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Liquid-Liquid-Equilibria - 1 

Welcome back, in the last few lectures we have been looking at vapor-liquid equilibria and 

particularly in the last lecture we worked on the isotropic mixtures and we looked at the minimum 

and the maximum boiling point conditions.  
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In today’s lecture we will look at liquid- liquid equilibria and basically beyond the vapor range, so 

essentially, we will be looking at VLLE and as well as the vapor liquid- liquid equilibria. Now, 

one of the classic examples for liquid -liquid equilibria is oil and water, we know that oil and water 

do not mix and there is phase separate, and they are both in the liquid phase. And thus, one can 

apply such a kind of understanding of the equilibrium conditions to such a system such as oil and 

water.  

So, for the sake of illustration we can simply consider instead of just oil and water we can consider 

any specific two phases such as alpha and beta which are basically liquid, but stay separate, which 

essentially means for example in the case of oil and if it is a heavier oil so this could be oil and 

this could be water. And there would be certain amount of oil present in this mainly due to the 

limited solubility of oil in this contain and vice versa, but mostly they will reside near the interface. 



Now, if you want to find out the phase equilibria of such a thing then how do you go about it? You 

start with the same fundamental question that what are the conditions of equilibrium, so for a given 

temperature pressure of course you would like to have a temperature of alpha, it should be same 

as temperature of beta and similarly the pressure equality would be there due to the mechanical 

here comes stability.  

But, what we are interested in this point is this given conditions is basically chemical equilibria. 

So, we will look at the chemical equilibrium here. So using the condition of equilibrium between 

a phase alpha, phases alpha and beta we can consider any component, it need not be just water and 

oil, for any component i in alpha should be same as i in beta. Now this also means that the fugacity 

of i in alpha phase should be same as fugacity i in beta.  

Now we can write this fugacity in terms of the coefficient activity, coefficient because it is a liquid. 

So, now I am going to express this liquid in the, with respect to the activity coefficient. So I can 

write it in this way, for case of alpha is like i alpha x of i in alpha and fugacity of i. Now i is a pure 

as a reference we are going to consider that and then this is of course Rendell Lewis reference 

here.  

And same would be that for in the beta phase except that we are going to write it here beta and x i 

beta and then this is the same reference which is pure and of course this will cancel all because of 

the fact that this is the same component. 
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So, what you have now is an expression which relates activity coefficient of component i in alpha 

phase composition of component i in alpha phase with activity coefficient of i in beta phase and 

composition of i in beta phase. Now, in order to you know solve little more than this we need free 

energy model, is needed to express the gamma as a function of composition. So, this is needed to, 

gamma as a function of composition in order to solve, to solve for x at coexistence.  

So, we need some representation of gamma in terms of rather than free energy in terms of 

compositions, in order to express that back in this equation and solve it. So, how do you illustrate 

this? So, we can do that by taking an example. 
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So, let us consider an example to illustrate this particular liquid-liquid equilibria, we can consider 

the case of water, cyclohexane, liquid-liquid equilibria. And this is a problem at 313 Kelvin 

atmospheric pressure and it is being said that mutual solubilities in cyclohexane. Let us say this 

we represent as 1 and water is represented as 2, so mutual solubility in this binary mixture. So it 

was let us say measured and it was found that is to be to be 1.56 into 10 to power minus 5 mole 

fraction of cyclohexane in water.  

And 1.13 into 10 to power minus 3 this is was the mole fraction of water in cyclohexane, so these 

are the two things which are given to us, one is the solubility of at given 313 kelvin atmospheric 



pressure. The solubility of cyclohexane in water, at equilibrium and similarly the solubility of 

water in cyclohexane, which is nothing but the mole fraction of water in the cyclohexane at this 

condition. So these are the two things which are given to us at these conditions. 

Now, the question is to calculate the activity coefficient of basically both the case which means 

water in cyclohexane and cyclohexane in water. So, this is given to us. Now, how do you go about 

it? We can start, we can start considering the same thing here, because here you have two equations 

which you can, because it is a binary mixture so we can use this alpha and beta phases for both the 

components that is for water and in cyclohexane.  
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So, let us consider the following that phase alpha is mostly cyclohexane and phase beta is mostly 

water. So, because of the phase separation we can consider that the phase separated or something 

which is pure or if we consider the specific component. For example, here if we see this is the 

mostly cyclohexane alpha, so gamma alpha for 1 we can consider to be pure since the phases are 

almost pure, which means that gamma alpha because the alpha is which contains component 1, so 

that we can consider 1.  

And similarly, beta contains 2, then we can consider it 1. So, the activity coefficient of these phases 

for these components can be considered 1 because of the pure phase, pure say because of the 

separation here. Now, we can use this information, now we can plug this let me just expand this 

with this one. And we can write this expression now. So, what we have here is gamma 1 alpha x 1 

alpha is gamma 1 beta x 1 beta.  

And similarly, I can write gamma 2 alpha x 2 alpha is equal to gamma 2 beta x 2 beta. So these 

are the two equations which will come because of the conditions of equilibria. Now, this we can 

consider to be 1, similarly, this one we can consider it to be 1, this will give us gamma 1 beta, this 

would be. Now, what is given to us let us also look at it. It is being given is this mole fraction of 

cyclohexane in water.  

So essentially, we have been given mole fraction of cyclohexane in water is something like this x 

of 1 in beta this is given to us as 1.56 into to 10 to the power minus 5. And similarly, mole fraction 

of water in cyclohexane which is alpha 2 is given to us 1.13 into 10 to power minus 3. So, coming 



back to this expression, so we can, we need to find gamma 1 beta, which is nothing but x 1 alpha 

by x 1 beta.  

And similarly, here we can find gamma 2 alpha which is x 2 beta by x 2 alpha and x 1 alpha, x 1 

of alpha is nothing but 1 minus x 1 of x 2 of alpha and this is x 1 beta. So essentially, we can now 

place this so this turns out to be 6.4 into 10 to power 4 and here itself x 2 of beta is 1 minus 1.6 

into 10 to power minus 5 divided by x 2 of alpha which is 1.13 10 to power minus 3 and this turns 

out to be 885.  
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𝛾1 = 6.4 × 104   𝛾2 = 885   (𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑛𝑜𝑛 − 𝑖𝑑𝑒𝑎𝑙 𝑠𝑦𝑠𝑡𝑒𝑚) 

So, we have gamma 1 so this gives you answers like gamma 1 beta is 6.4 into 10 to power 4 

extremely large and gamma 2 alpha is 885 so it clearly tells you and of course because of the phase 

separation of this nature and non-mixing behavior of the system and this numbers clearly tells us 

that the system is highly non-ideal, ok extremely non-ideal system, which is indicated by this 

values which are extremely large. 

So, this is something which we can look at it as far as the liquid-liquid equilibria is concerned. Let 

me little bit more expand it and because see what we have done is we have not used here we not 

try to use the gamma in terms of the Gibbs free energy models because the problem was here given 

to us such that we could use these compositions. So, if they that was not the case and if you have 

to find something in order to be based on the models and then based on the constraints to optimized 

values or some parameters in order to obtain the phase diagram those condition can be solved using 

iteratively. So, let me try to little bit add on to this concept so that you can do it on your own. 
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So, let us consider the case that again you have scenario where Gibbs models are given to you. For 

example, if you use g E for based on two suffix Margules equation, then the same expression of 

liquid-liquid equilibria can be written as in this way that x 1 alpha and you have this gamma 1 

alpha is equal to x 1 beta gamma 1 beta, right so this is our condition of equality. So the question 

now is that if the models can be used, then how do we solve it?  

So, if you are using a two suffix Margules equation we can write gamma in terms of exponential 

A by RT x 2 alpha square. And similarly, here also I can write exponential A by RT x 2 beta square 

this, so this is what you have to do in order to fit, in order to you know express this gamma in 

terms of the composition and temperature. Similarly, if it is a binary component for 2, component 

2 I can write x 2 alpha exponential A by RT x 1 alpha square is equal to x 2 beta exponential A by 

RT x 1 beta square this.  

So, you have this let us say equation 2, so this is equation 1, this is equation 2. And then for both 

the component there are some constraints both the because there are two phases here which we are 

considering so x 1 alpha plus x 2 alpha is equal to 1, x 1 beta plus x 2 beta is equal to 1, so there 

are 4 coupled equation which you can solve in order to find 4 variables here which is x 1 alpha, x 

2 alpha, x 1 beta, x 2 beta. So, this is something which we can solve iteratively, so this is basically 

the liquid-liquid equilibria. 

Now as far as the phase diagrams are concerned one can get a very rich information of in phase 

equilibria for liquid-liquid. So, let me just provide you an idea about what kind of phase phases or 

kind of nature we obtain. Because, because of the nature of the molecules, things can be completely 

different also.  
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So, let us just simply look at one simple case where we have considered let us say A is a constant 

and let us say for A is equal to independent of temperature you may have a scenario where you 

have this temperature versus composition, so this is again a binary mixture and you have let us say 

this is your, the phase diagram here and this is the typical so again this is liquid-liquid equilibria, 

so this would be more like a rich in one phase or rather it is a pure in one phase this is a pure in 



another phase and then you can have this again region where you have unstable region right where 

it is bound to phase separate and then you have this metastable region which is in this range, right. 

So this is often we called earlier also this is a binodal, this is a spinodal and this essentially means 

that at around this, on this curve the second derivative of Gibbs free energy would be 0 which is 

the kind of a separation between the metastable and an unstable region. So this point, which is a 

maximum point is not called critical temperature as you would see in the case of vapor liquid 

equilibria, so in order to segregate the concept of the maximum temperature at which the phase 

equilibria can coexist or the vapor liquid can coexist that from the concept to liquid-liquid 

equilibria we use not TC, but here we use TU here because it is a maximum here and hence we 

say this as a upper consulate temperature.  

Do not get confused with vapor equilibria, there we usually say this as critical temperature, but 

here since these are liquid-liquid both the phases and hence we use this as your consulate 

temperature. So, when you go beyond temperature greater than this to consulate temperature of 

course there will be no phase separation and there is a mixing which completely occurs. 

Now, as I said this particular dashed line which I have drawn this is a spinodal and this essentially 

is also locus of, locus point where basically each one represents double derivative of G to be 0. So, 

if you plot this corresponding let us say molar G as a function of x again this we can consider one 

of the components. Then at a given temperature that is a T 1, you may have a scenario where this 

is the equilibrium point right and this is where the curvature is going to, the inflection will come, 

right and basically where the double derivative would be 0.  

So, if I have to draw this I would be getting something like this, something like this, so may not 

be perfect, but so let me try again so this is where I am expecting to be minimum and similarly I 

am expecting this to be minimum here right and then at this point I am expecting to change the 

curvature both here. So, this is something where we are expecting that this be something like this, 

where essentially there this would lead to some curvature change here.  

And this point is of course the equilibrium point, this point is where the double derivative is less 

than 0, so, if you think about this point what if to find out the coexisting condition we often draw 

if you have the handle to the molar free energy that means if you know the molar free energy we 

simply draw this tangent line and essentially we obtain these compositions. 



So, for the stable region which is the case here the other double derivative is going to be 0. Note 

for stable phases your double derivative is 0, so essentially this region here which you have here 

the g double prime is less than 0, alright. So, when I say g double prime actually it means of course 

double square by d x 1 square at a constant temperature and pressure. So, this is a typical behavior 

which we can also use in liquid-liquid equilibria, the same way we have tried to explain it, vapor-

liquid equilibria so essentially there is no difference as far as the concepts are concerned. Now 

these concepts are much, not much different also as far as that we use this in the straight line which 

we have drawn for T 1 is also called tie line. 
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So, now given that it is a mixing which is occurring we can also represent the this in terms of Gibbs 

free energy. Now, we know that Gibbs free energy of mixing can be written as the following, delta 

G mix in terms of molar, so molar is of course, if we can use underline here is going to be written 

by two terms, one is the idle term once again I am using the binary mixture plus g E X system.  

So I can write the total G as N G bar is equal to N 1 G 1 bar plus N 2 G 2 bar that is the term from 

the component and then you have this mixing term, which is the same as this plus your g E X, 



multiplied by of course N here. So this will be multiplied by N, so you can multiply by N or I can 

write actually this further can be written much better by considering this as G molar and this I can 

represent this as x 1 g 1 x 2 g 2 so this is nothing but the G 1, capital G 1 underscore. 

So, I have this model which I can now, I have this expression which I can now exploit. Now G this 

I can use this Margules equation we can consider x 1 x 2. Now given this we know from the 

definition what would be the condition for stability, we need a double g prime greater than 0.  
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So, if I use this double g prime greater than T 1 and P, I am going to get RT 1 by x 1 plus 1 by x 2 

minus 2 A for this two-suffix Margules equation. So, if you use, if you use for two suffix Margules 

equation you have this particular condition. Now for stability we can clearly come up with an 

expression for the (con) or rather condition for A or which we should have it in order to have the 

stable phase.  
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So, if we can simplify this I would get A by RT less than 1 by 2 x 1 x 2. Now, the largest amount 

so you can optimize this part a bit so because you have to find out the largest amount which would 

be this one as a limit for that. Now this will be the case when you have x 1 is 0.5 and x 2 is 0.5 

which essentially means that this condition can be now written as A by RT less than equal to 2, 

which will be the case when you have x 1 is equal to 0.5 and x 2 is 0.5.  

So this will be the case for your mixing of binary mixtures where you have considered two suffix 

the Margules equation and you obtain a condition of this constant which we should have it. So, 

now I can actually draw this this particular delta G mix. So, if I draw Delta G mix so this means it 

is per mole by RT and I am going to draw this behavior for this binary mixture for the case of more 

two suffix Margules equation and with a composition of x 1. So here I am going to vary A by RT.  

Now, it clearly tells you that A by RT if it is less than 2 or equal to 2 it is going to be stable, so the 

behavior would be something like this, so this would be something for 1.5 A by RT, this will be 

the case for 2 and this will be the case and this should be the case for something like this for 2.5 



clearly indicating the phase separation. So this is not drawn on scale, but it gives you an idea about 

that.  
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So, what it can, what you can see that how this number can be achieved is in two ways that at high 

T which means or low A the values are going to be lower this means it will promote mixing, which 

we understand that at high T it will try to allow a particle to or molecules to mix, at low T or high 

A is unfavorable energetics, which dominates, which means that A by RT is going to be larger and 

this will promote phase separation. 

Now this particular expect which we have learned here is also similar analogy or exercise you can 

do for other phase diagram cases, so you can analyze the parameters which basically can affect the 

phase separation in the same way. But, what we have done is we have taken a very simple model 

which is your Margules equation, you can extend this analysis for other models also and try to 

look at the dependency or the kind of constraints on the parameters on those models. 

So I hope that with this you got an idea about liquid-liquid equilibria and particularly how to make 

use of the activity models in order to obtain the phase diagram, of course if they are constraints as 

we have discussed that need to be solved iteratively and there is something which you have to try 

on your own we will not be doing examples to illustrate those things.  

But this just to illustrate that what you have done in the case of VLE, the similar kind of exercises 

have to be in the case of LLE except that we are not going to use Phi or sorry we are not going to 

use fugacity coefficients, we are going to use activity coefficient of both the phases and similar 

kind of models for each phases have to be used and the iteratively we have to solve those 



constraints. So with that I will stop here and I will see you next time and we will extend this 

exercise in the next class, so see you later. 

 

 


