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 Fugacity coefficient for mixtures 

Welcome back in the last class we talked about fugacity coefficient and particularly we also 

demonstrated the expression for fugacity coefficient if it is based on van der Waals equational state 

for the mixtures. 
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So if you look at the expressions we have two expressions which we came up with one where the 

it's a pressure explicit equation so one here was simply V i P by RT minus one and the other one 

was infinity to V RT by V minus del P by Del N TP and j not equal to i d v minus T l n z so this is 

something if you have information of the volumetric data we can use that in this case we have to 

use pressure explicit equation or state so these are the two expressions which we came up with for 

the last and in the last class.  

So let me just little bit of put thoughts on our this particular fugacity coefficient which we came 

up with so by definition we say fugacity coefficient is nothing but the following fugacity of i 

divided by partial pressure or we can write like this f i is equal to Phi i yi P. Now this is the fugacity 

coefficient of component i in the mixture sometimes we make an approximation that Phi i we 

approximate this to be a Phi I of that of a pure fluid and if that is the case then I can use this phi I 



as f i pure divided by P in that case f i is y i f i pure so this is an approximation and sometimes we 

call it Lewis fugacity rule.  
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It's also called Lewis fugacity rule and so question is like you know when this rule will be 

applicable let us try to understand that what condition where you can approximate fugacity of a 

component i in a mixture as a simply a mole fraction of that component multiplied by fugacity of 

the component i for the pure liquid for that the same temperature and pressure so something which 

we can approximate in some conditions so let us look at it. So in order to explain let me consider 

a binary gas species A and B and if we assuming this boundary guess let us assume that also that 

van der Waals equation of state is applicable.  
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𝑈𝑠𝑖𝑛𝑔 𝑚𝑖𝑥𝑖𝑛𝑔 𝑟𝑢𝑙𝑒𝑠    𝑏𝑚𝑖𝑥 = ∑𝑦𝑖𝑏𝑖 

𝑎𝑚𝑖𝑥 = ∑∑𝑦𝑖𝑦𝑗𝑎𝑖𝑗 

𝑎𝑖𝑗 = √𝑎𝑖𝑖𝑎𝑗𝑗(1 − 𝐾𝑖𝑗) 
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Now if you use the mixing rules then I can write the B mix as summation y i b i and a mix as 

double summation y i y j a i j where a i j is geometric mean of a i i and a j j then we multiply by 1 

minus K i j the factor. So if you use this expression and obtain the fugacity of component a without 

going into the details of the derivation let me just put down the expression so that we can 

understand at what conditions we are going to get that Lewis fugacity rule. 
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So I write like this f f a and y a f a pure I can also say a vapor because since I am using y I am just 

ignoring that at this point. So this is f y a f a pure and then finally we get in term exponential which 

has the falling component you have this under square a this coefficient interaction strength 

coefficient energetic coefficient here a of a minus a of b square y b square P RT square so this is 

the term which we are going to get.  
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Now the Lewis fugacity rule says they are following that you have y i is equal to y f i is equal to y 

i multiply by f i pure so this is the term here f a is equal to y a multiplied by f a pure which 

essentially means for the sake of Lewis fugacity rule or Lewis fugacity rule implies that if it is 



valid then this must be one if Lewis fugacity rule is applicable. This is based on van der Waal 

equation of state.  

Now from here we can figure it out the conditions for which this particular exponential term 

approaches towards one. So for Lewis fugacity rule to hold what we need, we need well the 

pressure goes to 0 essentially this will be one so pressure should approach toward 0 what about 

temperature well temperature can if temperatures infinite also this will lead to that condition so 

temperature should approach towards infinity and these two conditions indicate that this is nothing 

but the ideal gas so for ideal gas this particular expression should hold that means this particular 

expression should go towards one for ideal gas. What about other condition so we do have other 

possibilities for example if y b is 0 or approaches as 0 then also this particular term will approach 

towards one.  

So let me put this as condition one this is condition one the condition two is y b approaches towards 

0 which essentially means component a is present in large access, which means b is extremely 

dilute that is the condition for the mixture and the third is the following, that if this term itself is 0 

or if this under root square a is equal to under root square of a or b then this exponential term will 

approach towards one. 

So this would also lead to the same exponential term approaching towards one so this will be the 

condition also so we have three conditions and these conditions particularly indicates that the 

interaction nature of component a is that of similar to that of a component b which essentially 

means that the species are very similar in nature. 

Chemical nature species a similar to that of species b. So these are these are the conditions for 

which Lewis fugacity rule is applicable. So let me now try to extend this exercise and particularly 

try to find out the fugacity of let us say liquid phase. So because we have been talking about 

fugacity in the gas phase, now let me just talk about the fugacity of liquid phase particularly for 

the pure case. 
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So we can use the same expression and obtain the fugacity for the, of a pure species.  
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So we do have this two so that is a good now considering or breaking into two parts. So let me add 

first put down the question so what we are interested is to find out the fugacity of let us say this, 

so this may be our phase diagram and what we are trying to find out is fugacity of a point here at 

a given temperature which is isotherm here and this is of course our p of ice at T. P is of component 

i are pure in this case is a pure phase at a temperature T. So we are interested here is the fugacity 

at this point so how do we calculate it so what we are interested is basically RT ln f of liquid pure 

component at temperature t and p so this is t and this is your basically b here.  

So we are interested in this point., so this point which is at T and P. So I can now look at this 

expression f l by P by P here and if you look at here this 0 to P here is something like corresponds 

to pressure which is v is equal to infinity so somewhere far from the right hand side here and going 

to this point and then there is a phase transition and then we are talking about integral from this 

point to this point so i would like to break this here from here to here so it's like 0 to P i sat vi 

minus RT by P dp plus P i sat to P vi minus RT by P. 

𝑅𝑇𝑙𝑛
𝑓𝑝𝑢𝑟𝑒,𝑖

𝐿 (𝑇, 𝑃)

𝑃

= ∫ (𝑉𝑖 −
𝑅𝑇

𝑃
) 𝑑𝑃

𝑃𝑖
𝑠𝑎𝑡

0

+  ∫ (𝑉𝑖 −
𝑅𝑇

𝑃
) 𝑑𝑃 = 𝑅𝑇𝑙𝑛

𝑓𝑖
𝑆(𝑇)

𝑃𝑖
𝑆(𝑇)

+ ∫ 𝑣𝑖𝑑𝑃
𝑃

𝑃𝑖
𝑆

− ∫
𝑅𝑇

𝑃
𝑑𝑃 

𝑃

𝑃𝑖
𝑆

𝑃

𝑃𝑖
𝑆

 



Now one of the important thing which we are trying to do is the that we are looking at from here 

to here at this point this since the fugacities are same here because of the fact that the fugacity of 

component i is same as in the liquid phase and the vapor phase because of the equality because 

chemical potential should be same indicates the fugacity should be same that means this 

contribution from here to here is not from here to here the contribution is basically in 0 and we are 

not bothered by this phase transition at this point. 

So that is why I do not have any terms specifically covering this part because that is not 

contributing to the integral. So it is a 0 to Pi sat and Pi sat to P so essentially from here to here and 

here to here. Now I try to expand it now if you look at this part first term this is going to be RT l 

n fi s at that particular temperature and Ps that is P sat at the temperature plus integral of P sat 

integral of P sat here I am putting it i here, to P and this is the first part is now vi d p considering 

is a pure component. So I will just remove this part here and consider this as a small v. So vi p 

minus r minus integral of minus integral of RT by P dp Ps P. 

(Refer Slide Time: 15:59) 

 

Now this one would be RT l n P by P i s, so this and this because of being negative here sign here 

this will cancel this part and the P will become b will come to the denominator. So I can write this 

right hand side as RT ln fi sat T divided by P plus P i sat by p vi now this vi here is basically the 

region which corresponds to the liquid part.  



So I am going to put simply this as indicating or differentiating that this is a molar volume 

corresponds to the liquid region of the fluid now with this my left hand side now is remains the 

same though RT ln f L pure i divided by P.  Now I can now simplify this expression so if I rearrange 

I get f of L pure i TP, because P will cancel here so it will remain here is f pure i because it's all 

pure action at this point S T exponential integral of P is sat P vi l d p and then of course RT should 

be also part of it because you have to divide by RT. So I put it in their RT. So this is the expression 

which I get so essentially tells you that a fugacity in the liquid state at a given temperature and 

pressure is nothing but fugacity of the pure substance saturation condition multiplied by the term 

called exponential integral for Pi sat to P which is nothing but the Poynting correction. 
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So this term is we are going to get is going to say pointing correction now i can simplify a little bit 

more by considering the fact that this by definition can be written as your using the fugacity 

coefficient that by figure fugacity coefficient is f by P. So, if it is a sat then this is nothing but sat 

at that particular temperature so then this is going to be sat and of course this is a pure component 



i so I am going to put i here and this is i. So, therefore, f of l pure i at that T and P is Pi s T phi i S 

T and then this exponential Poynting correction. 
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So pointing correction often would be this would be negligible because if the liquids often 

incompressible and hence this at low pressure phi i s is going to be 1 and this term pointing 

correction we are going to consider is 1 therefore at low p we can write simply as f of i l is nothing 

fi sat .So most of most of the cases for the liquid will be ignoring these pointing corrections to 

simplify the problems if it is available anyway if the pressures are high then you are going to 

consider this pointing correction but if the pressures are low you can ignore this pointing correction 

terms  

𝐴𝑡 𝑙𝑜𝑤 𝑃,   𝜙𝑖
𝑆 ≈ 1   𝑃𝑜𝑦𝑛𝑡𝑖𝑛𝑔 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ≈ 1 
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𝐿 = 𝑃𝑖

𝑆 

At this point, I think we are done with the concepts of the fugacity and the fugacity coefficients 

and we have used the ideal gas mixture to start with I defined a bit of the how to take it the fugacity 

to the liquid phase as well in the next class we will going to start ideal liquid or mixtures to and 

basically the reference point for the liquids and how do we take care of that. So, I will describe a 

bit using the foundation what we have taken here for the ideal gas mixtures we will be starting the 

ideal gas idle liquid mixtures and essentially will build up a buildup upon a new way to address 

those concepts. So, with that I will stop here now and I will see you in the next lecture. 

 


