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So, from where we left, which is that effective diffusion in the fungal pellet and if we go 

to the slide, now, what we see is that, we wrote this equation, if you remember, which is 

the diffusion equation. So, on your left hand side is the diffusion of oxygen, and on your 

right hand side is the reaction that occurs because of the growth of the fungus, fungal 

pellet. So, it is, the fungal pellet essentially has to grow. What was the major assumption 

out here? The major assumption was upto the steady state approximation. So, the idea 

was that, though the fungal pellet is actually growing in radius, but, the rate of growth of 

the radius is much smaller than the rate of diffusion of oxygen, as a result. And, how did 

we conclude this? We concluded this through time scale analysis. We measured what is 

the time scale of the growth of the radius of the fungus, and we measured, what is the 



time scale for diffusion of oxygen in the fungal pellet. And, what we found was that, the 

time scale for the growth of the radius is much, much larger than the time scale for the 

growth of the fungal, of the diffusion of the oxygen; or, in other words, the diffusion of 

oxygen is a much faster process, as compared to the actual growth of the radius of the 

fungal pellet. 

So, as the result of which, we can write the pseudo, steady state approximation, or in 

other words, we can assume that, the diffusion of oxygen is the steady state process, as 

compared to the growth of the radius, fine. So, based on that, we write this equation out 

here, and what you see over here is that, the temporal term in oxygen concentration is 

missing, because of the pseudo steady state approximation, fine. So, this is the radial 

diffusion, excuse me; this is the radial diffusion, and this is the reaction term and this is 

written in dimensionless coordinate; all of it is written in dimensionless coordinate; and, 

I am not redefining these dimensionless coordinates. The reason I am not redefining is 

that, we already did this same, that immobilized enzyme case, you know, the last 

example we did in, in the immobilized enzyme, already had the same variables and same 

dimensionless coordinates. 

So, you can go back and look up; (( )) so, I am not redefining it. Now, the assumption 

here is that, C oxygen is much, much greater than K M, which is a very reasonable 

assumption, because, if you want to grow something, you know, fungus is growing for 

example, oxygen is typically in abundance, as compared to the k m. So, that is a very 

straightforward assumption. Now, when you make that assumption, what you find is that, 

this, this equation, which is a Michaelis-Menten kinetics, reduces to a first order kinetics 

over here; is that clear? So, the Michaelis-Menten kinetics over here, reduces to a zeroth 

order, sorry, reduces to a zeroth order kinetics over here, because, in the, when C O is 

much larger than K M, then, what happens? C O in the numerator and the denominator 

cancel out, and this is what you have. 

So, this is, this is what we got over here, and you know S 0 is all of this combined, K M 

and beta and so on, combined. So, R square, r is a radius of the mold, of the fungal mold, 

at that point of time; is that very clear? R, ideally, R is a function of time; it is increasing 

with time, but, since we are doing a pseudo steady state approximation, so, R over here is 

the radius of the fungal, at that point of time, fine. So, we write this equation; then, this is 

a very straightforward zeroth order, on the right hand side, and you can integrate it 



straight away, and what are my boundary conditions? Some are written on the screen, 

which is that, the oxygen concentration at the outside radius r equals 1, or r equals big r, 

whatever it is, is 1 and d d d d r of C O 0 is 0, ok. 
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So, let me show you this by assuming this assumption. So, this is my cylindrical mold; 

my reaction equation over here is 1 over r d d r of r; nu max I used, instead of r max; the 

reason being that, r, now, we are using for the overall radius of the mold; that is why, I 

changed the…D effective; S 0 is that K M over beta, that you, K M times beta, sorry. So, 

this is my equation. The boundary condition inside is…So, this is my r; this is r equals 0; 

this is r equals 1. So, r equals 0, boundary condition is symmetry, right. So, equals 0, r 

equals 1; I am saying that, oxygen is present in a certain concentration. So, C O 2 equals 

1; 1 is the dimensionless coordinate, which means that, actual value of concentration is 

something, like some value C, C O 0, or something like that. So, C O 2 is equal to C O 0 

in dimensionless; dimensional, when you turn into dimensionless, this is what you get, 

right. So, this is a boundary conditions we have. We can straightaway integrate this. This 

is a straight forward integration and we can get the profile of concentration within the 

mold. So, you know, so, why are we doing this and the reason would be obvious, you 

know, some of, one of you, I think, asked this question the other day, and the reason 

would be obvious, once we come up with the solution. 
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So, look at the solution. So, this is how it goes as, you know, it goes quadratically; 

essentially, as you see, it increases with radius, right. It increases quadratically with 

radius. So, it is some constant plus another constant times r square; is that clear. So, it is 

one constant, some a, plus b times r square. So, it increases quadratically with the radius. 

Now, what you know, what you know is that, the concentration at the outside, at this 

interface between the fungus and the air is a constant, which means, in other words, it 

decreases quadratically, as you go inside the fungus; is that clear. So, what will happen 

is, just try to, you know, invasion this. As you, as you keep increasing the size of the 

mold, what will happen? The gradient will get steeper and steeper, right, because the 

concentration that you provide at the outside, that is the interface between the mold and 

the, and air is a constant. So, as the radius keeps increasing, the gradient will get steeper 

and steeper, fine; and there, will come a point in time… 

So, this is a steady, pseudo steady, under a pseudo steady state approximation, we are 

making this; but remember, this r is actually a function of time. So, when you make a 

pseudo steady state approximation, how do you do that? (( )) how do you enforce that? 

So, first you solve the steady… So, if I ask you to solve a problem using pseudo steady 

state approximation, so, what is the idea? You decouple the state, the two, two 

phenomena. How do you decouple the two phenomena? By first showing that, the time 

scales of these two phenomena are different. So, the time scale which is much smaller is 

under steady state. So, you write a steady state equation like, just like we did, and solve 



for it; then, you solve the unsteady state equation and get how radius varies with time. 

For example, here, if you have your d r d t, if I remember, here d r d t equals K, fine. 
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So, if this is what you have, then, you got your x as a function like this, and you can also 

integrate d r d t equals K over here, right away, and get how radius varies with time. So, 

radius here, would vary in some, you know, linearly, for example, here it is varying, 

some K t, fine. So, what you do here is that, after we have solved for the steady state, 

you impose that temporal dependence of radius on this equation; or, in other words, if 

radius, for example, varies linearly with time over here, or, radius varies exponentially 

with time over here, then, you go and put that into this equation; is that clear? Let me 

write, if it is not clear. 
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So, your C 0, the solution that you get here is, C 0 minus R square nu max, 1 minus r 

square. Now, if R equals some R 0 at t equal 0 time, let us say, exponential; we are just 

assuming; exponential minus, you know, K t, something like this, sorry; it should be plus 

K t, in this case, if it is increasing with time. So, what you do is, you put…So, this is 

your, essentially your R, at any point of time. So, you put that over here, and what you 

get is, 1 minus R 0 exponential K t, fine. So, if this (( )) exponential K t is some linear 

dependence and that will come in. So, this is a way to, is that, is that clear? This is the 

way to solve the pseudo approximation, when you have a pseudo steady, steady state, or 

there is the decoupling of state, two states, then, this is the way to solve it. First, go and 

solve for the steady state, and then, impose; then, solve for the unsteady state and impose 

that unsteady state condition on the steady state solution; is that clear? This is the way to 

do it, fine. 

Now, excuse me. So, what you find over here, what you find is that, if just by looking at 

this equation that, as the radius keeps increasing, the concentration gradient becomes 

steeper. Now, the concentration outside is a constant, remember; if the concentration 

outside will not a constant, if you are increasing it, then, no problem; but, because the 

concentration outside the mold...So, concentration here is a constant, is a constant and 

this radius is keeps increasing, what will happen? There, there will come a point in time, 

when the center of the mold would stop getting any oxygen at all; is that clear? There 

will come a point in time, when the center of the mold will stop getting any oxygen at 



all, and that means that, the center of the mold can grow, no longer grow; and, that is my 

critical radius. 
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So, let me show you the definition of that. So, at critical radius, the critical radius is 

defined as that radius, when the center of the mold is depleted of oxygen. And, if the 

center of the mold is depleted of oxygen, then, the growth stops; because, this thing has 

to push from outside, you know; so, this is a, this is a radius that we want to evaluate; 

and how would you evaluate that, from this expression? We put r equals, this r equals 

what? What, how do we get this R critical? 

(( )). 

C. 

(( )) concentration of (( )). 

Yes, but, there, that is fine. This side is 0; but, there is a variable out here; critical radius 

is a constant and r over here, is a variable. So, C O 2 equals 0, I agree; what else? 

Sir, that will happen at this center. 

Yes; so? 

That (( )) will also have to be 0. 



Yes. So, this r has to be 0; this r, remember big r, is the external radius; this radius at r 

equals 0. Thus C O 2 has to be 0. So, you put 0 over here, 0 over here and you will 

simply get the critical radius right away, as square root of 6 S 0 D effective over nu max. 

So, I hope this answers your question from last time that, fungus cannot grow, grow 

indefinitely and there will come a point, when it will stop growing and that is the time it 

will try to divide itself, so that, it can continue to grow. So, this is the limit of the colony. 

So, it is a colony, that kind of, it keeps expanding, but, it does not expand indefinitely; it 

expands only up till the time, that the radius equals the critical radius; so, which is given 

over here, square root of 6 S 0 D effective over nu max. 

So, once this critical radius is, is attained, then, the funguses stop growing and it will, 

maybe divide and allow for future growth; is it clear? So, what we looked at is, you 

know, we are looking at different, different things, at the same time. So, first, we looked 

at the normal growth kinetics, and you know, how the kinetics changes, and what is the 

dynamics of the kinetics, and how different models had been proposed, to sort of 

quantify these dynamics, and what we figured is this, that, of all the kinetics model, 

kinetic models that have been proposed, it (( )) the Monod model, or the modified 

Monod model, which are the most useful models. 

Then, we looked at the effective mass transfer, gave you a couple of examples to look at 

the effect of mass transfer, and just as we had seen that, in the case of, case of a 

immobilized enzymes, mass transfer effects kinetics; or, in other words, kind of 

decelerates kinetics. Similarly, if mass transfer effects here are going to decelerate, or 

slow down the growth process; but, there is no running away from it, because, for the 

growth process, just as in the enzymatic process, you need the substrate; you need to 

provide the oxygen, and the nitrogen, and the hydrogen, and the carbon, just as we 

showed in the first, I think, the first slide of this whole chapter. You need all of these 

substrates to be available to the, to the cell and without this, there is no way you can have 

cell growth. 

Now, as soon as you need all of these substrates to be available to the cell, you 

immediately need, you know, mass transfer effect, would, all the mass transfer 

limitations would automatically come in. So, there is no running away from it. So, we 

looked at some of these and with the effect of, with the, for the case of normal growth of 

single cells and the growth of fungus. So, what we said was that, the major difference 



between the growth of cells, cell colony, and the growth of fungus is that, a cell, cell in, 

when a cell colony grows in general, it is like a cell is surrounded by the fluid and 

therefore, by the substrate, and therefore, it has direct effect, direct contact with the 

substrate; whereas, a fungus would always grow as a pellet, or a mold, you know, as, as 

the, as a lump of colony and therefore, the cells inside the fungus do not have any contact 

with the nutrients. 

So, the only way the nutrients can come in, is through the interface, from the outside, it is 

slowly diffuse it and this is the basic difference. And therefore, we did, looked at the 

mass transfer effect for a single cell and then, we looked at the mass transfer effect for 

the fungus mold. So, we are at this point. Now, what we are going to do for the rest of 

the lecture today, is look at some other effects, and those effects are the effects of 

multiple substrates and the effects of inhibition, which means that, if you have more than 

one substrate, right. So, you can provide substrates in different forms, and both can lead 

to cell growth; then, what happens, right. So, for example, you can give your, your sugar, 

you know, both in terms of sucrose and glucose, you know, maybe two different form. 

So, fructose, sucrose or glucose, you know, two or three different forms. Now, all of 

these substrates, they have different kinetics, remember; each of them will have different 

kinetic, but they, all of them lead to growth of the cell, fine. So, how do we account for 

that, a; b is that, what would be the effective inhibition, just like we did in the enzyme 

case. So, there is, just as you have substrate, there could be inhibitory things that are 

there, a and b is that, when you give too much of substrate, that, one of the thing that we 

talked about, I think, earlier, you can have, what is known as substrate inhibition. So, 

how do these affect the cell growth process and we are just going to look at that. I hope 

we can finish this today. Then, we can start a new chapter; but anyway, we are not going 

to hurry through it; we are going to do it very slowly. 
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The first thing we will look at, is the effect of multiple substrates. So, multiple substrate 

means that, you have cells which are exposed to two different substrates, and both these 

substrates will lead to the product formation, that is daughter cells, but through different 

kinetic routes. So, this is, what you see on the screen is, x is your cell, starting cell, and S 

1 is substrate number one and you get the daughter cell x, 2 x; but, through the formation 

of the intermediate compound, intermediate cell x prime, which is one route, with a set 

of reaction coefficients k 1, k minus 1 and k 3; and then, you have another substrate, that 

is, they are parallelly in the system. So, you have, might have, you know, given two 

substrates to the system. So, that gives again, the daughter cells, 2 x, but through 

different route, x double prime; and the reaction rate constants are k 2, k minus 2 and k 4. 

Now, I talked about the yield yesterday, if you remember, in the last class, I talked about 

yield and so, the yield is the amount of daughter cells produced per, per mole of the 

substrates, ok. 

So, for case one, what is your yield? One daughter cell is produced; from two, two cells, 

you get, one cell, you get two cells, which means, one, effectively one extra cell has been 

produced for a one mole of the substrate. So, the yield of x over S 1 is 1 over a 1; and for 

case two, the yield of x over S 2, that is, one daughter cell has been produced for a 2 

moles of S 2. So, yield is 1 over a 2, fine. Now, how do we find…So, what we are trying 

to find is, what the, how would we find the overall growth rate of the system? So, what is 

the goal, that has to be very clearly defined. So, we did…What did we do? We have done 



only one single substrate before, and we have found the growth rate; so, which is d x d t 

equals nu, nu, nu times x, where nu is given by the Monod, Monod kinetics, S 0 over K 

plus S 0, some r max S 0, double K plus S 0. 

So, here we are trying to find out, what would be the form of the growth, overall growth 

of the system, because, what we are in, essentially interested at the end of the day is the 

overall growth. I start with 5 million cells; how many cells do I get after 24 hours or so, 

that is what I am interested; excuse me. So, the balance equations, excuse me, the 

balance equations over here, are this. So, what I am writing is, I am writing a balance for 

the intermediate species; the del x t, del x prime del t and as you see over here, the first 

term is k 1 x S 1 which is the term, because of this forward reaction over here. See the, 

where the arrow is. So, this forward reaction over here, we (( )) this term. The second 

term is minus k minus 1 x prime, which is the result of the backward reaction over here. 

The first reaction, the backward reaction you had; and the third term over here, is minus 

k 3 x prime, which is the result of the formation of the product, of the daughter cells. Is it 

clear, these three terms? It is very straightforward; and then, the same thing is repeated 

for x double prime, ok. So, k 2 x times S 2 minus k minus 2 x double prime minus k 4 x 

double prime; is it clear to all? So, is there a question? 

 (( )). 

No; power, no, no, no, no; yes; that, I will explain that. See, this is not an elementary 

reaction. See, when do you have the power? Let us, let me explain that, if there is any 

doubt. 
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A plus B giving C; then, rate of formation of, of C is K C A C B; if it is an elementary 

reaction; A plus 2 A, 2 B giving C, the rate is, could be given as K C A C B square, only 

if, if and only if, it is an elementary reaction; is that clear? If it is not an elementary 

reaction, there is, nobody said that, that is a, that is a rate. So, it could be this. 

(( )). 

This one? 

No; no, no, A plus 2 B (( )) equals to C. 

Yes, elementary reaction means, the definition of the elementary reaction is that, the rate 

of the reaction is written exactly as the same way in which the molar concentration, 

composition of the reactants react; that is the definition. See this reaction for example; it 

is defined, an elementary reaction is, will be defined only if…So, if this, this molar 

concentration is 1 is to 2 mole, it reacts in 1 is to 2 mole ratio and the reaction rate is also 

given as C A C B square; but, it is not necessary that, exactly the, the mole ratio in which 

they react, will be the ratio in which the, the rate of the reaction is measured; because 

there, see that, the elementary reaction means that, there are no other effects, apart from 

the molecular collision between the, between the two molecules that govern the rate of 

the reaction. Do you understand what I am saying? 



So, if there are no other effects…So, it is…See, this is very unlikely that, this will be an 

elementary reaction. Why, because, the probability of 2 molecules of B and 1 molecules 

of A, coming and colliding and forming 1 molecule of C, is very, very small. So, 

typically, a elementary reactions are of the, or either first order, or second order. So, you 

know, when we talk about first order reaction, so, it cannot be an elementary reaction; 

because, 1 molecule cannot combine with your, itself; there has to be a molecular 

collision. So, what is the elementary reaction mean that, the way 2 molecules collide 

with each other is exactly the way the reaction is represented, as also, when the reaction 

rate is written. So, do not assume that, whenever you write a...So, this is the molar ratio; 

this is its stoichiometry. 

So, do not confuse stoichiometry with the power of the reaction. The stoichiometry 

would be same as the power of the reaction only, and only if, it is an elementary reaction; 

elementary reaction means that, all other effects are ignored. So, it is directly that, the 2 

molecules are combining and that is forming the reaction; but, in the most cases, it is not 

like that. You know that, there are complex steps out there; for example, this step that I 

have written over here, as I, as we do in the enzyme, they are not necessarily elementary 

reactions, which means that, it is not that this step alone is occurring; there are multiple 

steps that are, that are probably occurring over here, and they are summarized as these 

reversible reactions. And, elementary reaction means that, one single step, single step 

reaction and in that ratio. So, the molar ratio, the stoichiometric ratio that is there; so, 

they combine, these 2 molecules, it combine and form. So, this is something very 

fundamental; you should not make a mistake about it.  

So, if I want to say, tell you that, this is the rate of the reaction, then, I will say that, this 

is the reaction and which reaction, one is an elementary reaction, which means that, in 

this case, you will raise to the, raise this to the power a 1; and, but then, elementary 

reaction, if a 1 is not an integer, then, it cannot be an elementary reaction also; do you 

understand what I am trying to say? If a, a is say 0.75, it cannot be a elementary reaction, 

because 0.75 of a molecule cannot combine with, you know, another molecule. So, for 

elementary reaction a 1 has to be a number, typically, 1 or at best 2; even 2 is hard, but, 

at best 2; but, not more than 2; because, 3 molecule, the probability of 3 molecules 

combining with each other goes down. You know, if you have read some of (( )) 



mechanics, you will understand that, the probability goes down exponentially. So, 

anyhow, now, so, this is the reaction rate and… 
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So, the next step, what we do is, we write the constraint equation like we did before, 

which is the total amount of cells present in the system. So, x t is the total amount of 

cells present in the system. So, the total amount of cells present in the system is either in 

the form of x, which is a daughter or the mother cell, or in the form of any of the 

intermediate species x prime or x double prime. So, the, this, this is my constraint 

equation. Next, what I do is, use a pseudo steady state approximation, the quasi steady 

state approximation like we did before; that del del t of x prime equals 0 and del del t of 

x double prime equals 0, fine. Now, let me explain this a little bit, from what is written in 

the last line. 
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So, d x d t. So, x, my x equals, x t equals, x plus x prime plus x double prime. So, d x d t 

would be d x t d t, minus d x prime and d t minus, d x double prime d t, right; but, these 

are 0, because of pseudo steady state approximation. So, you get this as d x t d t, fine; 

you get this as d x t d t. 

Now, this equals k 3 x prime plus k 4 x double prime. Can anybody tell me, why is that? 

d x t d t equals k 3 x prime plus k 4 x double prime? 

(( )). 

Right. So, x t is what? x t is the overall amount of cells that are present. Now, see, the 

only difference here from what we did in the enzyme case, if I go, if I am allowed to go 

back to this slide. So, look at this. So, this is the reaction that is occurring because of the 

formation of the daughter cells that are occurring through the, from x prime or x double 

prime to 2 x. So, what is the major difference from what we are doing here, from what 

we are doing in the constraint? This x t is not a constant; that is the only difference. In 

the enzymes case and all the previous cases we had done, this x t was a constant, right. 

But here, the x t is not a constant. So, that is a major difference that, that is there; why, 

because, so, there is a overall growth, growth of the cells. And, how is this overall 

growth quantify, if I come here. So, what is the overall growth? If you look at this 

system, for example, the overall growth is, 1 cell, 1 x, 1 cell, 1 daughter cell grows from 

this, ok. 



So, the total growth for the system d x t d t, d d t of x t equals, so, k 3 times x prime plus 

k 4 times x double prime. So, one daughter cell growth, each of these reactions; first 

reaction, one daughter cell growth, and second reaction, one daughter cell growth; is it 

clear to everybody? This is a little tricky part. So, this is what we have. So, I hope you 

agree with me. Now, d x prime d t equals 0. So, x prime equals, if you go back, you 

know, to your notes and check the, I, I can go back to the slide in a minute, but, just let 

me write this; this is what I get here, if you go back to your notes and the pseudo steady 

state; this is a pseudo steady state approximation; pseudo steady state approximation; this 

is what we meant. So, you will see that, d x prime d t equals 0 would give you this and if 

you have a doubt, I will go back to it in the, here. So, look at this. So, what you have is k 

1 x S 1 minus k minus 1 x prime minus k 3 x x prime, ok. 

So, from here, you can, if this side, the left hand side is 0, you can straightaway express 

your x prime as a function of x and S 1; clear to all of you? So, the same thing you can 

do over here, with x double prime. If your d x, d d t of x double prime is 0, then, you can 

express your x double prime as a function of x and S 2; yes, S 2, right. So, this is what 

we do over here. 
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So, x, x, d d t of x prime is written as 0, and x prime is given by this number, and x 

double prime is written as this number. So, why we are doing it because, we intend to 

substitute these two into our, our constraint equation, just like we had done before. So, 



when we substitute these two into our constraint, our constraint equation is here at the 

top and what we do is, we substitute these two into our constraint equation. So, this is 

what I get. So, x t equals x times…So, x is the first term, then, x prime here. So, you take 

x out of the parameters, it is common, out of the parameter; so, you get this and get this. 

But, so, only thing that you have to keep in mind again that, x t is not a constant over 

here; it is varying with time. So, that is the major difference between what we are doing 

now, to what we did in the previous constraint equation. Now, we can take a derivative 

of this; I will, I will continue, as soon as you finish writing. Shall I go ahead? 
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Now, we take the derivatives. So, d x this, this was already something that I have written 

d x d t, d d t of x t is k 3 x prime plus k 4 x double prime. So, you do the same thing 

again; you replace your x prime by what you got from the pseudo steady state 

approximation; you replace your x double prime by what you got from the pseudo steady 

state approximation, fine. Just write the first step, then, I will show the, the next step; just 

write the first line, then, I will show you the, you know, how to get the second line. You 

probably know that already, but, I will still show you. 



(Refer Slide Time 32:22) 

 

So, d x d t equals k 3 x prime plus k 4 x double prime. So, this, you replace; as soon as 

you replace, you get x times this number k 3, fine. Now, what you do is, let us go to this 

slide. So, here, you can have the…Here, the last line, you have the, you have the 

relationship between x t and x. So, because, why I am doing this because, we, we, we 

want to find everything, in terms of the total amount of cell that is present in the system. 

So, because it does not matter to us, which one is the, is a pseudo steady state, which is 

the daughter, which is the, because, what you can measure essentially at the end of the 

day is, a total amount of cells; you know, you, under microscope, you cannot 

differentiate that, this is in the intermediate species, this is the final and this is the initial 

species. So, what you can measure, is the total amount of cell. So, that is why, all our 

calculations, we want to do it in terms of the total amount of cell. So, x t over here is 1 

plus k 1 S 1 k minus 1 k 3 plus k 2 S 1 k minus 2 plus k 4, fine. So, this quantity is a little 

too big, so, let me call it, this B or something. So, if x is x t times B inverse, then, you 

can put it over here, into this equation, this whole thing. So, x t is… So, then, you can get 

it in that form and let us call this, this thing A; this, this term is A; this term is B; then, 

what you have is…So, what I did was, I just said, this term is A; this term is B. 
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And then, what you have is d d, d x d t equals x t times A times B inverse, fine. Now, 

what is my mu? mu is the specific growth rate, fine. How is it defined? 1 over x t times d 

x t d t; take the first order rate constant. So, from this, what we will get from this 

equation, from here? So, what I get, this equals A times B inverse. So, I got my specific 

growth rate. 
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Now, the specific growth rate for the Monod model, if you remember, were some S, you 

know, K S times r x r max S times K over K plus S, right; that was the Monod growth 



model, mu, right. So, now, you can…So, this is what you get. So, the exactly the, you 

know, once we do the, the steps that we did, did in, on paper, this is what you get and mu 

is your, mu, a nu rate, specific growth rate. So, once you do the simplification, which we 

are not doing because of lack of time…So, this is your mu; this inverse time this. And, 

there is, if you multiply both of these, and you know, you can do a little bit of 

simplification, then, you see, find out that, mu comes out to be in a very nice compact 

form, and what is interesting over here is that, the, it is interesting to note is that, the 

substrates influence each other. 

So, the specific growth rate of the two substrates put together, is not equal to the specific 

growth rate of substrate one, and the, plus the specific growth rate of substrate two. They 

are not independent; the substrate, the, the, the two growths are not independent of each 

other, and what you find over here is that, the, this is specific growth rate of substrate 

one; but, it is being influenced; in the presence of substrate two, is, there is an influence 

out here, alpha 2 S 2. Similarly, the specific growth rate of substrate two is being 

influenced by this specific growth rate of substrate one and that is influenced out here in 

terms of alpha 1 s 1. And, alpha 1 and alpha 2 are constants, obviously. So, again, when 

you come to alpha 1 and alpha 2, interestingly, we will see that, alpha, alpha 2 and alpha 

1, both of them involve all the rate constants, all the rate constants of the reactions. 

So, k 1, k minus 1, k 3, k 2, k minus 2, k 4. So, all the six rate constants of the two 

reactions are involved in alpha 1 and alpha 2. And not surprisingly, what you find that, 

mu max 1 equals k 3 and mu max 2 equals k 4. Why is that not surprising, because, the 

maximum rate possible is the one, you know, in the absence of everything, just the 

straight forward production rate. And, why I am saying that is interesting, is because, 

you know, you, we did not presume anything; we just went ahead and did the 

calculation, and when you got the final results, you can make some physical sense out of 

those results. So, k 1 is the specific, you know, the rate constants in, involved in the 

reaction one; k 2 are the rate constants involved in reaction two. And, as I said that, the 

mu max, maximum growth rate of reaction one is k 3; the maximum growth rate of 

reaction two is k 4, fine. 

So, this is an important result and, and you know, you might want to at least remember, 

if not remember it completely, at least, have a sense of what is going on. And, this is not 

difficult to remember actually, because, this is a Monod growth kinetics and you just add 



one term in the denominator and this is a Monod growth kinetics, add one term in the 

denominator; and what are the difficult to remember, might be these constants. So, those 

might be difficult to remember. So, the next thing we do is, the effect of inhibition. So, 

here, first thing we looked at, is the effect of multiple substrates; but the next thing that 

we do, is the effective inhibition. 
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So, what is the substrate? You know, if you have one single substrate, but, instead of the 

substrate, along with the substrate producing the cells, the substrate inhibits. So, this is 

exactly the same, if you remember, as substrate inhibition that we did for the case of 

enzyme kinetic; exactly the same. So, the kinetics is also the same. So, in there also, we 

had the thing X plus S giving X S, which you know, in, in earlier case, gives products, 

but, in this case, our product is the new cell. So, X plus S giving X S gives new cell and 

this is the inhibition. So, X plus S, more substrate is there, that present over there; instead 

of, you know, giving new cells, it gives this complex X S 2, which does not lead to 

product formation. So, we have to, you know, go through the similar set of steps that we 

did for inhibition in case of enzyme kinetics, except that, in these, in this case, the 

difference being that, this is varying with time. So, x t is not a constant, but, x t is 

varying with time, ok. 

So, x t over, d x t, d d t of x t over here is K times X S, right; is that clear to everybody? 

Why is that, because, this second reaction is not leading to any growth of cell. So, you 



know…So, that is not considered over there. So, d d t of x t is K times S. Now, K, K, K 

times X S, sorry. Now, from here, from the first reaction, the reversible first reaction, 

what you find is, if this is assumed to have attained equilibrium, then, X S could be 

written as, X times S could be written as, K S times X S; is it clear to everybody? Very 

straightforward. So, we can replace my X S that I have over here, by X times S divided 

by K S, fine. So, you have K over K S times X times S, ok. 

Now, the other things to take care of, this X S 2. So, my constraint equation again, is the 

total amount of cell that is present. Cells are present as parent cells and daughter cells, in, 

as X, in terms of the complex, intermediate complex X S, and in terms of the complex 

that you have is X S 2. So, the cells are presented in these three different forms, fine. 

Again, I want to reiterate that, x t is not a constant, but, it varies with time. So, d d t of x t 

is not 0; but, what we do over here is that, this, from this inhibition, in inhibition 

reaction, the substrate inhibition reaction, this, we again assume to have gained 

equilibrium, fine. We had assumed the substrate inhibition reaction given here to have 

attained the equilibrium and as the result, we can write K i as X S times X S times X S 2, 

clear. Then, X S, again, we can write from this equation as, X times S over K S, clear. 

So, that is what we do. So, we write this X plus X S plus X S 2. So, X plus X S, I have, I 

have substituted from here. So, X times S over K S and X S 2, I have substituted from 

here. So, X S 2 is, from here is, X S times S over K i, fine; where, X S could again be 

substituted by, X times S over K S, right. So, I can write this like this, and then, X, then, 

I can take X common, out of the whole thing, and this is, this is the part I get. I will just 

show you, if there is any problem with this. 
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So, x t equals X plus X S plus X S 2. I am just doing away with the bracket. So, X S 2 

equals X S times S over K i. Now, X S equals, this is from the X times S over K S and 

replace this over here. So, what I get is, X times S square over K i K S. So, from, if I 

replace it over here, I get X plus X S X times S over K S plus X times S square over K i 

K i K S. So, you can take it out. 
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So, what you, what you get over here is that, d x d t equals K S, K over K S times X 

times S; the reason being that, this is the final reaction. This is the only reaction, only 

thing that generates products, fine. Is that clear? 
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So, this is the only, this is the only step that generates product. So, you have K over K S 

times X S and then, you can substitute your X, X in terms of x t that we got. So, x in 

terms of x t is, we got over here; you substitute that back from here and you get in terms 

of x t. Now, my specific growth rate is 1 over x t d d t of x t. So, what is that? That is 

now, my mu over here, fine. So, what you find is mu, is this. So, what is the difference? 

The major difference that you find over here is, as compared to the mu that you have 

before, was that, the mu before, had something which is similar to a Monod growth 

kinetics; but, this is no way similar to the, close to the Monod growth kinetics. And, if 

you remember what we did from last time, what, what is going to be the characteristic of 

the mu? 
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How is this? You know, how is this mu going to be different from mus’ in the last case, 

graphically? Let us think graphically. So, you know, mu over S; in the Monod growth 

kinetics, it is going to be something like this, right. So, Monod. So, for multiple, you will 

have S 1 and S 2. So, say mu 1 is something like this; mu 2 is something like this, for 

multiple (( )); this is mu. Now, how is this (( )). 

(( )). 

Yes. So, it will go through a maximum and then, go down to 0. So, this one starts at 0 

and saturates; this one starts from 0 and goes to 0 through a maximum. Why is that? If 

you look at the expression itself, you will see that, that, it will, it will saturate out in the 

absence. So, how do you obtain the maximum? So, they are simply differentiated and do 

a del mu del x and get that. So, we did a del mu del x to get the maximum value, and the 

maximum specific growth rate turns out to be, S critical is square root of K i K S; square 

root of K i K S. It is similar, if you remember from last time, in the case of the enzymatic 

growth, it is exactly similar, to what we did in the last case. (( )) when you are done, (( )) 

last case (( )). For the last case, you can do some calculations on your own also. So, there 

is a mu; just do, do a del mu del x and get this. So, shall we move on? 
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So, the last thing that we are going to do is, in today’s lecture is, allosteric inhibition and 

this is the last thing that we are going to do in this chapter also. So, in this kind of 

inhibition, what happens is that, instead of stopping here…See, what is the difference 

between the last case and here, is set, last time, we stopped here, X S 2 and we stopped 

here. In allosteric inhibition, what happens is that, this also gives rise to daughter cells. 

We do not stop here completely. We say that, this also gives a rise to, rise to daughter 

cells. So, in a way, it is the combination of substrate inhibition and multiple substrates. 

Come to think of it, it is a, do you agree with me? So, in a way, it is a combination 

substrate inhibition. In substrate inhibition, we had everything like, we had, but, we 

stopped over here, right. So, there is no daughter cells produced from the second 

reaction. But, in the multiple substrate, we did not have the same substrate, or 

combining, but, we had daughter cells from both the substrates. 

So, in a way, it is like a combination of multiple substrates and substrate inhibition. So, I 

would not do all the steps for it. I will do some steps and you can go ahead and do the 

rest, either here, or later, maybe at home, as an assignment. So, the procedure is that, the 

same procedure is as before; the only difference that is going to happen is that, del del t 

of x t is K 2 times X S plus this beta K 2 or X K 3, K 4 also we can call it. But, we just 

call it beta K 2, just for the sake of algebra, times X S 2; is that clear? So, I think, there, 

there is nothing hard in it. So, and then, you have to go and do the rest of the algebra, 

which is the x t, you have to, you know, calculate the x t, which is the X plus X S plus X 



S S, as before, and do the del del t of x t. And then, take the reversible for both cases, and 

this is a final result that you will come up with for mu. mu is defined as 1 over x t del d d 

t of x t and this is the final result, you will come up with. So, the difference between, yes, 

the difference between last time and this time is that, last time, we had the denominator 

and you had one term in the numerator; you have, you have another term in the 

numerator. So, it is quadratic, both in the numerator and the denominator and when you, 

again, it will have a lot more interesting kinetics. 

So, what I would like you to do is, probably (( )) slide here. So, what I would like you to 

do is, actually go and plot this; because, this is not necessarily going to have the same 

kinetics as, as that and it can even have multiple peaks. I am not sure, but, once you 

differentiate it, you will be able to figure out that, if it has multiple peaks. So, what I 

want you to do is, as a little assignment is that, do the steps; steps are very straight 

forward; but, do the steps and check the answer. And then, once you have got this, and I 

want you to plot this a and b c. The first thing you should actually do is, go and 

differentiate it; find the, find the maxima and the minima; because, once you get the 

maxima and the minima, you can plot it; very straight forward. Otherwise, you know, it 

is like a black box, trying to plot this. So, go and find the maxima and the minima; one of 

the maxima is going to be like what we had before; but, there in, there is a quadratic 

term. So, it could lead to some other interesting effect. 

So, I want you to see that. So, this is, this is a something, very common that happens and 

this is, this is the specific growth rate in, in, in that case and we need to understand how 

this works, in order to be able to figure out. So, the reason we are doing this is, like, you 

know, what we are going to do in the next chapter and these, all these cases that we did 

today are important, because, I am going to quiz you on, on those things, later in the 

exams. 
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So, in the next chapter, what we are going to look at, is the process, the dynamics of cell 

growth. See, we are looking at the kinetic sub cell growth. But, what happens is that, the 

cell growth process happens in a, in a reactor like this, you know. So, it could be a batch 

reactor; it could be a chemostat, continuous third tank reactor. 

So, one of the things that we are going to look at is, starting next class, it is a new 

chapter, is chemostat ,which is a C S T R, C S T R for a biological reaction. So, 

temperature is controlled and you know, pH is controlled. So, pH and temperature 

controlled and then, we look at the growth process inside this reactor. So, that is when all 

the kinetics that we are doing in this class and the previous classes in the mass transfer 

effects and so on, come into play. So, right now, we are looking at…So, this is all 

connected. So, right now, we are looking at the kinetics in itself; just isolating the 

kinetics and looking at it. Then, we put, check the kinetics out and put into the reactor, 

and look at what the effects are, and this, these are, I am, I am assure you that, some of 

these effects are going to be very interesting. So, we, we will work with, you know, 

some, probably, what we will start with is, not even this, the very straight forward case 

here, the Monod kinetics and then, we will go and slowly do what I will probably ask 

you to do, what the effects of multiple reactions are, the effects of inhibition and the 

effects of allosteric inhibition. So, we will stop here, and I will see you in the next class. 

Thanks. 


