Chemical Engineering Thermodynamics
Professor Jayant K. Singh
Department of Chemical Engineering
Indian Institute of Technology, Kanpur
Lecture 42 - Fugacity coefficient for ideal mixtures

Welcome back. So, let me just recap what we have done in the last few lectures and then
subsequently, we will discuss about ideal mixtures. So if you look at it how we shaped up the
discussion in the last few lectures, we just talked about the mixtures of the gases and we
particularly looked at ideal gas mixtures, basically where the interactions between the particles

are negligible.
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So if you look at the way we derived the property, so let me just quickly go through this. So
essentially what we wrote is that if for a given mixture if they behave ideal gas, then the ideal
gas equation of state is valid and we can write this partial molar property, partial molar volume

in this case as simply RT by P.
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0

And we try to derive the change in the property of the mixtures such as delta VV makes ideal,
we show that is equal to 0.
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Similarly, we showed that delta U ideal gas mixture is equal to 0 and so on. We also showed
that delta H mix ideal gas is also equal to 0.
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Then we talked about entropy that what will be the change in entropy and we realized that you
know, if you take two different containers containing ideal gas and mix, then each particle
individual particle will have more volume accessible and subsequently the entropy of each of
the component will increase and thus since entropy is an extensive property we can just add it

up the change in entropy for each component. And that is what we try to derive here if you
look at it carefully.
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So if we add it up all of them, it turns out for molar excess, molar change in entropy for each
individual component is nothing but minus R In y i and hence if you add it up for the mixtures,

it turns out to be simply minus NR summation y i Iny i in terms of the total change here.
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So this is what we derived. And this was extended to delta G mix ideal which also will have
will be nonzero and it will be NRT summation y i In y i because of the simple fact that the

entropy change of ideal gas mixture is nonzero.
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So this was the summary of all the ideal gas properties here where essentially we say that well
you have this component the change in the thermodynamic properties such as U, V and H for
ideal gas mixture is going to be 0 and for the case of entropy Gibbs free energy and Helmholtz
free energy the changes are written in this form, which is nothing but summationy i Iny i. For
the case of G and A free energies, you will be multiplying that with NRT, for the case of entropy
which is multiplying by minus NR.
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And then subsequently what we did is we try to relate the change in the chemical potential of
a component i in the mixture with respect to that in the pure component and then the derivation
was simply we had to take the partial derivative of this delta G mix with respect to N i and that

we could show that is nothing but RT Iny.
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Using the concept of the thermodynamic equations for the pure component we can figure it out
that this can be further written in terms of this expression, where mu i ideal gas T P y i minus
mu i ideal gas T P is O, Pure i is nothing but RT Iny i P which is a partial pressure divided by
P 0 and P 0 are something which is a reference pressure. So, if pressure goes to 0 that is low
pressure, then of course y i concentration will also diverge, also the concentration will tend to
0 and in that case if you plug in there it tells you that the chemical potential diverges. And that

is how we introduced the fugacity. That is the definition of the fugacity.
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Because to avoid these kind of diversions and we wrote it in this way that RT In fi f 0 is nothing
but the chemical potential of a component i in the mixture minus chemical potential of i for the
reference state, which could be a pure state but at a P 0. And f 0 and P zeroes are related; usually

these are at 1 bar.
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So for the case of ideal gas when we use this expression, because this is a generic expression
if we put it at for particular for ideal gas it you can show that for the ideal gas f i need to be
equal toy i P. That means f i for ideal gas is nothing but the partial pressure. So this is something

which we showed.
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And for the case of the real one, of course, this will not be same as partial pressure. So we
define the fugacity coefficient which was nothing but the ratio of the fugacity with respect to
partial pressure and this will approach 1 as P goes to 0. And then the second question was that
how do we relate fugacity coefficient to the measurable quantities?
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So you can have a measurable quantity in terms of volumetric data in experiment or something

like an equation of state. So we derived two expressions and | will just show you directly there.
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Just to recall this, one is of course this. So this is the expression where you need to have

volumetric data as a function of P that we need to have the V i's and P's.
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If it is not available if it is only Z information is there or the equation of state is available, then
we make use of a different expression which we derived it like this. So let me just further, yeah.
So this is the final expression which we came. So here essentially what we require something
like ina P as a function of VV and T and something you plug in there and you obtain the fugacity

coefficient Phi i.
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So we extended this exercise. We employed our equation of state. We said well, can we just
consider let us say Vander Waals equation of state for the mixtures and apply this to obtain the
fugacity coefficient.

So we did this exercise where pressure was written in terms of RT molar volume minus b mix,
a minus a mix divided by molar volume square and here we use something called mixing rule
where a mix is interaction energy or interaction parameter, which is nothing here. It would be
a weighted average of a i j where a i i is equal to a i that is for the pure componentand a i j is
equal to a j i which is nothing but geometric mean of the pure component multiplied by the
correction factor. Whereas b is a size effective size, which is nothing but the weighted average
of the individual components b's. So we added replace this information here and rearrange that.
(Refer Slide Time: 07:28)
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And essentially if you look at carefully this one, this is equation of state based expression. So
what we need is a partial derivative of the pressure with respect to the N i's.
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And now you have this equation of Vander Waal for the mixtures where you have replaced the
coefficients in terms of the compositions which you can convert into mole fraction. And
subsequently you can take the partial derivative of this pressure as a function of N i leading to
this expression. And then you plug in here and you can obtain more elaborate expression of
that. So that is one way to do that.
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So this is something which we describe that, then we also mention about one important thing
is that well Phi i is nothing but the fugacity ratio of the fugacity with partial pressure or in other

word | can write the fugacity of component i in a mixture is nothing but the fugacity coefficient

multiplied by y i
phi i pure that me

So if I approximate this, by this then the expression would be simply y i f i pure. So it simply
says that the fugacity in a component, in a mixture of a component i is nothing but is

proportional to the fugacity of the pure component and the proportionality constant is nothing

but the mole fract

fugacity rule. So what condition this approximation works that is something which we talked

about.
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multiplied by the pressure where | can approximate phi i to phi i pure. And

ans the fugacity of a component i in a pure state is nothing but fi P o by P.

ion and this is something or this approximation is something we call it Lewis

O %
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So for finding out what particular condition this approximation work we again resort back to
the Vander Waal equation of state. Again, we plug in all this information and without going
into details, we wrote this expression. This expression was nothing but the fugacity of
component a. So we can just consider a binary mixture in this case and then we derive this or
we obtain this expression directly where we wrote here f of a is nothing but y a f a pure
multiplied by this term which is exponential and the numerator contains this square of the
difference of the root of a's which is the interaction parameters of a component a and b, and
then you have this y b square multiplied by P divided by RT square.

Now in order to have this Lewis fugacity rule applicable, which means this exponential term
should be 1. So we discuss about what condition would lead to this particular expression
approaching towards 1. So when we look at these terms here, we saw very clearly that well
numerator if the numerator is 0 then essentially the exponential term will be 1 or temperature
is infinity, that means there is also that exponential term will be 1. So if P goes to 0 or T goes

to infinity that condition would lead to, this term leading to 1.

And this is nothing but ideal gas conditions. Because we can approximate the gas when the
pressure is approaching towards O or temperature approaches towards infinity.
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The other possibilities were that you know y b is equal to 0 or y b approaches towards 0. That
means when the component a is extremely large or b is in dilute condition, then you can
consider this to be 0. Or you have this term which is the difference in the root of the a's, square
of that. If that goes to 0 that means the root of a is approximated or approximately same as root

of a of b, which means essentially the interaction strength or effectively the interaction between



of a and b are similar. That means your chemical nature of the species is similar to that of

species b. In such case also you can approximate this exponential to 1.
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So this was the case what we looked at. Then also, we calculate the pure fugacity coefficient
particularly fugacity coefficient of liquid and essentially made use of the equality of the
fugacity here because the chemical potential equality would lead to fugacity of these two point

here to be same.
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And with this we came up with this expression where we said well f of L pure in the liquid
phase at a given temperature and pressure is nothing but the saturation pressure at that particular
temperature multiplied by the fugacity coefficient at that temperature at saturation and
multiplied by this term which we call it a pointing correction, which is basically tells you that
this term VL by RT integral from the saturation pressure to the pressure where we desire and
exponential of that. That means V i L if it is for example constant then essentially this term is

not going to give you much contributions here.

So this is something we call it a pointing correction. At low pressure we can consider Phi i this
to be 1. Assuming it to be behave like an ideal gas and pointing correction to be 1 and so at low
pressure we can approximate fugacity of the liquid phase as nothing but the saturation pressure

at that particular temperature. So this is something which we went through last few lectures,



today's lecture I will describe about ideal mixture. For the case of the gas we can take reference

of ideal gas mixture. But for the case of a liquid, what would be the relevant or useful reference
for us to consider?
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So let me first describe an ideal mixture which can act like a reference for liquid mixtures. So
ideal mixtures, as | said ideal gas acts as a reference state for gases. So the question is, what
would what we should take? Take reference for solids and liquids. So that is a question here.
So for that we defined ideal mixtures. Now, sometimes it is also called Lewis mixture. So in
the similar sense as we considered for the ideal gas mixture ideal mixture would be also for

those where we would be having some chemical similarity and the nature, so it will be
chemically similar nature.



Now, if that is the case that if ideal mixtures almost behaves like, let us say the similar kind of
behavior as we have seen for ideal gas mixtures, then we can consider the property of ideal
mixtures in a similar line as we have obtained that for ideal gas mixtures. So we can, without
going into that we can define ideal mixtures such that the following holds:
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So, | can say that well, ideal mixtures are meant for chemically similar nature, but with these
following properties. So you have delta U ideal mixture that should be equal to, so what we are
saying is delta U of ideal mixture or delta \V of ideal mixture or delta H of ideal mixture this
must be 0. So that is one of the important properties because this is something which you

obtained for ideal gas mixtures also. The other thing which we can also write is that H i bar of

ideal mixture.
Ideal mixture (also called Lewis mixture):
1 AUpiy = AV = AHpyiy =0
2 H"(T,P,{x}) = H(T,P,pure i) V(T,P,{x}) = V,(T,P,pure i)

U,(T,P,{x}) = U(T, P, pure i)

Now here | am putting x here because we are talking about liquids. So it says that the partial
molar property of component i is nothing but a molar property of i at the same temperature
pressure of the pure component. Similarly, 1 can do the same thing for V i's. Similarly, for

internal energy. So this was two things, which is a part of the properties of the ideal mixtures.



The third is the delta of other property thermodynamic property which we missed, that is for

entropy and free energies.
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So delta S of ideal mixture can be written in a similar sense as we have done for ideal gas, but
instead of y's | am going to put x here. And similarly | can write delta G of ideal mixture. This
will be NRT summation x i In i. So remember that this is similar to the ideal gas mixture. I can
also extend this exercise and also write here Delta G i ideal mixture as a function with respect
to P at T N others constant is nothing but V i ideal mixture. Similarly, d i. So this comes very
naturally. If you have done that for ideal gas part, you can simply write it this K easily because

of all these properties or thermodynamic relations, y is valid for partial molar also.



3.A5M = —NRx;Inx;
AGIM = NRTx;Inx;
So | can simply write this expression but then we are using the properties of ideal mixtures
where H i bar can be written as molar enthalpy or molar volume in this case.
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We have defined the ideal gas mixture, sorry in this case ideal mixtures which is a liquid

mixtures. Now what | am interested now is to obtain the change in the chemical potentials with

respect to the pure phase.
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So let me derive it. So if you consider 1 am also going to do the similar exercise as similar. |
will take the similar steps that | am going to take the partial derivative of delta G with respect
to N i. And this is going to be G of i minus G i that is by definition of delta G mix, so that is
the definition. But this itself can be written because this is a partial molar Gibbs free energy,
then it would be mu i for the ideal mixture and this is of course the molar case for the, and here
this one is for the pure and hence | am going to write this as T P pure. So this is the right hand
side part, but what about the left hand?

(Refer Slide TimeiJ20:35)

Wy Lo -Dw |/ WEEEEEEYT | EEEE %
3 AS g = - NR T L
= Wew
ag . per Ewbve
s CS‘\»‘W $o
Mapd s Im"-x.‘ft/‘_)
el =V =3
" T He
- B e - - =
¢ T) = L e
/r’\—
21

11 204973330

So left hand side is delta G ideal gas mixture is NRT summation x i In X i. So | can write X i is
simply N i by divided by N and In x i can be written as In N i divided by N.
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And the similar line as we have done that for gas system, this right-hand side can be shown to
be simply RT Inxi. So In x i RT In x i is basically the right hand side is this and this right hand
side can also be written in terms of the fugacity definition which we have written earlier
because that definition does not just applicable to the gas phase, you can apply for generic
definition where we say that the chemical potential of a component n in the mixture minus that

with respect to pure fluid is nothing but RT In fi by f 0.

So, in this case f zeros are going to get cancelled. So what | will have is nothing but RT In f i
of ideal mixture divided by f i of a pure fluid. So |1 am going to say simply for the sake of
generality that this could be simply the some reference state f i 0, which could be maybe the

ideal part. So this is a pure case. So | am just going to write it like that.

And then I will explain a little bit more that why this has been considered. So if you consider
this what you have is your f i ideal mixture is nothing but x i times f i the corresponding to the
pure phase or corresponding to some reference state. So the reference state, for example in this
case is pew. At this point we are saying that but I am going to generalize it. Actually | can

generalize this more later.
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Ui = p; + RTIn x;
So, let me also consider one part, so | will talk about this part little later. But let us also look at
one aspect of it is that what we have written for ideal mixture or ideal solution. So, ideal
solution or mixture. What you have noticed is very clear that mu of i in such a case is some
reference state, which could be this or something else plus RT In x i. So, it says that for the
case of ideal solution mixture the chemical potential is nothing but as a linear function of
logarithmic value of x. That is what we are talking about as far as the ideal solution or mixtures

are concerned.

So it is nothing but is just a linear function of logarithmic of x. In the later part | am going to

make a claim that fugacity as such is not so much useful for the case of liquid. It is truly is



meant for gas. And one of the reasons is that since fugacity we can clearly see that it is a some
of the, you know, the reference state is usually considered to be an ideal gas which is not
feasible for the liquid state. For liquid state you need to have a different kind of reference state

which is feasible or practical for the purpose of calculations. So we will define something else.

Now if you look at very carefully this expression is looks like so basically it looks like, is
identical basically to Lewis fugacity rule, which says that well the fugacity of component is
directly proportional to the fugacity of the pure phase or which is the reference which is
considered there. But here let us say f i O or reference here. So he says that if fugacity of a
component i in a mixture is proportional to the reference fugacity and the proportionality is

nothing but the mole fraction.

So, this looks very similar to Lewis fugacity rule. So one of the things in the Lewis fugacity
rule which of course we later using Vander Waal equation of state we could figure it out was
that all the interaction or intermolecular forces are equal. Now so let us little bit dwell on these

aspects that would be the appropriate reference states for this expression.

So what will be the reference? So, essentially, I can actually write this now as more like f i
ideal mixture is x i times R. And what is R? So, R could be there are two possible states. First
is we can consider it to be some absolutely pure phase or we consider another phase which we
say still the ideal. But this is the case where we consider is a dilute phase. So there are two
possibilities which we are going to now spend some time to understand it. So let us look at it
because eventually what the ideal kind of solution is that the fugacity has to be proportional.

That means there is some linear relation which we talking about it.
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So if we just focus on the typical curve which we get for the fugacity, so consider let us say a
fugacity of a in the liquid phase and we are plotting here is x of a. So here we draw something
like this. And of course, this is x a. This was 0, this is 1. So this is going to be f a of pure at
particular temperature T and P. So what we notice is two things, one is essentially these curves

are linear.

Curve is linear at two places which we clearly see which satisfies f i is proportional to x i. So
we satisfy f i proportional to x i. In this case because here also so I can say that f i is proportional
to R. But of course | can also say that f i is directly proportional to x i where i is proportionality
constant. So | see two places, one here, other here. So there are two possible locations where
we can clearly see that the fugacity is proportional to X i. So, at X a goes to 0 or x a goes to 1.

Now if you look at the typical behavior here, particularly here, you will see that well, in this



case x a is equal to 0 which essentially means is purely filled with component b. If it is a binary

mixture and is one of the very few a's are present here.

So essentially if you look at the kind of interaction, these are interaction between a, b. And in
the other case it will be other way around where essentially it is filled with a and you have only

b. A very dilute amount of b is present, almost negligible.
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So let us look at this. So essentially you have case 1 where x a goes to 0. Now in such a case
all interactions are similar interactions are there, it is a pure species where | am saying that well
f a ideal the one which is 0 or ideal is nothing but f a of pure component. So this we call it a

Lewis Randall Rule.

And here mainly the interactions are very similar kind of interactions represent. The second
possibility is where a is extremely dilute that is x a tends to 0. Here you have only b b

interactions are present.
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a b interactions are very small but a only sees b and the dominant interactions are only b b.
Now this provides a separate or another reference where we are saying f a ideal or fa 0 is
nothing but H of a Henry's constant, and this is also called Henry's law. So these are two
different references.

i) xg > 1 Pure species  f = fi4e® = f e (Lewis Randall rule)

ii) x>0  fldeal = £0 = g Henry's Law
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One which is this which is the case where we are saying the following that you have...So this
turns out to be the case where we are saying f of a is x a multiplied by f of a pure. So this is the
ideal. That is what we say, this is ideal mixture. So we say well this is ideal. So this is the case
where we have Lewis Randall rule, which is valid for the range for 0 to a. And the other case



is the following where we are saying well, so somewhere here you have H of a and this rule is
f of ais x a H a which is valid only in this region which is dilute region. Again, this is an ideal

part, because for ideal f is proportional to x a in this case.
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So one of the important thing which we note is the following: if species a is defined by a Lewis
Randall reference state, then we basically are stating that all the composition from 0 to 1 is
feasible and which is the case would be for the case of solvent. So that means we are referring
to a solvent. However, if a is defined by Henry's law then most likely what we are talking about
is for the solute. So we are mainly referring to solute which is valid only at those regions. So
that is usually will be working based on these kind of concept. One is rich in a component
which will be acting like a solvent, other is rich in or other is a dilute in the concentration which

will be mainly solute.

So | think, now | will stop here in today's lecture and | will take this discussion further probably
elaborate more on Henry's and constants, understand a bit of the constraints on that and
subsequently we will try to do some examples also and then what we want to do is to come
with a better expressions rather than fugacity for the liquid phase and that is why we are going
to introduce something called activity or activity coefficient. So, with that | will stop and see

you in the next lecture.



