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Immobilized enzymes and this is hopefully the last lecture on immobilized enzymes and 

the thing that, we are going to look at today is the effectiveness factor, the calculation of 

the effectiveness factors. So, the effectiveness factor, what is it signify? It signifies that, 

what is the total amount of reaction that is occurring over the total, a maximum amount 

of reaction that could have occurred right. So, that is a that is a idea for immobilized 

enzyme effectiveness factor sorry. So, we did look at effectiveness factors under in 

certain geometries and so on. 
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So, if you go to the slide, this is the last thing we did if you remember, we looked at 

encapsulated enzymes with reaction taking place both inside and outside and it was little 

complicated in terms of the boundary condition, and we took a simple geometry. 
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And then we go ended up with an equation like this, del del theta del x square equals phi 

square being the Thiele modulus phi square times theta and the boundary, condition the 

boundary condition included the biot number, which is the ratio of mass transfer, 

external to internal mass transferred times and then based on that, we got the solution 

and everything and we found the effectiveness factor. 
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Now, what we are trying to do, what we are going to do in today’s lecture is, try and 

obtain the general expression for the effectiveness factor. And I told you, while we 

derived the effectiveness factor for, I think with a normal slab or something that it comes 

out to be tan hyperbolic phi over phi and I told you that, this is an expression that you 

could use for different kinds of geometries, provided you make certain changes to phi, 

that is, you define phi in terms of the effective effective length L. And so, your length L 

is going to be the length for a slab, how the length for a slab, for a sphere is going to be 

something else, for radius is going to be something else, and we will figure out how to do 

that today. So, that is the first thing we will to do today. 
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So, my observed Thiele modulus, so now, we come up with the with the expression for 

observed Thiele modulus. So, if you remember, we had the Thiele modulus which had 

the reaction reaction times k times can diffusion time scale over reaction times scale 

right. 
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So, or in other words, if Thiele modulus is very small, then it means that, what is the 

mean that diffusion is Thiele module is much larger than 1, it means reaction is much 

faster than diffusion. And if Thiele module is much smaller than 1, it means reaction is 



much slower than diffusion right. So, but the thing is, if you look at it that, Thiele 

modulus essentially is, therefore diffusion diffusion reaction time over diffusion time 

right, say if reaction time is very small, then sorry. So, Thiele modulus should be 

diffusion time over reaction time, so phi square equals t D over t R. So, which is a square 

over D M divided by, what is the reaction time C naught over R C naught right. So, this 

turns out to be R C naught times a square over C naught D M fine. 

So, what do you find over here is that, if the reaction rate is faster, so Thiele modulus is 

essential is proportion to the reaction rate. Now, this, what is this reaction rate, the 

question is what is this reaction rate? When you when you write Thiele modulus, you 

write the reaction rate in terms of C naught right, what is the C naught, what is the 

concentration? 

(( )) 

Yes, that is what is typically taken. So, the Thiele modulus essentially is the maximum 

concentration of the initial concentration of the boundary concentration. Now, that 

obviously, is not a true representation of what is going on in the system, why is that? 

Because, of boundary concentration is much higher and this concentration inside is much 

lower, because of diffusion limitation of mass transfer limitation. So, what we want to 

come up with is an expression for the observed Thiele modulus. So, the actual Thiele 

modulus is R c or R c naught is square over you know D M C naught, but that is the 

intrinsic Thiele modulus, the actual Thiele modulus at the observed Thiele modulus is 

should be based on, not the reaction rate evaluated at the surface, but what, but the? 

Intrinsic (( )) 

No, no the intrinsic reaction rate is one of that is evaluated the surface. 

Maximum actual (( )) 

Actual reaction rate which means, but which point you know inside the matrix, the 

reaction rate varies from point to point right, the actual reaction rate at which point? 

(( )) 



No, the concentration is maximum is the exit, at the surface. So, then there is no point, 

then the Thiele modulus Thiele modulus is defined and the based on the concentration of 

the surface, concentration is maximum of the surface, let me draw this and matrix you 

know I think I do not know, why you are confused. So, this is my concentration at the 

surface, let us call the C naught. So, my Thiele modulus is defined on sorry reaction is 

defined on this intrinsic reaction rate is defined based on that, and my phi square is 

defined based on this reaction rate. What I am trying to say is that, this is not the correct 

representation of the Thiele modulus, the if I want to call my observed Thiele modulus as 

this, then this should be a square C naught over D M is fine, then something else over 

here reaction rate evaluated somewhere else, where where is it evaluated (No Audio 

from 6:16 to 6:26), where should this be evaluated? Because it it varies from point to 

point right, see let us understand two things that, the surface reaction rate is not a true 

representation. 

So, that is the maximum reaction rate possible, because the concentration is maximum 

there and the concentration inside the matrix is varies from point to point, then varies 

from point to point, because of mass transfer limitation. Now, which point, this also very 

straightforward answer and should come up with as really groggy, I mean you know at 

which point should should this concentration, we measured that? They varies from point 

to point, you agreed with that or not, then which point should be measured it right. 

It should be in average. 

It should average yes it is whether a volume average typically evolving average. So, this 

is what we have the R c the average of that. So, you take at different points and then take 

the average of this, as simple as that. So, how can I write this, now I have, once I have 

gotten this. 
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So, this calls this R v, I am not putting the c in there fine. So, this I can write now as 

right, so this is my phi square what is this, what is the R v? 

(( )) 

Yeah, effectiveness factors.  

So, my observed Thiele modulus is actual Thiele modulus or intrinsic Thiele modulus, 

times the effectiveness factor. So, this is what we have on the screen as well, just the 

same thing what I showed you. So, this is done here, if you see what I did was for the 

general reaction and what I shown here is for first order reaction. So, just R v c naught is 

represented by k v time c naught, and this is what you have, I think I think there is a, this 

k v cancels out this, there is a do not worry about this on the screen, I think there is a 

mistake there, it should be should not k v actually, because k v is in the denominator 

anyway yeah. So, this is correct that, observed reaction rate over interface diffusion rate. 

So, observed Thiele modulus is the effectiveness factor, times the actual reaction, the 

intrinsic reaction rate, which is the observed reaction rate. So, effectiveness factor times 

intrinsic reaction rate is an observed c reaction rate. So, the observed the Thiele modulus 

is observed reaction rate over interface diffusion. So, this expression is correct over here, 

and there is a problem with k v over here, so this is, these are not correct. So, this 

expression is correct if you want to write that, but what we wrote is essentially write 



before on the paper. So, now we come to this concept of the generalized expression for 

eta, which is something that I mentioned to you in the class or the class before, that is 

that you can come up with different expression for eta for each of the geometry, but 

those are hard to remember. So, what we want is a generalized expression of eta which 

you want to remember and the generalized expression in that, the phi that is there, the 

Thiele modulus of phi square that is there, it is defined in terms of the length scale of the 

system and this is known as what is this phenomenon known as? I used a word last time. 

Shape normalization. 

Shape normalization right. So, for different different shapes you can come up with the 

same same expression and as I said before, what I did say, that expression that we are 

going to use is not going to be completely accurate for all shapes, but it is very going to 

be very close to accurate. So, there is going to be 5, 10 percent error may be, but even 

with 5 to 10 percent error you pretty close. So, because you can in shape normalization 

you cannot have 100 percent accuracy. So, the expression that, we are going to use is 

this, eta equals tan hyperbolic phi over phi and does does it ring a bell? Yes, it does, 

because this is what we had obtained in the first calculation right when we did the slab 

yeah. So, transfer you know in a in a mass transfer in a reaction in a slab. So, what is the 

difference that is going to be here? The difference is that, phi that we are going to have is 

going to be defined not necessarily in terms of the length, but in terms of length scale, 

that are related to other geometry. So, what are those? So, phi square is defined as this 

set this is the first order reaction and if it is not a first order reaction, how do you 

redefine your phi square, this were first order reaction and if it is not, then what you do? 

I just did it few 10, 5 minutes back. 

R v L c square over c naught R at c evaluated at c naught L square divided by c naught d 

effective right. So, now this L that, you have over here phi square. So, why I am trying to 

tell you this, why I am trying to define that is, because it is not that all reactions of first 

order right. So, and you should be able to define the Thiele modulus for reaction which 

are not first order right. So, for reaction which is not first order, for Thiele modulus is 

defined just away, I wrote on paper few minutes back, R c naught R of c naught times L 

square divided by D effective c naught right and this is L that is here is half the width for 

rectangular geometry. So, if your width, say 2 b or something then you L is b, half the 

width, it is have the radius for a cylinder and one third the radius for a sphere. So, this is 



something that you need to remember, I do not expect to you remember all the formulas, 

but this is the important formula that you need to remember eta is tan hyperbolic, phi 

over phi, phi square is R c naught L square over D effective c naught or equals k v L 

square over the D effective for first order reaction L is w over two for rectangular 

geometry, half of the width, half the radius for cylinder and one third the radius for 

sphere, so this is something I want you to remember. 

Now, what we will do is, we will in you know we have looked at different cases before 

and what I am going to do with the use of this observed you know general form, general 

shape normalized formula and the previous formula, this going to look at limiting cases, 

how do how do limiting cases help us, because it help us help us calculate the asymptotes 

of the system. 
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So, first case that we are going to look at is, where the biot number is much much greater 

than 1 and phi square is much much lesser than 1 or in other words, the system is 

completely reaction limited. So, for reaction limited, what do you need, you need phi 

square is much much lesser than 1 or in other words in other words, why the why the two 

conditions necessary, phi square is much much lesser than 1, 1 means that, the reaction 

time scale v is much much greater than the interface diffusion time scale using phi square 

small much much smaller than 1? Why you need the other condition? (No Audio from 



14:18 to 14:30), Why you need the second condition? ( No Audio from 14:31 to 14:40) 

And a second condition involve biot number right, what what is Biot number? 
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Bio number is 

(( )) 

t 

(( )) 

Interface over 

(( )) which is the surface limit (( )) 

Yeah 

(( )) 

T d over 

T (( )) 

T 

M 



M maximum, yeah. So, this is much much greater than which means at the, what is it 

mean? 

(( )) 

Now, you should be able to tell. 

(( )) 

Slow huh 

(( )) 

Slower, yeah internal mass transfer is much much slower much much slower right. Now, 

can you make a sense of what what I am trying say here? So, phi square much much 

smaller than 1, means that t R is much much greater than t D right and fine you see, what 

I am saying here, you seen now, so what you get, is that clear? So, why why we need 

this, now is that making sense? You have three times scale, then in order to define a 

system as completely reaction limited, you have to show that the reaction time scale is a 

smallest of all three, it is not enough to show that, the phi square that you have over here. 

For example, it is much much smaller than 1, means this and this implies the t D is much 

much greater than t M. So, it is not enough to say that, the reaction is much much slower 

than diffusion, internal diffusion; you have to also show that, reaction is also much much 

slower than external diffusion, so which means that, the reaction has to be the rate 

limiting step. So, this is something that you need to understand that, when we have two 

processes in the system, it was enough to show that one of the processes is slower than 

the other, in order to call it a reaction limited or mass transfer limited. When you have 

three processes in the system, in order to call the call the system completely limited by 

one of the process, you have to show that, the process is smallest of all three, is that 

clear? 

 So, that is why you need two criteria, one is biot number much much greater than 1, 

another one phi square much much smaller than 1, fine. So, once we have said done that, 

now we can make the approximation. So, if it eta is tan hyperbolic phi over phi, now phi 

if phi is much much small, if phi square is smaller than 1, then phi square phi is even 

smaller than 1, and phi over. So, tan hyperbolic phi goes to phi fine. So, then you have 



eta of 1. So, eta of 1, what is what is it mean that, the concentration eta almost going to 

close to 1 means, since concentration, since there is no mass transfer limitation are 

hardly in mass transfer limitation, both internal and external the concentration inside the 

matrix is more or less close to the surface concentration is the what I means right. So, 

which means is the reaction is more or less taking place at the, close to the surface 

concentration fine. So, then the Thiele modulus, observed Thiele modulus equals say 

intrinsic Thiele modulus, because observed Thiele modulus eta times intrinsic Thiele 

modulus. So, as a result, observed Thiele modulus is same as the intrinsic modulus right. 

So, if my observed is, so if my intrinsic Thiele modulus is very small, small much much 

smaller than 1, then my observed Thiele modulus is also much much smaller than 1, 

because we just showed that they are equal. Now, this mean that inter phase diffusion is 

now, so what does the phi square much much smaller than 1 means, that inter phase 

diffusion is much much faster than reaction right. So, now this is the case, and inter 

phase reaction is much much faster than inter phase diffusion sorry is much much faster 

than reaction, intrinsic reaction. Now, if big phi equals small phi square, then it means 

that inter phase diffusion is much much faster than observed reaction as well, is that 

clear? Should not be any confusion, because eta is the ratio of observed reaction to 

intrinsic reaction. 

Now, eta means once eta equals 1 means, that of observed reaction is equal to intrinsic 

reaction. Now, if the phi square much much lesser than 1 means, inter phase diffusion is 

much faster than observed intrinsic reaction, it also it is also much faster than observed 

reaction fine. So, this is one of the limiting case we did, remember this. So, we will get 

go to the next case, so diffusion is not limiting, this very straightforward. 
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So, the second case that we look at is the other limit, not a complete limit, but you know 

to some sort. So, biot number much much greater than 1, and phi square much much 

greater than and so on. So, you have to do tell me very quickly, so I already gave you the 

definitions of both, you have to tell me, in this case, which one is the limiting one, it is 

already written. But you have to show that, which one is the limiting, which after the 

three processes, t D, t M and t R, which one is the limiting one. 
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So, here biot number is much much greater than 1 which means, t D is much much 

greater than t M right and phi square is much much less than sorry phi square is much 

much greater than one phi square is much much greater than one which means that t D is 

much much greater than t r. So, which means t D is much much greater than t m and and 

t D is much much greater than t R now I cannot write the kind of inequality I wrote 

before because I do not know really relationship here between t M and t R, but one thing 

I know is that, t D is the slowest of all is the smallest. 

So, it is not limited by internal diffusion, so it is always like this. So, whenever a 

relationship is given or some inequalities have given between these two numbers, you 

have to use these two numbers very quickly to figure out which is the largest time scale 

or in other words, which is the rate limiting step. So, if that is the case, now for a (( )) 

pretty straightforward again, the phi square is much much greater than 1 and we presume 

that, it is much much greater than 1, we presume that phi square is greater than 9, say if 

phi square is greater than 9 or in other words, phi is greater than 3, then tan hyperbolic 

phi equals 1. 

So, tan hyperbolic phi is 1, for all phi is larger than 3 fine. So, you can go on, put that 

over here and what you find this, eta goes 1 over phi, eta is inversely proportional to the 

square root of the intrinsic Thiele modulus, phi is remember, the square root of the 

intrinsic Thiele modulus. So, how do you obtain the observed Thiele modulus now, you 

simply multiply this by, multiply the intrinsic 1 by eta. So, observed Thiele modulus is 

eta times phi square, now eta itself is 1 over phi. So, this turns turns out to be phi right, 

eta itself is 1 over phi. So, (( )) this this comes out to be phi. 

Now, what we find from from this is that, phi square much much greater than 1 and this 

implies that, big phi also that is if intrinsic Thiele modulus much much greater than 1, 

then the observed Thiele modulus is also much much greater than 1 right, because 

though it is not as high in terms of the, I mean it is not as high as phi phi is, because it 

not equal to phi square, but it goes square square root of the Thiele modulus. So, with the 

square Thiele modulus is 100, then the observed Thiele modulus is 10, why do you think 

so? Can you can you explain physically that, last time what we had that, the observed 

Thiele modulus equals intrinsic Thiele modulus, but this time we do not have that, we 

have that it is not equal to, but it goes the square root of the intrinsic Thiele modulus. So, 

can you explain that, physically? Why does it not go as the directly, is not directly 



proportional, but it is goes square root of that, because of internal diffusion limitations. 

So, because of diffusion limitations, the concentration gradient is not uniform inside 

right, even if it smaller than or, than the external 1, it is not uniform inside. So, as a result 

the observed Thiele modulus is smaller than the intrinsic Thiele modulus is smaller than 

the intrinsic Thiele modulus it s large, even intrinsic Thiele modulus is large again is this 

is large, but because there are diffusion limitations present in the system, what is it 

mean? It means that the, if phi square is much much smaller than larger than 1, it means 

that reaction is very fast in system right. 

So, reaction is very fast, as a result the concentration is not going to be very high, if the 

concentration is not going to be very high inside, if the reaction is very fast. But still 

what this means is that, if there are internal limitations diffusion limitations present in the 

system, then this going to be concentration profile, is not going to uniform, is not going 

to be very high, but even without the small number, you can have profile, you see what I 

am saying. So, that is that is what I trying to say, it is not a uniform number, it is it is 

there is going to be a profile, but it is going to be a small number, because concentration 

is reaction is very fast, so this is what we get. 

And so, what we can do is, if we want to measure experimentally the last thing you see 

on the page here where the pointer is. So, if you want to measure experimentally, what is 

the observed reaction rate is, because this is something why do you want to measure, 

then this how you do it. So, observed reaction rate, so what you do is, you put this side, 

the left hand side, you just substitute the observed Thiele modulus; the right hand side 

you substitute the square root of the intrinsic Thiele modulus. 

And based on that, so L cancels out over here one of the L’s. So, you get the observed 

observed reaction rate equals square root of k v over D effective, one D effective cancels 

out here sorry. So, square root of k v time D effective times k v C naught over l. So, this 

is my observed reaction rate, because why why do I am, why do you want to measure, 

because see intrinsic reaction rate is easy to measure, how? Because, if you simply 

measure the rate constant which is easily available, you can measure the intrinsic 

reaction rate, if its first order reaction, it is just proportional to that times the C naught. 

But observed reaction rate is very hard to measure, why is that? Because, you took take a 

pallet or something or immobilized enzyme and at each point, you have to inside the 



matrix it to go and measure the concentration, then into multiply by the rate constant and 

then you have to average it out over the volume, which is a very hard thing to do. So, 

that is not the best way to measure. So, even we are trying to figure out, what could be 

the other ways of measuring the observed reaction rate and this is one of the ways that 

we find over here is that, you can measure the intrinsic reaction rate, D effective 

diffusion coefficient length of the matrix and the concentration and we find the formula 

to, without measuring the observed reaction rate, actually we find the formula to be able 

to evaluated, so this is (( )) 

So, we do not measure the observed reaction rate. So, earlier what was going to trying to 

doing, they are trying to solve the whole problem and everything and obtain the 

concentration profile and and, so experimentally is very hard to measure. So, there are 

two ways, one is to actually solve for the concentration profile in the system theoretically 

and use that to measure my observed reaction rate right, because observed reaction rate is 

the integral of the rate constant time is the concentration over the domain, so that is one 

procedure. 

The second one is, to be able to measure it in terms of other parameter, which is what we 

are trying to do, but remember that is something you can do only in limiting cases. In 

limiting cases, where one of the three processes, internal diffusion, external diffusion, 

external mass transfer, internal mass transfer and reaction, one of the three processes is 

very very slow as compared to the other two; only in those limiting cases, can we do it. 

So, this is what we get, so the observed reaction rate is what we said just now, k v time D 

effective square root of time that times k a v times C naught over L fine. 
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So, let us do the last case, I think this is the one which is the case with finite biot number. 

So, we did the case of very large biot numbers, but what happens in the case of finite biot 

number, it formula that we used before was, where there was no external mass transfer 

limitations right. You remember, let us go back this one that we used over here, why did 

we use it? Because, it it there is no external limitation, because all these cases that we 

considered before, the Biot number was much much greater than 1 which means, there is 

no external limitation. Now, if there are external limitations, we derived let us see yeah 

here. So, this is the expression we derived right this is, so if if you look at this 

expression, what happens in the in the limit of biot number going to infinity, this goes to 

tan hyperbolic phi over phi. So, this is the expression, general expression. So, in this 

expression is a limit of biot number going to infinity or very large, this goes tan 

hyperbolic phi over phi, which is what we used over here for the last calculation, because 

we looked at the two limiting cases; in both limiting cases, biot number was much larger 

than 1. 

So, now we look at the intermediate case. So, the biot number is not very large, it is not 

going to infinity which means that, we have to use the whole expression, it can tan 

hyperbolic phi over phi, it has to be tan hyperbolic phi over phi multiplied by this factor 

over here, so 1 over phi tan hyperbolic phi over biot number plus 1. So, I suggest you 

right, this expression for eta, you have it before also, but just for the sake of 

remembering, you write this. So, phi square cancels out in numerator and denominator 



one of them. So, you get phi time hyperbolic phi divided by phi time hyperbolic phi over 

biot number plus 1, then we what we are going to do is, we are going to do some special 

cases on phi. So, biot number is finite over here, but we can take limits on phi. So, what 

did we do last time, last time we assumed biot number to be infinite and then took two 

limits of phi, phi much much smaller than 1, much much greater than 1, here we will 

assume biot number to be finite and then, we can take limits on phi fine. 
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So, the first limit we take again is phi greater than, much much greater than 1, it does not 

even have to be much much greater than 1, as we showed last time is just if it is phi 

square is greater than 10 or something, then we can assume this tan hyperbolic phi over 

phi and there is lot of simplification that is possible, so biot number. So, observed Thiele 

modulus is biot number times phi divided by biot number plus phi. So, what do you find 

over here, if you take the observed Thiele modulus, 1 over phi would be, 1 over phi is 

one over biot number plus 1 over intrinsic phi 1 over big phi would be 1 over biot 

number plus 1 over intrinsic phi, what is it suggest, physically what is it suggest, and we 

have done something like this, not exactly the same, but something like this before. 

(( )) 

Which two resistances? 

 (( )) both mass transfer 



Two mass transfer resistances are in series, but look at this carefully, there are not 

exactly in series, this is not the summation of the linear sum, this is the mass, you can 

signifies this is the mass transfer resistance, then it become, this one looks like the 

diffusion resistance, but square root of that, because actual diffusion resistance would be 

given by 1 over phi square, it is it is a summation of the resistances, but not as linear sum 

of the resistances, one is linear then the other one is goes square root of it, this is what 

you need to remember. So, this for finite biot number with phi square much greater than, 

I mean basically 10 would work out, phi square 10 would work. 

So, next our our aim always is you know, what we are trying to do is, trying to find out 

what my observed Thiele modulus or in other words, what my observed reaction rate is 

based on other quantities, because I do not you know I want to be a little you know, I am 

lazy. So, I do not want to be measuring the actual reaction rates. So, what I do, is very 

straightforward simply in this formula I go and put all my D effective, d in biot number 

and the intrinsic Thiele modulus, expressions for them, in terms of the effective diffusion 

coefficient and the mass transfer coefficient k f L, the length, k average and you know 

which is the partition coefficient and everything and this is a formula that I get recheck 

and use. 

So, this is this is one limit, that we are looking at and to go a little quick today, because 

you know finish this little bit fine. So, now you are R v that is your reaction rate, 

observed reaction rate, you can measure in terms of this and this is expression that you 

get. So, if you want you can write it down, so this is proportional to the k f is mass 

transfer coefficient, k v the partition coefficient, D effective diffusion and length. So, we 

did then, so first we did the biot number much much greater than 1. Next, we did biot 

number finite and the last thing we will do in the limiting cases is biot number small, 

what happens in the limit that, the biot number is very smaller or other words, it is 

limited by the external mass transfer. 
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So, if biot number is very small, then eta over here let us go back and look at that 

formula eta that you that you have over here goes phi square, I think this is very small, 

then this remains. So, I think biot number over phi square right, this goes to the 

numerator biot number goes. So, if you take biot number, so we will have, phi tan 

hyperbolic phi plus biot number and 1 goes to the numerator. So, this one you can 

neglect, so you will get biot number over phi just yeah I think no yeah no no sorry, this is 

we are looking at the observed Thiele modulus. So, let us look at the, if you look at only 

the eta, then you will have biot number over phi phi square right phi square phi 

square,(()) yeah Bio number over phi square, because right. 
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So, you are running out of time, but, so eta equals tan hyperbolic phi over (No Audio 

from 34:32 to 34:50). So, in the limit of biot number going to very small, this is a term 

you neglect and you end up with biot number over phi square. So, this is the third limit 

biot number much much smaller than 1. So, we did first biot number much much greater 

than 1, then finite and this is the third limit clear. 

So, let us go quick, so if that is the case, then big phi that is observed Thiele modulus 

which is eta times phi square, say simply biot number which means what? Which means 

that, it s only limited by external mass transfer coefficient, then observed Thiele modulus 

is independent of reaction, internal reaction and it is only dependent on the external mass 

transfer. 

So, the R v that we trying to find out over here is, D effective k a v c naught biot number 

over L is L square and what you find over here, look look at this very interesting that, it 

depends only on the external mass transfer, why? Because, biot number already has D 

effective which will get cancel with this D effective and we only, we are left with 

external mass transfer coefficient, is that clear? right. So, because biot numbers itself has 

D effective in it, so 1 over D effective or something like that, which will get cancel, then 

L square will get cancel. So, what it means is that, the observed reaction rate, what you 

observed, is dependent only on the external mass transfer. 



So, whatever is the, it rate of external mass transfer is the rate of external, these are rate 

of reaction. So, if you have 3, 4, 5 or n number of processes in series right in series, that 

is the most important thing. If you have n number of processes in series and if one of 

them, one of these process is limiting, then the rate of the overall process equals to the 

rate limiting process right something you know. So, this exactly what we have over here. 

So, biot biot number very very small means, the external mass transfer is limiting and 

because the external and internal mass transfer are internal mass transfer reaction are 

parallel, but internal external mass transfer is in series with these things. 

So, if external mass transfer is limiting and is the is the slowest step, then the overall rate 

of reaction equals to the rate of external mass transfer right, this is things that we can 

derive intuitively we can come out with intuitively, but these are very concrete ways of 

coming showing this. 
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So, in the next two minutes, we have what we will do is, we will show the derivation of 

the model using Michaelis-Menten kinetics instead of first order. So, what had been we 

have been doing till now is that mostly using first order kinetics. 

So, as I said what are what is our objective? Our objective is to actually predict what 

happens in a Michaelis-Menten kinetics, because that what is important you know in 

immobilized enzyme, but we have no way of predicting that, the reason being that, these 

non-linear equations and we can solve them. So, what we do is, we predict the two 



asymptotes of the zeroth order and the first order, we had not done zeroth order in many 

cases, because it is much easier to solve and what we find in zeroth order is that, we did 

some cases what we found that the effective mass sorry effectiveness factor equals? 

1. 

1 for zeroth order the reason being that, there is plenty you know the zeroth order itself 

means that is the plenty of substrate inside. So, we look tomorrow at the first order and 

also with some case of the zeroth order and we know that actual case is is kind of 

bounded by these two. So, what we do is, there one single case which we can actually 

solve analytically using Michaelis-Menten kinetics. So, just as an one example, the last 

example of this chapter, we will solve this case using Michaelis-Menten kinetics and this 

is the case where you have the external, you have the surface reaction taking place. 

So, this is this is that old example, if you remember that, we had with we have them (( )) 

enzyme over here, we have the matrix over here and then enzyme is immobilized on it, 

this using receptors which are covalently attached to the surface and the substrate is 

coming in and reacting over here. So, this is the only case where we can use Michaelis-

Menten kinetics and still get analytical solution. If you remember, there were two 

approaches to this, what was those two approaches, we did this, the two approaches we 

have we have taken to this; one is the boundary layer approach using the diffusion 

reaction equation, and the other one was the mass transfer coefficient approach, we did 

like three, four classes back, three classes back I think. 

So, the diffusion reaction equation, boundary layer convection, diffusion reaction 

equation using boundary layer theory is not something you can solve analytically for a 

non-linear reaction, it is not even something that you can solve analytically for a linear 

reaction, let alone and non-linear one. So, obviously that is ruled out, if you want to get 

an analytical solution. So, the one that we are left with, is mass transfer coefficient, use 

the mass the coefficient, so let us do that. 

So, this is if you remember that this was our, so you know this this was our boundary 

condition, Liza just tell me if you have any problem with this? That, this was a boundary 

condition that, at any at y equal 0 at this point, the flux that N y at y equal 0 was k f, that 

is mass transfer coefficient times c naught, minus c naught is boundary is outside the 

boundary layer, the concentration outside the boundary, C s o is given in the picture, here 



I just refer to it as c naught, but same thing, so c c naught minus the concentration at y y 

equals 0 at the surface right, so that is the amount of material that is coming in. Now, 

what was the reaction previously? The previously, the reaction we looked the first order 

reaction which means that it was some k v times c or k times c k as time c, now we are 

looking at Michaelis-Menten kinetics which is non-linear. So, before we actually go on 

solve this, try and solve what we do is, make the system dimensionless and it is 

important, this is really important in this case, it is not out of fancy that we do it. So, how 

we make it dimensionless, you have to do slightly careful here. 

So, theta is a new dimensionless concentration, which is the concentration at the surface 

divided by the concentration outside the boundary layer c y at c at y equals 0 divided by 

c outside the boundary layer c naught, beta is a new a new variable that you define which 

is c naught over k M, this is again you know dimensionless variable c naught over k M, 

and Damkohler number over here and you have to be careful with this, is defined as a R 

max the double prime here signifies, this is surface reaction, typically it is nothing to do 

with derivatives typically R is R is used or R double prime is use for surface reactions 

and R v or R triple prime is use for volumetric reactions, so again nothing to do with 

derivatives over here. 

So, Damkohler number over here is given as R max double prime over k M times k f, k 

M the being the Michaelis constant and k f being the mass transfer coefficient over here. 

So, this is something new, we have not defined Damkohler number in this way 

previously, why because, we did not have non-linear reaction we never handle the non-

linear reaction before. So, this is the first time we handle a non-linear reaction (( )) we 

come up these sets of variables and you will see that, how these variables, why you 

might want to ask me that, why do you, how do you come up with this variables at this 

point of times theta is very straightforward, but these two variables are not the 

straightforward, the dimensionless variables and why do I come up with that, once I 

recast the equation in dimensionless form, you start to see that why I do that. So, now 

see, so what I have done, I have k f. So, this only, this part of the equation that that is 

there, this this this part over here, so this is the one that I will, I make dimensionless. 

So, k f c naught minus c equals R max c over k M plus c. So, k f if you take to this side 

in the on the right hand side, then you get R max over k k f right remember R max over k 

f is this side here. So, this side gives you, so divide the equation both sides of the 



equation by c naught. So, this will give you 1 minus theta right, so this will R max. So, 

divide both sides again by k f k M. So, you will get Damkohler number over here on the 

denominator times theta, this k M goes from the denominator, because you you divided 

that plus beta times theta, so beta, because beta comes, because of c naught and c naught 

and k M, because you divided the both sides by k M and theta comes, because of c over c 

naught. So, c over c naught is that fine or you do not want me to go through the step fine 

right. 

So, now it is pretty straightforward for me, what I am going to do this is a quadratic 

equation and I am going to solve it directly. So, why have to put to the equation you 

know that form and quickly get the solution. So, this is the quadratic form that we have 1 

minus eta plus 1 minus beta theta equals Damkohler numbers time theta and then you 

will get once you open the bracket, you will get 1 minus theta plus beta theta minus beta 

theta square equals D a theta, if you collect the coefficients. 
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So, then you will get the final form of the quadratic is beta theta square plus D a minus 

beta plus 1 time theta minus 1 (No Audio from 44:26 to 44:36) fine. So, then once you 

solve this, this is your this is your expression for theta, beta minus D a minus 1 plus D a 

minus beta plus 1 square plus 4 beta square root of that by 2 beta, the reason you neglect 

the other root is, because it is not feasible, it is not in the physical ranging fine. 



So, then what you are suppose to do is, find the rate, the eta, the effectiveness factor 

again. So, the eta is here if you remember the way we defined it before is that, eta at the 

surface concentration divided by eta had it been at the concentration outside the 

boundary layer right. So, eta at c s or c at y equals 0 sorry rates at c c s or c at y equals 0, 

divided by rate at c equals c naught fine. So, slightly different from before, because of 

the non-linear nature, you get c y c at y equals 0 divided by k M plus c at y equal 0 times 

k M plus c naught over c naught right, no problem. So, now we can express these in 

terms of beta, remember right, because beta was defined as k M over c naught if you 

remember. 

(( )) 

C yeah c naught by k M yeah c naught by k M. So, this is what we do, you can divide the 

whole thing by c naught by k M. So, theta times 1 plus beta over 1 plus beta theta fine. 

So, now once we substitute this, you can get your expression for eta, if you already got 

your theta, you can substitute that that back over there and you can get your expression 

for eta. So, which is again pretty non-linear expression, because that is what is expected 

(No Audio from 46:24 to 46:32), fine. 

So, the last thing we will do today is, you written this down? Ok. So, the last thing we 

will do today is, try and plot this. 
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So, oh before that, I think we have to do some quick limiting cases. So, the limiting cases 

are things that you know, that beta going to 0, it is a first order reaction beta going to 

what value it is a zeroth order reaction? 

(( )) one 

No not one what? 

Infinity. 

Infinity right. So, beta going to infinity is the zeroth order reaction though, so if you if 

you look over here. So, beta going to 0 and you know you can check over here. So, for 

example, here this was an expression, so beta going to 0, it is first order reaction; beta 

going to infinity, you had a zeroth order reaction, not beta equal to 0 right, beta equal to 

0 is the first order, beta going to be infinity is the zeroth order. So, theta if you put that in 

the quadratic form and this is something that you just again you know, we do not have a 

lot of time. 

But this is something, this not very straightforward, if you if you want theta going to one 

over D a this is not very straightforward, this this I think you can get from then you can 

get from the quadratic form, but is there is another one that you it is not so easy. Let me 

go through this and then, because we do not have really a lot of time. So, let us go 

through this quick and then if there is a problem with the calculations, I will come back 

to it. 

So, theta for this case, beta going to 0 that is first order, it goes to 1 over D a 1 over 1 

plus D a and the eta, therefore comes out to be 1 over 1 plus D a. So, here for example, if 

you go and put that, so beta beta equals 0 you have put in. So, this is simply equals to 

theta right eta is simply equals to theta. So, your theta goes to 1 over D a, how do you 1 

over 1 plus D a, you can put it in the quadratic form and get this and eta will be 1 over 1 

plus 1 over 1 plus D a again, because it is equal to theta. The other case is, beta going to 

infinity, the zeroth order reaction, now this is the this is, there is a little problem in 

getting this solution. For example, this is a quadratic form right, now with with beta 

going to 0, for example, this is your solution that you get with beta going to 0, you can 

see what is a problem with beta going to 0, you cannot put this, that is what I said the 

slight problem over here. 



So, you cannot put this directly in to this form right, because beta is in the denominator. 

So, what you need to do is, you put your beta equals 0 in the quadratic form itself, fine 

and then you get theta straight away equals 1 over 1 plus D a. So, this is just quick little 

trick, is that clear Liza? You cannot put it directly in to the quadratic form, because this 

will blow up if do, so just put it, no, you cannot put it in the solution, put it in the 

quadratic form and get it. 

Similarly, beta going to infinity the, also you have to put it in to the in to the in to the 

quadratic form and get this and what you will get is eta going to 1, beta going to infinity, 

eta going to 1 and this is something that, why I am doing this two limiting cases, because 

these are two limiting cases, I have already solved before, if you remember that, eta 

going to 0, eta goes to 1 over 1 plus D a, for beta goes to 0, that is the first order case. I 

did separately and then I did the zeroth order case where I have told you that, eta goes to 

1, the reason eta goes to 1 is, because the there is no effect of boundary layer, essentially 

and the concentration at the surface equals the concentration at the boundary layer. 

So, why I am doing is, this whenever you do a non-linear problem, this is usual thing that 

you do always that, whenever you do a non-linear problem, it is important to check the 

two limits, two asymptotic limits of the non-linear problem with the two solutions that 

you know. So, that is what we are doing, we just checking with the two solution that you 

that you know to make sure that is works a, and b is to figure out that it stays within the 

limit. 
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So, the last thing I will show you is the plot of eta versus beta. So, this is the plot for the 

first order reaction this is the plot for the first order reaction beta going to 0 and this is 

eta equals 1 you know, I should have written that, but I have not, so please make a note 

over there. So, this is the line of eta equals 1, the parallel the line parallel to the x axis. 

So, for eta going to infinity, what to do you have, you have this line extending all over. 

So, what happens is that, as beta starts to increase or in other words, the system tends 

away from first order towards zeroth order. So, Michaelis-Menten kinetics means, it is 

somewhere within the zeroth and the first order right, a fractional order. 

So, this is the first order and as soon as beta is a number greater than 0, a positive 

number it means the order is fractional, as it tends to become fractional, the eta, the 

effectiveness factor increases. So, which means that Michaelis-Menten kinetics 

essentially improves the effectiveness of the immobilized enzyme. So, this is the very 

important in you know thoughts that we want to take away from this whole chapter, 

because the reason that we are trying to do is that, we have shown you first order, we 

shown 0 the order, but what is the effect of Michaelis-Menten kinetics? 

So, the conclusion that, we have and this is essentially the conclusion of this chapter 

also, the effective Michaelis-Menten kinetics is to reduce the significance of fluid phase 

mass transfer effects, until surface concentration declines below K M. So, if the, what do 

you mean until surface concentration declines below K M, what it means is that, if 



reaction is very fast and is being depleted very fast, then at some point of time, there 

substitute is going to be taken away and the surface concentration is going to decline 

below the below the value that is given. 

So, if it is unless that really happens, unless in the in the Michaelis-Menten constant 

kinetics, the surface concentration decreases to that kind of value, it always improves, if 

you look at this graph, this is the first order reaction Michaelis-Menten is always going 

to improve which means that, it reduces the, so the kinetics itself is such that, the effect 

of mass transfer is reduced, because of that. So, the mass transfer effect that you have, in 

the first order reaction is more than the mass transfer effect that you would have in 

Michaelis-Menten. 

So, come to think of it, is not very it is something that is quite intuitive, the reason is 

quite intuitive is that, the think of this, the mass transfer effect or mass transfer limitation 

that system would have on zeroth order reaction is less much much less than the first 

order reaction right. So, when the order goes fractional, it hurts less, again you think of 

this in this way, the mass transfer effect that a system will on a second order reaction is 

more than first order reaction right. So, higher is the order of the system, then higher is is 

the effect that it mass transfer limitation has on the on the system right. 

So, lower is the order of the system, lower is the effect of the mass transfer limitation 

has, and come to think of it Michaelis-Menten is is a complicated kinetics, but the 

effective order is the fractional order right. So, because it is fractional order that mass 

transfer has less effect than that, it would have in first order, so this is one of the 

important. So, we do first, zeroth order, we do first order all through the chapter and, but 

this is one of the important things that we take home. 

So, if is there any quick question on, what we did. So, just to summarize, we did surface 

reaction, we did with the started with reaction outside, you know we took a sphere on 

which the matrix, spherical matrix on which the enzyme sorry immobilized from surface 

and we looked at outside, concentration, variation then we took a system where matrix 

was immobilized inside, we took a system with a matrix was immobilized on a flat plate 

on the surface, we took a system where all these three things, two things where coupled, 

it was on the surface, it was inside, then we looked at different geometry, we looked at 

the effect of zeroth order, first order and find the effect of Michaelis-Menten. 



So, this is in the natural, what we did in the last four, five lectures in this in this chapter. 

So, tomorrow, we will start a new chapter on microbial growth and so, if there any quick 

question I will take it right away, then we will stop this and so, we will continue 

tomorrow with a new chapter, thank you. 


