility so for X s naught 

equals 0 D has to be less than mu max clear. From not necessarily from the mathematics 

but, the physics of the problem. V has to be less than mu max because V is D equals mu 

and if D greater than mu max and X s s is 0. So, my steady state solution is that for D 

less than mu max I have my steady state solution as this and for D greater than mu max it 

is 0. So, what does this mean? what it means is that? Why am I why am? I you know 

trying to answer this question? Why am I trying to a kind of boil everything down to d 

and mu max? Both of these two are parameters of the system d and mu max but, what is 

the difference between these parameters. 

(( )). 

 Absolutely yeah, see the mu max is a parameter that cannot be changed it cannot be 

manipulated whereas, D is a parameter which can be manipulated D is one over the 

residence time of the reactor. How can I change the residence time of the reactor? Just 

flow rate yeah just basically by changing the flow rate or the volume that of the liquid in 

the system. So, what this is trying to say is that here so what this is trying to say over 

here is that these two cases, that if you want if you want cells to be produced your d has 



to be less than your mu max or in other words your dilution rate has to be less than the 

maximum specific growth rate of the cell. 

 If your max dilution rate is greater than the maximum specific growth rate of the cell 

then there are no cells which were have going to be produced. What does this physically 

mean for you what it physically means is? That if dilution is very large then it will sweep 

this as the way you know it would. It would take the things away with it so if D is very 

large for example, then what it means what it means is the residence time in the reactor is 

very low fine because D goes as one over tau. If the residence time of the reactor is very 

low what does it mean it means that the cells are not getting enough time to react for and 

grow. So, this is the physical interpretation so in bioreactor system in biochemical 

engineering, they say that dilution of the system dilution rate being very large means that 

the system is being excessively diluted and as a result. 

Cells cannot be grown but, if you look at it from a chemical engineering point of view 

,then we convert it into the residence time. So, D very large means residence times very 

time very small which means that the cells are not getting enough time in the reactor to 

grow. 
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So, that is why it happens? From mathematically let us look a little bit of the 

mathematical space of it. So, if this is the case that is D is less than mu max, then your 

steady state X s s I just gave you here. This is the steady state solution for the cell and the 



first thing here is the steady state solution for the substrate. Do you need to write the 

steady state solution for cell? I think you wrote it already, but if you want to it will give 

you a few seconds so the steady state solution for the substrate now is given by D K S 

over mu max minus D. So, this has to be satisfied S naught greater than D K S over mu 

max minus D so because mu max is greater than D so this denominator is positive so the 

second criteria that we get. 

So there are two criteria that we have to satisfy one is that the residence time of the 

system or dilution rate of the system. One is the residence time is one over dilution rate 

dilution rate of the system has to be greater than mu max. And the second criteria we get 

is given here S naught, which is the initial concentration of substrate in the feed has to be 

greater than this quantity D K S over mu max minus D. So, both of these two criteria 

have to be satisfied in order to be able to produce cells so that your X s s is greater than 0 

both of these two criteria to be satisfied fine is it clear. 

So, both these straight two criteria have to be satisfied, in order for it be, if they are not 

satisfied then X s s and S s s are in the not in the feasible domain. So, what happened 

was that? If you remember the that how do we get the first criteria we got the first 

criteria by showing that if mu max is less than d, then your X s s is 0 or negative. We got 

the second criteria by showing that if your S naught is not greater than this, then your S s 

s would be negative or 0. Because see what happens is that both the substrate and the cell 

that are coming out have to be positive numbers both of them. Both the substrate so for 

for the positivity of the cell you need to ensure that D is greater than D is less than mu 

max for the positivity of the substrate you need to ensure this quantity. 

That is the initial amount of substrate that you to put into the system is greater than D K 

S over mu max minus D S and so and the second regime is D no. I do not know this is a 

case of X s s equals 0 and S equals at S naught so what this means is the nothing is 

happening in the reactor for the same case. But nothing is happening in the reactor. So 

which means that you start with cells this is what kind of solution is this trivial solution. 

So, this is known as a trivial solution whereas, X s s is 0 that is you put in cells is or 

input solution is free of cells when you are putting it in now no cells. In no cells out and 

as a result whatever substrate you put in is whatever substrate that leaves the system so 

this is a trivial solution. 



Why am I going through? This is because you know one of the things you kind of forget 

like let us go back, and show you this equation here. For example so a system like this 

you know guys, you know very calmly you go and write the one single solution that is 

there possible. But when you are doing a mathematical analysis you have to take into 

account all kinds of solutions. So, one of the solution is a trivial solution and the trivial 

solution as you will see a little later may be in next lecture is important also. So, why we 

are doing this is trying to look at the entire space composed of all different kinds of 

solutions. So, the first one we discussed is the non trivial solution the second one is the 

trivial solution. 
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And this is summary of the behavior of the chemo stats. So, these are my equations 

which I am sure you had already written down. So, there is no point spending any more 

time on this so d X d t equals this and d S d t equals this and mu equals mu max S over k 

s plus S and what I will next do is summarize the results also the ones we looked at. 
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So this is a feasible range this is the feasible range of solution here the rest as we 

discussed that there are two constraint for this things to happen that feasible range means 

both positive results for X s s and S s s that is the substrate and the and the cells going 

out of the reactor are both positive numbers. So, the two constraints for this one is that 

the dilution rate has to be less than mu max. The second one is the initial concentration 

of the cell is greater than this number. Now if any of these two constraints are violated 

then what you end up having is a trivial solution as you have over here all these are 

trivial solutions. 

Because X s s is 0 and the steady state concentration of the substrate is same as, what 

you put in so what you need to remember? you know the best way to remember this is 

that these two constraints have to be satisfied in they are then in this space where both 

these constraints are satisfied and intersect You get the solution anything else you get 

trivial solution. So this is essentially the steady state analysis of the chemostat. Now 

what we are going to do is? Look at so when you in a chemical reactor or any kind of 

you know continuous reactor, you want to run these reactors at steady states fine. You 

would like to why do you want to run these reactors as steady states because. 

Control is easy. Control is easier because whenever you have dynamics of the system 

coming in control gets harder, but what happens in a real system? you know we are 

running it at the pilot scale or even forget plant scale even at the pilot when you are 



running and even in the lab scale, what happens? You are trying to run it at the steady 

state but, you are probably not able to run it at the steady state, why does that happen? 

You can have your control as an everything and you will see that, when you do even 

experiments in the control lab you will see that you you’re trying to manipulate your 

control variables. So, that the system is at steady state the level of the fluid in a in a you 

tube or anything for that matter and you will see that it keeps oscillating it is very hard to 

retain it at the study state. Why is that? 

(( )). 

What. 

Disturbance will be there. 

What kind of disturbances that is , what kind of disturbances? 

(( )) fluctuations. 

The key word here is as he said fluctuations or what we call in mathematical balance is 

perturbation there are these natural noises and natural perturbations that are there in the 

system. And why do these natural noises and perturbations coming every angle? You 

know you think that this table probably has no vibration but, it is full of vibrations. So , 

where ever you putting in your reactor as lots of vibrations in there, and these vibrations 

lead to perturbation or fluctuations in the system. And as it turns out that you know these 

system many of these reaction systems are pretty sensitive. The reason these are sensitive 

is that, I talked about I do not remember. I think I did talk about the case for the 

autocatalytic reaction in this class itself at some point of time. So, that one is example of 

why these systems are very sensitive? The reason these systems are very sensitive is 

because they are non-linear so when they are non-linear. 

So a small perturbation in one of the variables can lead to large perturbations in the 

entire system, because of non-linearity this is a multiplying effect. So, small perturbation 

in one you know leads to another perturbation in other. And these two effects kind of 

multiply, and then the wholes the whole kind of whole amount of perturbation that is 

generated in the system is multiplied and kind of exaggerated. So, this you know there is 



a whole analysis for that and that analysis is known as stability analysis so we will that is 

that is an extent we are going to look at. 
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So what we are going to do is stability analysis of bioreactors and you know we will start 

today, because it is a complicated thing and we would not finish today and we will 

continue into the next lecture. So, stability analysis is that analysis of the system when 

you apply perturbation to a study state. So, if a system you have done this partially. I 

believe in the control class process dynamics and control and we are going to use some 

of those things. That you had learnt over there so what is the idea of a stability analysis 

the ideas of a stability analysis. You first obtain the steady state of the system then you 

perturb the steady state slightly. And you see how does a system react? 

How this how this system react? There are two possibilities two major possibilities three 

actually but, let us say two major possibilities, one is that the system will go back. Go 

back to the steady state stabilize the other is, system will move away from the steady 

state which is destabilize. And the third possibility is the minor possibility is that the 

system remains exactly as you put it you know you perturb it. And the perturbation 

continuous that little perturbation you gave continuous like that it does not grow, does 

not decay. But that s that is a minor possibility because that does not happen. The two 

major possibilities. One is the perturbation that you give decays as a result of which 



remember the perturbation that you give decays as a result of which the system returns to 

the steady state. 

 And the second one is the perturbation that you gave grows as a result of which the 

system destabilizes so how do we mathematically analyze. And understand this so this is 

what we will go we are going to do over the next lecture. So, the method that we use as a 

liapunov’s here the liapunov’s method of linear stability analysis for a chemical reactor, 

and you probably used it in your control class. It was found the and amnndson just type 

over here m u n d Amundsen this should not be n not n n m u n d amundson 1955 

amundson it turns out that he is known as the father of modern chemical engineering as 

we know it . 

You know the statement and so the chemical engineering department which is the best in 

the world he was the chair of that for 20 20 5 5 years. And then the chemical engineering 

department at university of minnesota is known as a Amundsen hall. And the major most 

important award of chemical reaction engineering is also named after Amundsen. So, he 

is the father of modern chemical engineering, why I am calling it modern chemical 

engineering is that? It is with amundson he is the one who introduced along with birds to 

attain light food of coarse, but he is the one who introduced mathematics or applied 

mathematics to chemical engineering. And as a result of which chemical engineering has 

a form that it has today so birds to attain light food are responsible for introducing 

mathematics. 

Applied mathematics to transport phenomena. So, the way you we talk about heat 

transfer mass transfer and momentum transfer is, because of with the changes that were 

in you know a brought in by birds to attain light food in 1950s. And the very famous 

book that they have. So, we do not look at heat transfer just is and the terms of a heat 

transfer equipment or mass transfer as a distillation column. But we understand the 

basics of the system, and we understand that everything that follows be it distillation be 

it adsorption or absorption heat exchange in a heat exchanger. 

 Everything is a product of the very basics of heat mass and momentum transfer and if as 

you have done in your transport phenomena lecture. There is a tremendous analogy 

between heat mass and momentum transfer so if you describe one set of systems the 

momentum transfer equations. You can use the same systems a boundary layer and so on 



to describe heat transfer and mass transfer so this was the it is a concept that was 

introduced by birds to attain light food to chemical engineering and we owe it you know 

we owe it to them. Similarly, we owe it to amundson neal amundson for introducing the 

whole of this similar kind of approach a very mathematical way of looking and a very 

basic way of looking to chemical engineering. 

Before that chemical engineering is also just about using chemical reactors and getting 

products out. But then he introduces whole approach and one of the major things did he 

did was looking at stability. He also did introduce bifurcation and analysis, but so these 

two major contribution is stability analysis, and bifurcation analysis. And what we study 

in todays lecture in next lecture is essentially a contribution of Amundsen. The linear 

stability analysis and 1955. So, what we do is that? We have to write the CSTR equation 

in an unsteady state form now so we looked at the steady state we had the unsteady state 

equations we wrote it before, but we did not solve it at that point of time . 

Now either are we are going to solve the unsteady state equation now but we are going to 

analyze the stability of the steady state using the unsteady form. Now I want to give you 

a generalized way of looking at it and therefore, what I do is I use a victorial analysis a 

victorial form of it. So, if you remember we had two components X and the F the cell 

and the substrate now we write it in the victorial form d C d t equals f C and C is a 

concentration vector which is composed of S and X fine now similarly, just because C is 

a is a vector f also has to be a vector . 

 So, f is vector of functions and P over here is a vector of parameters. So, P also involves 

lot of these parameters and let us chat them out So, it includes the dilution rate it includes 

the Y the el ratio the k S michaelis the monod growth kinetic constant mu max the 

maximum growth rate and the initial substrate concentration fine. And So the solution of 

the steady state solution would be if I wanted to write in mathematical form what would 

it be here.  

(( )). 

If S steady state just f S it is so we will write it like this f C s s so f remains the same C s 

s comma P equals 0. So, let me ask you this you know so what we are trying to? Let me 

try and explain first what we are trying to do is, not obtain the unsteady state solution of 

the problem as I said what we are trying to do is, give a little perturbation to the system 



and try to see how the system functions. So, what we are trying to look at is, how it 

functions in the vicinity of the steady state, or in the neighborhood of the steady state. 

So, as soon as I say that so what rings a you know brings a bell? So I am trying I have 

the steady state and I am trying to look at what happens in the vicinity or the 

neighborhood of the steady state so what should I do mathematically. 

(( )). 

How. 

(( )). 

How. 

(( )). 

No what is the theory? What is the theory that we are going to use? What is the theory 

you use to look at deviations from anything small deviations from anything? So, F over 

here if you look at the screen over here f at unsteady states slight for small perturbations 

at the unsteady state is slightly deviated from F at the steady state how do we quantify 

that deviation what is the theory we use. What is the theory? We use you you know this 

you know you should and you I believe you know all this tailor series expansion. So, 

simple when I say it so for tailor series expansion we need to figure out what this 

deviation is? 

So, the deviation is a small deviation about the steady state is that clear about the steady 

state, that has to be very clear first we obtain the steady state solution and then we give a 

small perturbation. And then look at deviations around the steady state so X is my 

deviation around the steady state, which is given as C t minus C s s C s s being the steady 

state and C t being the current one in the presence of deviation. So, what we want to 

study is? We gave a small deviation to the variables around the steady state we want to 

figure out that. how is this system going to behave is it going to blow up is it at the 

deviations is going to grow with time or the deviations are not going to grow with time. 

And we will do a linear stability analysis which means that linear stability analysis 

would mean that this is a non-linear system, what we have to do?. 



Linearise. 
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Linearise yes So, because I wrote my X as like this now C t could be written as C s s plus 

X t why am I writing in terms of X t just. Because I want to do a tailor series expansion 

fine. So, my d X d t would be written as f s C ss plus X comma P fine why do I write it, 

because I want to you know so what would be the tailor series expansion of this about C 

s it would be f C s comma P plus the rest of the term. So, if this I am now showing for 

any term so if g which is the function of C s s plus X is a scalar then, and I am going to 

go to the vector form of that so let us i'm giving you the simpler thing. 

Today which is just tailor series expansion in a scalar form so and then tailor series 

expansion of g s s is given as this. So, g and g C s s plus X is simply g g at C s plus del g 

del C s times X del two g del C s square this is not remember. You know one thing I 

want to tell you in sometimes people make mistake it is not del g del C s s it is del g del 

C evaluated at C s s. Similarly, it is del two g del C square evaluated at C s s and X’s 

square over two plus higher order terms, now if am to do quickly tell me if I am to do a 

linear stability analysis how many terms should I take in the system. 

First two of the terms. So, I have to stop at X if I want to do a linear stability as soon as I 

do take X’s square. I do a get an non-linear tailor series. So, I do not want to do that the I 

the reason. I want to do a tailor series expansion is, because it is easy to handle you know 



if I wanted to solve a non-linear equation, I would have actually gone and solved the full 

equation why would I do a tailor series expansion about it. 

So a linear analysis is easy to handle and it would give me ,what I want is? I just need to 

figure out the earlier initial trend like you know, whether the election people are always 

interested in the initial trends because initial trend show. Basically most of the time what 

is going to happen? So, similarly, here also I mean really interested at the initial trends 

and as soon as I get the initial trend I will have a ballpark idea of whether the system is 

going to decay or grow. 

So, I will stop here today and from the next class next class, what we have to start with 

is? How to convert? Tthis remember our system is victorial, and this is a victorial form 

out here. And if you look at the screen so if you so my question is that, how to convert 

this tailor series expansion in the first thing. We will do is in from the scalar form to the 

vector form, and then we will continue from this so let us stop here and we will continue 

from here tomorrow morning.  


