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Azeotrope (binary mixture)  

Welcome back. So, I was discussing about Azeotrope and Azeotropic mixtures where we talked 

about the minimum and maximum boiling point scenario particularly for the cases where you 

have azeotrope that means a significant deviation from Raoult’s law.  
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So, I will start with an example now to list some of the things which often is relevant for the 

azeotropic mixture. We will consider the binary mixture. So, so let us consider that you have a 

case where the pressure is given to you. And this is the case where you have acetone let us say 

this is 1 and cyclohexane which we represent as 2. It forms an azeotrope at a specific 

temperature. Which is 53 degrees Celsius with a certain concentration that means you have 32, 

let us say this the information given to us where 32.5 kilo kg of cyclohexane per 100 kg of 

mixtures.  
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So, this is this is the primary the question, primary information the question is that we need to 

obtain Txy diagram for the system. So, we assume that Van Laar activity model. With t 

independent. Okay, with independent t and basically the constant let us say at C1 and C2. So, 

we know the Van laar activity equation is given as if you look at the textbook or earlier 

developed relations it is given the relation between activity is given in this form. So, you have 

relations between the gammas and basically with the composition.  

So essentially, we need to find out C1 for sure and C2. So, the constant need to be evaluated. 

So, once we have that of course we can make use of typical process for VLE. So, let us first 

look at the composition because what we are given is this 32.5 kilo joules sorry kg of 

cyclohexane per 1000 kg of mixture, so we can obtain the composition at which the azeotrope 

is same.  
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So, let us look at it, so the molecular weight of component 1 is 58.071 gram per mole. Molecular 

weight of component 2 is 84.1595 gram per mole. So, these are the 2 molecular weights which 

we know for the case of acetone is 1, this is the 1 and for cyclohexane that is the molecular 

weight. Now given this we can find X2 that is the composition in the liquid phase of for 

cyclohexane for which we obtain the azeotrope at t is equal to 53 degree Celsius and the 

pressure of 1.013 bar that is the atmosphere. So this is going to be 32.5 molecular weight of 2 

divided by 32.5 by MW2 and we can take because 100 kg is the mixture so the remaining 

amount would be of acetone. 

Now, if you plug-in this information of molecular weights, we obtain 0.249 that is the 

composition of cyclohexane in the mixture, where the azeotrope occurs. Similarly, from here 

since X2 is this, X1 is 1 minus X2 that is 0.751. Ok, so now you have the composition that is 

fantastic, but we also need to find out the pressures particularly the saturation pressures of this 

component because that will be needed for us to obtain the finally the phase diagram.  
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So, we can make use of Antoine equation to get log 10 Pis. Okay, so for the case of because 

the temperature is known so which is 326.15 k so using Antoine equation, I can get P1s which 

turns out to be 0.905 bar and P2s turns out to be 0.406 bar. Okay, so now we have this 

information that P is, now, if you go back to the what we wanted you know one which derives 

in the last (term) lecture.  

So, you remember that we looked into the, we calculated the saturation pressure, but the 

saturation pressures of these components are related to the activities coefficients of component 

in particularly in azeotropic condition. So, in azeotropic state the ratio of the gammas are 

related to the ratio of the saturation pressures of the pure component or inverse of that. But you 

can also obtain the, this activity coefficient by just dividing the pressure, system pressure by 

the same saturation pressures of the same component.  

So, essentially, we know the P system, so with this information is good enough for us in order 

to find out the gamma 1. So, we know P, we know P1 sat and similarly we know P2 sat, so we 

can obtain gamma 1 and gamma 2 and that is what we are going to do because we have 

evaluated P1 and P sat.  
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Therefore for or rather for the azeotropic condition. Okay, we are saying that gamma 1 is 

nothing but P by P1s that is going to be 1.013 divided by, okay so with this you can plug in 

this information here. Similarly, gamma 2 is P by P2s that is going to be 1.013 and again this 

information can be plugged here. So, with this we have handled our information of gammas.  
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Now this gamma is given here, so these are two equations. Now you have one equation where 

the right-hand side is you know, sorry left inside you are aware of it, as well as another equation 

you know this this expression is equal to the log of gamma 2 which you now know. So, you 

have two equations, you have the compositions X2. So, with these two equations. 1 and 2 you 

can solve two variables which is C1 and C2 ok.  
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𝛾 = 𝑓(𝑇, 𝑥) 

𝑉𝐿𝐸:    𝛾𝑖𝑥𝑖𝑓𝑖,𝑝𝑢𝑟𝑒 = 𝜙𝑖𝑦𝑖𝑃 

𝛾𝑖𝑥𝑖𝑃𝑖
𝑠 = 𝑦𝑖𝑃 

So, solve 1 and 2. Because now you have two equations. Solve equations 1 and 2 and you will 

get C1 and C2. So, you will obtain C1 and C2. I am not going to write down the numbers here, 

but once you know now C1 and C2 that that means you are completely you have now the 

information of gamma as a function of only its temperature and the composition so that is good 

enough for us and thus we can now make use of the VLE equations which we try to solve 

usually that is going to be X1 gamma 1 Fi pure is equal to Phi i yiP so we can consider this to 

be 1, we can consider this to be simply Pi sat, so we have now gamma i Xi Pi sat that is going 

to be the YiP and this you can now try to solve it for the two binary conditions which are 

considered.  

So, if you do that, we get this expression or rather we will get this phase diagram where you 

have something like this, this is volume, this is vapour and this is your liquid. So, that is a way 

to solve a problem related to Azeotropic mixture of course there could be certain variant in the 



problem, but essentially the emphasis of this particular case was to make use of the expression 

we have used, or we have developed here. Alright. This was the point we used here in this 

particular case.  

Now in general you may not get a very specific case such as this azeotropic conditions may get 

some kind of experimental data and there we can also use those experimental data to fit the 

variables and so let me just try to summarise, a typical way of fitting the model data to the 

experimental value. So, you can come up with objective functions such that certain functions, 

certain objective functions basically match with that of the experiment that means the 

difference of that turns out to be almost negligible.  
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𝐹𝑖𝑡𝑡𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑚𝑜𝑑𝑒𝑙𝑠 𝑢𝑠𝑖𝑛𝑔 𝑉𝐿𝐸 𝑑𝑎𝑡𝑎: 

𝑂𝐹 = ∑(𝑓𝑒𝑥 − 𝑓𝑐𝑎𝑙𝑐)𝑖
2

𝑖

 

So how do we do that? So, that is the normal numerical method, but we apply for the case of 

activity coefficients. So we define the function usually let us say its objective function and we 

say well for because there could be many data point, could be a function of X, could be a 

function of t, so usually we say well this is f of experiment minus f of calculated and this is 

over all the points which we are interested and sum of that. So, that is the, that is the objective 

function we would like to minimise. Right?  

 

 

 

 

 

 

 



(Refer Slide Time: 12:19)  

 

So, we can consider the simple example. So for example, the VLE information is given for 2 

component system. Okay, where X, Y, P is given, experimental data is given. Ok, so if we have 

a 2-component system that is binary system where X, Y and P experimental data is given and 

the question may be like let us say determines A of the two-suffix Margules Equation.  
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So, one approach is the way I am going to show here could be return here. So, if you are 

considering let us say pressure is low. We are considering ideal gas-phase. Ok, no pointing 

correction. Which means I can write pressure as simply X1 gamma 1 P1s plus X2 gamma 2 

P2s. And we know this two-suffix Margules Equation which is written as ln1, ln gamma 1 is 

A by RT 1 minus X1 square and ln2 is A by RT X1 square so this nothing but saying is X2 

square, right?  

𝑝 = 𝑥1𝛾1𝑃1
𝑠 + 𝑥2𝛾2𝑃2

𝑠 

ln 𝛾1 =
𝐴

𝑅𝑇
(1 − 𝑥1)2 



ln 𝛾2 =
𝐴

𝑅𝑇
𝑥1

2 
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𝑝𝑐𝑎𝑙𝑐 = 𝑥1 exp [
𝐴

𝑅𝑇
(1 − 𝑥1

2)] 𝑃1
𝑠 + (1 − 𝑥1) exp [

𝐴

𝑅𝑇
𝑥2

2] 𝑃2
𝑠 

Ok, so given this you can plug in here, right? So, now I have a expression of pressure this is a 

calculator that means you are trying to calculate it is nothing but X1 and gamma 1 can be 

written as exponential A by RT 1 minus X1 square P1s plus 1 minus X1 exponential A by Rt 

X2 square P2s. Okay? So, this would be the one which calculates.  
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So essentially now the question is, if you have the data given to you already which is as I said 

earlier is my P-x let us say is information is given to you and A here is basically is unknown, 

so A we have to determine. So, essentially you can vary A such that your P calculations are 

same as that of the experiment for given X, but there are many data points, right?  

So, essentially you can come up with an objective function which is nothing but for the pressure 

and we are saying that well the summation for each particular point, the experimental data point 

should be same as or should be close enough to the calculated data point for each point and 

thus we take the square and we try to minimise this. That means this root-mean-square or rather 

this sum of the squares of this difference should be minimum.  

Okay, so if you minimise this. This by varying A. Okay, you would get a appropriate A which 

would fit all the data very close to the experimental one and would be suitable for this thing. 

So, usually this kind of exercise is done in order to find the variables if you have usually, if 

you have all the data points. Because A can be a little bit variable at each point not usually you 

know because A is just effective parameter and sometimes you have to use all the data points 



if it is available to obtain it. But this is the good way of approaching you know to find out the 

informations from the experimental data.  

Ok, so there is one thing which is still left in our discussion as far as the Azeotropic mixtures 

are concerned that how do you check or how do you verify that the compositions are same. 

That means X is equal to Y for the azeotropic mixture so, how do you verify that? 

So, let us try to do this. So, one the important thing for the azeotropic mixture is that it 

undergoes the maxima or minima depending on whether it is unlike interactions are very large 

compared to the like or otherwise you know on the contrary if unlike interactions are weaker. 

So, how do you now check? So, now these both the conditions of minimum and maximum as 

far as this deviation from the ideal gas is concerned would lead to the first derivative of the 

pressure to be 0 or similarly vice versa you can do the same thing for temperature.  
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So, can we use this observation to in the experiment to find out whether the X is equal to Y.? 

So that is the question which would I would like to pose that show that for VLE, show that for 

VLE, XA is equal to YA this must be that means XA is equal to YA is the condition or 

composition of component A in X is equal to composition of all fraction in the vapour phase 

so this is. This must hold for azeotrope. So, if you want to prove this, how to go about it, let us 

try to quickly work on it.  

Ok, so let us look at let us say mu i particularly we can take it here just a generic i. So, it could 

be Xi and Yi. So, mu i should be same if it is the 2 phases at equilibrium, so we can divide by 

temperature also. And then we can look at the differential part of this. So, if you would look at 

this in the differential form, then I can write this thing because mu is a function of temperature, 

pressure and the composition. 

Considering mu is a function of temperature, pressure and the composition. I can differentiate 

this thing in this way that I can write this mu i by T and let us say putting alpha here. So, which 

also means mu by T is also function of this. So, I am looking at this together. And taking 



differential form and then equating to the right-hand side, so let me just write it down first on 

the left-hand side.  

So, this is going to be mu i alpha by T P at constant T and this is going to be constant P and X 

here and this is going to be constant T plus mu i alpha by T by DXi and this is DXi alpha. So, 

this is the left-hand side, the other side is the right-hand side. So, this is going to be similar 

way, mu i beta by T divided by dT plus so this, when I say X here this is like you know 

considering only binary, but otherwise you have to consider all of the X here. And then you 

have D mu i beta by T by DP by T dT plus with that of the composition. So, this is DXp beta 

and DXi beta. So similarly, this would be alpha here.  
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Now, if we look at this derivative, derivative of the mu by T, this one, okay? This is related to 

minus Hi partial molar enthalpy by T square and this the second one is related to 1 by T del mu 

i alpha by P. Right? DP this is here should be this should be dP. Ok, we have this whole thing 

is basically is minus Vi alpha. Right? Partial molar volume for this case. 

So, if I use this derivative information which one can find it out from the in general this partial 

derivatives which we have done it earlier, now I am going to make use of that and connect this 

partial derivatives of the chemical potential with respect to the temperature and pressure to the 

enthalpy, partial molar enthalpy and the volume.  



So, if I do that, I have an equation on the left-hand side like, therefore Hi bar by T square that 

is this part minus Vi alpha by T dP this is this plus 1 by T again because T is independent to X 

here so it can be taken out and this is d mu i by dxi putting here alpha alpha d Xi alpha here. 

Similarly, this would be for minus Xi beta by T square minus Vi beta here plus 1 by T. Okay? 

Alright.  

−
𝐻𝑖
̅̅ ̅𝛼

𝑇2
−

𝑉�̅�
𝛼

𝑇
𝑑𝑃 +

1

𝑇
[
𝜕𝜇𝑖

𝛼

𝜕𝑥𝑖
𝛼] 𝑑𝑥𝑖

𝛼 = −
𝐻𝑖
̅̅ ̅𝛽

𝑇2
−

𝑉�̅�
𝛽

𝑇
𝑑𝑃 +

1

𝑇
[
𝜕𝜇𝑖

𝛽

𝜕𝑥𝑖
𝛽

] 𝑑𝑥𝑖
𝛽

 

𝐴𝑝𝑝𝑙𝑦 𝑓𝑜𝑟 𝑎 & 𝑏 𝑎𝑛𝑑 𝑉𝐿𝐸 
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So, if you apply. So, now the thing is this is a general equation ok now since we are talking 

about VLE. So, if we apply for component a and b and for vapour liquid equilibria. I can write 

this expression now in terms of the following. And let me do here you know rewrite this part 

so a kind of little bit distribute this so I can bring this together and I can take this thing to the 

right-hand side.  

If I do that, I can get the following expression. Del mu liquid a by del Xa T P d Xa. So, this 

apparently would be at a constant T and P here is T P minus del mu a V vapour del X a T P d 

ya. So instead of saying Xil beta since we are talking about only liquid and vapour which means 

we are talking about X and Y. Okay?  

Because usually we use X in a liquid phase. So here, I am just replacing this Y to, replacing 

this X to Y particularly considering this to be vapour phase. So, these are the two component, 

two terms which comes directly from here, these two terms I am going to take it to the right-

hand side and now I will take the T common, okay?  

And one of the thing I can do is I can get rid of this T, so if I can get rid of this T here considering 

this case so the only thing remains is 1 of the T here, that means I have this 1 by T H a liquid 

minus H a vapour dT minus of V a liquid minus V a vapour dP. So, this is the final expression 

I have got from this simple exercise. And the use of this, so this was only for component A. I 

can extend this thing to component B be also.  
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So, I can do the same exercise just for component b that means mu b. But I am keeping the 

same composition because these are related Xa and b. Ok, so you have now two equations. 

Now, how do you get rid of these terms now if you think about when you look at this kind of 

conditions you always make sure that you make use Gibbs–Duhem relation and that is 

something which now we are going to make resort to in order to simplify this.  
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𝐺 − 𝐷 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛: 
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So, if you look at the Gibbs–Duhem relation because this will put a constraint on this chemical 

potential. So, we will have Xa del A L del Xa plus 1 minus XA. Similarly, I can do that for Y. 

So now this, this is something which is good because we have now this relation the Gibbs–

Duhem relation. So, if we multiply, so, let us say if you have this is a relation this is an equation 

let us say 3 and this is your 4. Ok, so if you multiply 3 by ya and 4 by 1 minus ya. And add 

them and use this Gibbs–Duhem relation.  

So, this is something which you have to do. You know this is more numerical aspect. So, the 

idea is that, now you have to these relations which you have written. 3 and 4 and then you have 



to make use of Gibbs–Duhem relation, so you have to play with little bit of this arithmetic’s 

here to simplify this expression.  

So, when you do this. When you multiply 3 by Y A and 4 by 1 minus Y A and add them and 

use Gibbs–Duhem relation the following you get. So, I am trying to just simplify the expression 

without going into details how I did that. So I am going to just write down the final expression.  

So, this is for this is combined with this term T and now for the case of the terms related to P. 

So, right. So, this is the final expression which comes with this exercise. Now the thing is what 

we know from this, I mean we cannot calculate it but the only thing which we know about as 

far as the azeotropic conditions are concerned that you have this maxima in your P X or minima 

in your T Y or in general you have this extremum in those condition and hence for azeotrope 

we have this del T by del X A at constant pressure is equal to 0. Or del P by del X A at constant 

T is equal to 0. That means this is at maximum or minimum.  

So, when you consider the pressure is constant so essentially you have both the conditions, that 

means you basically this means that the right-hand side has to be 0, this whole part, this has to 

be 0 because of the conditions of the azeotropic which will give us a strict condition that this 

implies.  
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𝑇ℎ𝑖𝑠 𝑖𝑚𝑝𝑙𝑖𝑒𝑠,   (𝑦𝑎 − 𝑥𝑎) = 0   𝑜𝑟,   𝑦𝑎 = 𝑥𝑎  

This implies that your Y A minus X A is equal to 0 or Y A is equal to 0. So, this tells you that 

if the system goes through extreme in extremum in T or P versus X this will be the case of 

azeotrope that means your Y A will be equal to X A. Okay, so I thought this would give us an 

clear idea how we can also thermodynamically prove that and gives you the glimpse of the 

mathematical expression which one must use in order to solve such a problem. So that will be 

the end of Azeotrope. We will, we will take up, we have just finished the VLE part, now we 

will take up the liquid-liquid equilibria and that will be done in the next class. So, I will see 

you in next class.  



 

 


