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Welcome back, in the last lecture our discussion was mainly on the ideal gas mixtures and the 

properties of ideal gas upon mixing. 
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And we summaries that for ideal gas mixtures the delta U of ideal gas is going to be 0 upon mixing. 

Similarly, the delta V has to be 0, delta H has to be 0. However, the entropy is, change in entropy 

is not 0 and subsequently we have the relation that delta S of ideal gas is nothing but NR summation 

yi ln yi with a negative sign, okay. Because it has to increase and this is going to be negative and 

hence, you have positive delta S here. Now considering this to be positive the rest of the things 

will be also non zero. 

Δ𝑈𝑚𝑖𝑥
𝐼𝐺 = 0        Δ𝑆𝑚𝑖𝑥

𝐼 = −𝑁𝑅∑𝑦𝑖𝑙𝑛 𝑦𝑖 

Δ𝑉𝑚𝑖𝑥
𝐼𝐺 = 0        Δ𝐺𝑚𝑖𝑥

𝐼𝐺 = 𝑁𝑅𝑇∑𝑦𝑖𝑙𝑛 𝑦𝑖 

Δ𝐻𝑚𝑖𝑥
𝐼𝐺 = 0        Δ𝐴𝑚𝑖𝑥

𝐼𝐺 𝑁𝑅𝑇 = 𝑦𝑖ln ∑ 𝑦𝑖 



Delta G and delta A are the free energies here. Now I would like to take it forward. Now we would 

like to get an expression of chemical potential of a component in an ideal gas mixture, okay. So 

how do you do that, so let us start with basic definition, so I am going to take delta of delta G IG 

mix, so I am taking a partial derivative of delta G with respect to Ni, okay. And this is nothing but 

del by del Ni and by definition delta G mix me know is G of IG and since it is a mixture, let us 

assume that is one than one component, right. Minus summation Ni and this would be your UI. 

This is ideal gas and this is at temperature T, P and this is for the pure I, right.  

So let me use a different symbol here for this, so this is going to be something like this, right. 

Okay, so what we are doing here is, we are taking the partial derivative of delta G IG mix which 

is nothing but the gas free energy of the ideal gas mixture, minus that contribution from the pure 

component that is for NI UI, UI is nothing but a molar free energy of the pure component here, 

okay, that is what is written here U is the function of T, P and pure I, okay. 
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So if you tick the derivative here what you are going to get is the following del G IG by del NI 

temperature T, P, NJ not equal to I, okay. Minus UI of IG at T, P and then it is a pure I, correct. 

𝜕Δ𝐺𝑚𝑖𝑥
𝐼𝐺

𝜕𝑁𝑖
=

𝜕

𝜕𝑁𝑖
{𝐺𝐼𝐺(𝑇, 𝑃, 𝑁, … ) − ∑𝐻𝑖𝜇𝑖

𝐼𝐺(𝑇, 𝑃, 𝑝𝑢𝑟𝑒 𝑖)} 



=
𝜕𝐺𝐼𝐺

𝜕𝑁𝑖

|𝑇,𝑃,𝑁𝑗≠𝑖
− 𝜇𝑖

𝐼𝐺(𝑇, 𝑃, 𝑝𝑢𝑟𝑒 𝑖) 
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𝜕

𝜕𝑁𝑖
(Δ𝐺𝑚𝑖𝑥

𝐼𝐺 ) = 𝜇𝑖
𝐼𝐺(𝑇, 𝑃, {𝑦𝑖}) − 𝜇𝑖

𝐼𝐺(𝑇, 𝑃, 𝑝𝑢𝑟𝑒 𝑖) 

So now you have this expression and this, this one is going to be nothing but UI because it is a 

partial, the derivative of the free energy with respect to NI, so this is the UI of I of ideal gas at T, 

P and the compositions all the mole fraction, so I can also write like YI is minus of course UI, IG, 

T, P pure, right. So this is your del by del NI, right, delta G IG mix, okay. But you already 

calculated delta G mix, right, that is this term. 

So I am going to now put this on a left hand side and obtain a separate relation here, so I am going 

to use this as, this is nothing but del by del NI, NRT summation YI, NY, right. So, if you do this, 

so right-hand side is very clear, it is a change in the chemical potential with respect to the pure 

component. Change in the chemical potential of a component type with respect to its pure form, 

right, at the given temperature pressure. That is the right-hand side clearly it tells you. 
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𝜕

𝜕𝑁𝑖

(𝑁𝑅𝑇𝑦𝑖𝑙𝑛 𝑦𝑖) =
𝑅𝑇𝜕

𝜕𝑁𝑖
∑𝑁

𝑁𝑖

𝑁
𝑙𝑛

𝑁𝑖

𝑁
=

𝑅𝑇𝜕

𝜕𝑁𝑖
∑ 𝑁𝑗(ln 𝑁𝑗

𝑗

− ln 𝑁) = 𝑅𝑇𝑙𝑛
𝑁𝑖

𝑁
= 𝑅𝑇𝑙𝑛 𝑦𝑖 

𝜇𝑖
𝐼𝐺(𝑇, 𝑃, {𝑦𝑖}) − 𝜇𝑖

𝐼𝐺(𝑇, 𝑃, 𝑝𝑢𝑟𝑒 𝑖) = 𝑅𝑇𝑙𝑛 𝑦𝑖 
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So that is what you have derived, so therefore, UI IG temperature, pressure YI minus UI IG T pure 

I that is the temperature pressure and pure I, this would be now RT LN YI, okay. So this your 

basically the expression which you have developed, okay.  
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𝑑𝜇 = 𝑑𝑔 = −𝑠𝑑𝑇 + 𝑣𝑑𝑃  𝑜𝑟  ∫ 𝑑𝜇 = ∫ 𝑣𝑑𝑃 = ∫
𝑅𝑇

𝑃
𝑑𝑃 𝑓𝑜𝑟 𝐼𝐺 𝑎𝑡 𝑐𝑜𝑛𝑠𝑡 𝑇 

𝜇 − 𝜇0 = 𝑅𝑇𝑙𝑛
𝑃

𝑃0
 

Now let us look at let or let us recall what we have learned for the case of the pure fluid, okay. 

And so, if you recall that we have written earlier that DG for the molar case is minus SD plus VDP 

this is our of course the thermodynamic expression for this and DG is equal to DU this for the case 

of the pure fluid, right. So I can write that in the following for a constant temperature that DU is 

integral of VDP at constant temperature or I can write this as DU is equal to VDP at constant 

temperature and then if I integrate this, okay, then I am going to write like this and this would be 

your U minus U0. 

And for the case for ideal gas I write can this V as RT by P for ideal gas and thus, I can get this 

expression as RT LN P by P0, right. This we have written earlier also, right. So for the case of a 

pure fluid and for ideal gas, I can write this expression that the chemical potential difference or 



chemical potential of the pure component with respect to a reference value is nothing but RT LN 

P by P0.  
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𝜇𝐼𝐺(𝑇, 𝑃, {𝑦𝑖}) + 𝑅𝑇𝑙𝑛
𝑃

𝑃0
+ 𝜇𝐼𝐺(𝑇, 𝑃0, 𝑝𝑢𝑟𝑒 𝑖) = 𝑅𝑇𝑙𝑛 𝑦𝑖 

𝜇𝑖
𝐼𝐺(𝑇, 𝑃, {𝑦𝑖}) − 𝜇𝑖

𝐼𝐺(𝑇, 𝑃0, 𝑝𝑢𝑟𝑒 𝑖) = 𝑅𝑇𝑙𝑛
𝑦𝑖𝑃

𝑃0
 

So here U here is nothing but T, P pure I, right, and U0 is some T some P0 of the same component 

I, right. So, this is what we have the relation. Now what I am going to do is I am going to use this 

expression and this expression, these two expressions. And essentially, I will combine it, so instead 

of just taking a pure I as a reference, I will now take the difference of ideal gas mixtures with 

respect to a reference state at P0.  



So will just like to see what we are going to get there, UI, IG T, P this is something which can 

remain the same, okay. So, it is like UI T, P summation YI, so we can say here combining star and 

star, star, okay. So, I am not naming or I am not know numbering the equation here at this point, 

so I am going to use this only the reference as this. Okay, and then I am replacing this UI IJ by this 

expression which is RT LNP by P0 plus U0, so because this expression for the ideal gas, so this is 

also ideal gas, right. So, this for ideal gas, okay. 

That is what you are considering here, so I am going to write this as T, P0 pure I, okay, and this 

has to be equal to RT LN, YI. So you need to rearrange now, okay, so let us look at how to do that, 

again, I am going to use now make sure that this part is something which can go here, use this as 

to which was make sure that we are using the same nomenclature. I am going to say that this again 

ideal gas, this is again ideal gas, so this has to be let us say ideal gas, but it is at the P0 as a reference 

and this if you put it here minus of this, so this would be, this plus this. 
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So, with this we have the expression U IG T, P UI minus U IG T, P0 pure I, okay. But now we 

have this RT LN P YI times P divided by P0, okay. So that is an expression we have, okay. Now 

this is, this tells you that the chemical potential of component I here in the mixture with reference 

to the chemical potential of the pure component at a specific pressure P0 reference pressure that 

will be equal to RT LN YIP, okay, which is nothing but a partial pressure divided by the reference 

pressure, okay.  



That is what this is basically is telling you this expression. Now this also suggest that as P goes to 

0 that means lower pressure or YI goes 0 that is low concentration, so low pressure and this is at 

low concentration, okay. So, if the equation suggests that as P tends to 0 or YI tends to 0 U 

diverges, okay, but this the usual the case for ideal gas. So essentially this equation poses the 

problem numerically because it will divergence you cannot use it effectively. 

So, what we do? We would the same thing as we have done that for the case of the pure system, 

pure fluid. We will introduce a variable which we have done that past is called fugacity. 
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𝑅𝑇 ln
𝑓𝑖

𝑓0
= 𝜇𝑖(𝑇, 𝑃, {𝑦}) − 𝜇𝑖

0(𝑇, 𝑃0, 𝑝𝑢𝑟𝑒 𝑖) 

𝑈𝑠𝑢𝑎𝑙𝑙𝑦, 𝑓0 = 1 𝑏𝑎𝑟, 𝑃0 = 1 𝑏𝑎𝑟 

𝑅𝑇𝑙𝑛 𝑓𝑖 = 𝜇𝑖(𝑇, 𝑃, {𝑦}) − 𝜇𝑖
0(𝑇, 𝑃0, 𝑝𝑢𝑟𝑒 𝑖) 

𝑅𝑇𝑙𝑛
𝑓𝑖

1

𝑓𝑖
2 = 𝜇𝑖(𝑇, 𝑃1, {𝑦}) − 𝜇𝑖(𝑇, 𝑃2, {𝑦}) 

So how we are going to define here? Let me just write it down. So just as we have done previously 

for pure component, we will define, so we are going to define here RT LN FI by F0. This would 



your UI T, P Y chemical potential T, P Y minus UI0 T, P0 pure I, okay. So, this a generic definition. 

So now at this point when I am writing this, I am not saying that this is an ideal gas, okay. 

This is to define that the chemical potential difference with reference to reference value is defined 

as RT LN FU F0, okay. Now here F0 and P0 are related, so once you fix this P0, basically you are 

fixing F0. So usually F0 is 1 bar at P0 is 1 bar. So, once you say that 1 bar basically you are saying 

P0 is also 1 bar, okay. So, in that case you can simply write this as RT LN FI is nothing but UI T, 

P Y minus UI0 T, P0 pure I, okay.  
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Now if you want to get rid of this reference essentially you would also need another condition, so 

this would imply also that for another let us say pressure, keeping the temperature fixed you can 

write this as LN F2 by F1, let me write it again, so this is let us say component, we are talking, 

still talking about component 1 or some I, so this could be I, this I, but this is let us say 1 this is 2, 

and what we are talking about is basically T, P1 minus UI T, P2, okay. 

 So, this is another way to say that if you want to get rid of that. So essentially you are looking at 

change in the pressure and you are finding the difference between these relations, okay. Because 

this is just a bit of understanding of the fugacity in this relation, but let us consider specific case. 
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Write about this part, okay. So if you consider this and essentially now consider this for let us say 

compare this one with the definition of the fugacity, so you use this here and now you compare 

with the fugacity relation then. 
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The following you can easily derive here, so if you look at this, this is the same term but the right 

hand side, okay, will be you RT LN Y P by P0, that is what we written earlier, right, for the ideal 

gas. 
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𝐴𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝑡𝑜 𝐼𝐺 𝑚𝑖𝑥:          𝑅𝑇𝑙𝑛
𝑓𝑖

𝑓0
= 𝑅𝑇𝑙𝑛 (

𝑦𝑖𝑃

𝑃0
) 

So if you just compare this and apply this expression to ideal gas, ideal gas, ideal gas mixture the 

definition here then you can show that FI by F0, so because is going to be RT LN0, this is nothing 

but RT LN I P by P0, right. So this is what you can clearly see. If you use this expression and 

compare this with this expression then essentially you are saying that this right hand side is equal 

to this, okay, which essentially leads to this expression.  

Now this tells you that FI by F0 is nothing but YI P by P0. Now this though we are saying that is 

ideal gas mixture, we applying the ideal gas mixture, but this particular definition which we have 

written here does not impose any condition on the phase that gas or liquid, so you can indirectly 

consider also you extend it to the liquid phase as well.  
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𝑓𝑖

𝑓0
=

𝑦𝑖𝑃

𝑃0
 

𝑓𝑖
𝐼𝐺 = 𝑦𝑖𝑃 = 𝑃𝑖 = 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

𝑓𝑖
𝐼𝐺 = 𝑃𝑖         𝑓𝑖

𝑅𝑒𝑎𝑙 ≠ 𝑦𝑖𝑃 

So, though I am writing here the mole fraction as a Y which is usually consider for the gas phase, 

but this could be a liquid phase also, okay. But of course, we will be mostly using for the gas phase 

here. So let us look at it here. So if you consider this conscience F0 and P0 are connected, I can 

simply write FI, this is now for the ideal gas is nothing but YI P, YI P is nothing but PI, okay. 

So therefore, FI of ideal gas, fugacity of the component I in the ideal gas mixture is nothing but 

the partial pressure, okay. So what about the real fluids or real gas, so certainly real gas will not 

be equal to YI previous, right.  
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𝜙𝑖 =
𝑓𝑖

𝑃𝑖
=

𝑓𝑖

𝑦𝑖𝑃
 

𝜙𝑖
𝐼𝐺 = 1   𝑃 → 0 

𝜙𝑖 → 1   𝑎𝑠 𝑃 → 0 

And only at specific conditions when this, the fluid behaves like ideal gas, you will have FI real 

fluid behaving like an ideal gas then it will have the FI value to be the partial pressure. So in order 

to define the deviation or in order to observe the deviation from the ideal gas, we can define a very 

convenient parameter which we called it a fugacity coefficient, okay. So it is convenient to define 

a fugacity coefficient because this can identify the deviation from ideal gas, so ideal gas, so what 

we can use, we can use this ratio of this FI IG and PI, so we can say that FI by PI or FI by YIP. 

So this ratio will be called as a fugacity coefficient. So naturally for the case of ideal gas, this is 1, 

but otherwise it is not. This will happen only when the pressure approaches to 0. So that means 

basically all the FI in general will approach towards 1 as P approach towards 0, right. Okay, so 

that is something which is which wanted to discuss at this point where we started with a basically 

the relations of the chemical potentials with the mole fractions in the binary, in ideal gas mixtures 

and we started from the derivative of delta G ideal gas mixture, okay. 



And then we have derived this expression, okay. And then we said well, the problem comes in 

when we use this pressure and see that the pressure itself and it goes to 0 this equation diverges 

and then we recall that we have done this exercise in the pure phase where we have tried to use 

fugacity as a mean to avoid this kind of divergence of the chemical potentials at a very low 

pressure. 
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So we have used that fugacity here as well, now we use that expression and connected the fugacity 

in the gas phase mixtures to the mole fractions and the pressure. And particularly for ideal gas, the 

fugacity of a component I is nothing but the partial pressure. So for that in order to find out the 

deviation from the ideal gas, we defined a term which we called fugacity coefficient 
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So something which is straight forward at this point. Now the question is, how do we find out this 

fugacity coefficient when you have volumetric data is all equational state available? so this is, 

these are the two specific question which we need to address, okay. 
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So let me just work on this, so the question is now, how do we relate PI, right, and if you are 

talking about PI, you are also talking about UI, FI, okay, in terms of measurable quantities. 

 So this the basically the key question at this point and once you are able to derive this  and 

understand it then essentially we can make use of whether the experimental data is available or 



whether the equation states are known, using that information, we should be able to find out PI. 

We also talking about the relevance of PI.  

When we try to address the questions of the phase equilibria, okay, as subsequently we all also 

understand how do we relate this deviation from the ideal gas mixtures in terms of other properties 

also. So I think we are almost there to understand completely of the gas phase mixtures and 

subsequently we will take a liquid mixtures, but this particular question of, how do we relate PI in 

terms of measurable quantities? I will describe in length in the next lecture, okay. So now I will 

close it. I will take it up again, so I will see you next time.  

 

 


