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Lecture 38 - Partial Molar Properties of Ideal Gas Mixtures 

Welcome back. In the last class last few lectures actually we have been talking about 

calculating partial molar properties through analytical and graphical means. In today's lecture 

I will start with the ideal gas mixtures and basically to find out the changes in the properties of 

ideal gas and using the definitions of the partial molar properties which you have learned. 
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Let us go with so let us start with the basic definition of ideal gas. So it is a PV, NRT right? 

That is the equation of state where we say that well, the ideal gas mixture does not have any 

interactions. The only thing which has in its internal energy is the kinetic energy. So this is NT 

total number of moles which I can also write like this: N i RT. So let us extend our learning of 

partial molar properties to idle gas mixtures. Here if I were to obtain the partial molar volume 

of ideal gas component here then I am going to take the partial derivative of  V with respect to 

N i T p, right ok and then if I use this equation of state here replace this equation of state V 

from here the equation of state. 

Then I should be able to write this as, right and this is again summation N I, so RT and V is 

not dependent on N i and here from here that partial derivative of this term with respect to N i 

is nothing but 1. So what you obtain is RT by P here, this is P, okay. So this is for the ideal gas, 

the partial molar volume is I of ideal gas is nothing but RT and now let us look at for the case 



of the pure component idle gas, so at a given temperature and pressure molar property of pure 

component I in the idle gas would be written as something like this: It is V i this is one 

nomenclature. I can write since it is pure I can write a small v i and this is nothing but RT by 

P as far as the ideal gas is concerned. 

And that is same as V IG, right so for the pure case of the component I molar volume is nothing 

but RT by P and that is same as the partial molar volume of that component in ideal gas. Now 

let us take it take this definition and extend this to obtain the Delta V mix for the case of ideal 

gas mixture. 
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So this would be the change in the volume of the mixture in ideal gas okay and this by definition 

is nothing but summation and N i V i bar minus small v i okay, now this of course small v i 

and this V i bar is equal to zero. And small v i bar is nothing but equal to V i and hence this is 

nothing but zero and thus this is zero, okay. 



So that is one of the property of ideal gas mixture that the volume does not change upon mixing, 

that is what it clearly says that, that is why Delta V makes ideal gas is equal to zero, okay. Well, 

it is understandable also because we also consider ideal gas does not have any volume particles, 

as such it does not have any volume as such, not that ideal gas does not have volume. Ideal gas 

of course has volume but ideal gas particles do not occupy any specific size itself and hence 

they can pass through each other when they mix, so they do not collide as such, they the 

particles does have kinetic energy but they do not collide with each other. They collide with 

the walls, so considering that the molecular nature of the ideal gas this is kind of intuitive that 

the volume essentially should not change upon mixing because the particle does not have any 

specific sizes or does not occupy any specific volume as such particles. 

So that is the subtlety in this kind of definition. So let me now extend this exercise to internal 

energy. Now internal energy of an ideal gas depends on the temperature and number of course 

particles. We can also write this as summation N i and molar internal energy which only 

depends on temperature because the internal energy contribution of an ideal gas is due to the 

only the kinetic energy which of course has a direct relation with the temperature. Now if you 

look at this then straightforward to obtain the partial molar internal energy which will be 

nothing but U i T because this is nothing but del U by del N i, so this is clearly U i IG is equal 

to U i T. 
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Now if you have been asked to find out Delta U that means change in the internal energy upon 

mixing, then the answer would be this is zero hence this has to be zero. So that is also the case 

for the delta U. So we have the volume change zero for the ideal gas mixture, internal energy 

change zero for the case of ideal mixture ideal gas mixture. So we can also extend this thing 

for enthalpy. Similarly, we can show that the delta h IG mixture is zero, okay and how to do 

that? We start with our definition that H i is nothing but U i plus P V i or we can say here 

directly partial derivative of H here is, okay. 

Directly we are extending it as we have done this, we have shown this particular expression 

that the thermodynamic relations as we write it for the pure component can be extended for 

this and we can extend it for the partial molar properties as well. So I am just writing that, now 

given this I can write this as a PV IG is nothing but RT and U i IG which is nothing but H i bar 

IG because this is U i small, ok molar volume or smaller one, okay. 

So this is in other word this is a molar internal energy. So with this you have molar internal 

energy plus RT of a component I okay and thus this will give you H i IG that is your molar 

enthalpy of component I, okay. So this we have calculated, right this we have derived it earlier 



as we have shown there that U IG is nothing but U I, right. So, I can actually write this also in 

order to have a clear thing, this is nothing but saying it this, so this is equivalent. So this I write 

it, usually for the pure component I write it like that but for the case of mixtures is better that 

we write it in this way. 
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So with this definition of course that H i bar is nothing but the molar one, then I have now that 

Delta H mix ideal gas is nothing but summation N i H i bar minus okay H i this or I can write 

this as summation N i H i bar minus H i okay, for the basically this is for the pure component. 

So this is what we are trying to write and since this is same as this as we have seen here, a 

molar component of this has to be equal to zero. 
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So it is a straightforward exercise of systematic analysis here, okay I would like now to extend 

this to the entropy but before we proceed further we must understand a bit of the pressure 

component in the gas mixtures of ideal gas. So for the case of the gas mixture or any mixture 

basically, we can define something like partial pressure which is usually defined by a symbol 

P i and this is nothing but the total pressure multiplied by the mole fraction in the gas phase. 

I can write this as an N i number of moles of the component i divided by the total number of 

moles in the system N i by NT. If it is an ideal gas P i is N i by summation N i and here P can 

be written as summation N i RT by V. So, this gets cancelled so this is nothing but N i RT by 

V which is nothing but the pressure of the system with N i moles of component i at the 

temperature T and V. And this P i is nothing but P i with all the components and this 

composition at temperature and volume, right so this P i becomes P here for only ideal gas. 
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So let us try to understand this a bit so when you mix it what happens to this pressure. So let 

me consider the case that as I said you know we are trying to reach towards understanding how 

to bring the entropy calculations or the change in the entropy upon mixing. 
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So what I am going to consider is a system where you do have a couple of components which 

are separated something like this and they are separated by this partition. So you have of course 

molecules here, here and here, okay. Upon removal of the partition you expect you know 

mixing of these particles here. So the what the effect of this removal of phase is basically effect 

of removing the partition and mixing the component if you think about that a particle which is 

here was able to only access the volume available in these regions. 

Once you take out the partition the same particle now have more volume to access. So there is 

a greater volume within which the particles can move, so that is one effect of removing the 

partition, okay. 

Now when you have greater possibilities because you can the particles can move various 

different locations and all the particles can access more possible locations leading to more such 



you know arrangements, only the word if you think from the concepts of the you know the 

number of possible confirmations, number of possible access or leading to variety of different 

in the molecular level confirmations, this would also indicate that there is an increase in the 

disorder because of the fact that the particles are moving and they are able to access more. So 

essentially this indicates that they should be now increase in the entropy upon mixing the 

particles even if it is an ideal gas, okay. 

Now that is something which is very interesting. So we notice that for ideal gas the change in 

the volume upon mixing is zero, change in the internal energy enthalpy should be zero but 

when it comes to entropy it appears that upon removing the partition the possibilities of access 

to the different volumes increases for each particles leading to more randomness in some sense. 

So that is something which we would like to know explore. 

So let us see what happens now. Why did we describe the pressure? Because of the fact here 

initially each of them had like the pressure corresponds to their number of molecules, number 

of moles present in that and then once that is mixed, each of them each species in some sense, 

so here for example in this case I have mixed it with all same color but we can consider that 

this is let us say different colors indicates a different kind of species and when you mix it you 

have all kind of you know arrangements here. 

Now the question is very clear is that of course you have the pressures which is due to this pure 

one and when they are mixed each of them is contributing to the total pressures, so each species 

has something called partial pressure. That is what we talked about here, this is the partial 

pressure corresponding to each species. So let me try to the graphically explain what happens, 

how do we interpret this whole behavior because it is an ideal gas. So for example, these black 

particles are not interacting with the green particle and same for this red and green and red and 

black. The only thing which they are able to do is they are able to access more volume compared 

to the case where the earlier okay, because they are ideal gas. 
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So the equivalent representation considering particles do not interact would be the following: 

where I can consider that well for a single species let us say it is black particles here which 

were at temperature T and P, the volume initially was let us say V i N I RT by P because of the 

ideal gas, now upon removing the partition you have now much bigger space, alright. The same 

set of particle now can access more volume here but this is now temperature T and V that is 

the total volume now. 

And essentially this volume now can be written as total (temp) number of moles RT by P, okay 

and the final pressure which is going to be N i and P, P is the total pressure of the system but 

the contribution due to this particular black particle would be N i by N P. So in the world what 

you are trying to say is that well, the particle this particular blue component is expanded, our 

box is expanded such that the volume changes from V i to total volume V and the pressure 

changes from its the pressure which was given P to corresponding PF or in this case PI for 

example for the specific component because each of them are independent. 

The only thing which is differing is the number of moles and the initial the volume here but 

finally the final volume is fixed. So considering that how do you now calculate the Delta S 

from this exercise or from this particular understanding? So, let us again look at it. Since T is 

constant here and I know that upon mixing or even if expanding here if T is constant essentially 

what means that the UT is constant and now U of T is constant, U is equal to zero but d U is 

nothing but T d S minus P d V, right. 



So I can write Delta S as 1 by T integral of P d V at constant T. Now the relation I have, I have 

to find out the Delta S of this particular expansion of the volume of this particular component 

and we can just look at only the pure component here at this point because each of them will 

contribute to the Delta S or the change in the entropy and since the entropy is extensive property 

we can simply add it up. 

(Refer Slide Time: 21:28) 

  

 

𝑉𝑖 =
𝑁𝑖𝑅𝑇

𝑃
     𝑇, 𝑉 =

𝑁𝑇𝑅𝑇

𝑃
     𝑃𝑓 =

𝑁𝑖

𝑁
𝑃 

𝑇 𝑐𝑜𝑛𝑠𝑡 

𝑈(𝑇) = 𝑐𝑜𝑛𝑠𝑡 ; 𝑑𝑈 = 0 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉  



Δ𝑆 =
1

𝑇
∫ 𝑃𝑑𝑉    𝑎𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑇 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 𝑓𝑜𝑟 𝑝𝑢𝑟𝑒 𝑐𝑜𝑚𝑝. 𝑖 

𝑉𝑖 → 𝑉 𝑎𝑡 𝑇 

Δ𝑆𝑖 =
1

𝑇
∫ 𝑃𝑑𝑉

𝑉

𝑉𝑖

       𝑃 =
𝑁𝑅𝑇

𝑉
 

Δ𝑆𝑖 = 𝑁𝑖 ∫
𝑑𝑉

𝑉

𝑉

𝑉𝑖

 

Δ𝑆𝑖 = 𝑅 ∫
𝑑𝑉

𝑉

𝑉

𝑉𝑖

= 𝑅𝑙𝑛
𝑉

𝑉𝑖
= 𝑅𝑙𝑛

𝑁

𝑁𝑖
 ;   

𝑁

𝑁𝑖
=

1

𝑦
 

Δ𝑆𝑖 = −𝑅𝑙𝑛 𝑦𝑖 

 



 

(Refer Slide Time: 24:36) 

 

Δ𝑆𝑚𝑖𝑥
𝐼𝐺 = ∑𝑁𝑖Δ𝑆𝑖 = −𝑅∑𝑁𝑖  ln 𝑦𝑖 

Δ𝑆𝑚𝑖𝑥
𝐼𝐺 = −𝑁𝑅∑𝑦𝑖𝑙𝑛 𝑦𝑖    

So I have now an expression the Delta S i is minus R Ln S i bar here y i. So, this is my change 

in the entropy of a component i upon in the mixture from the pure state to the mixtures. Now 

given this I have to now add it up for the other cases. So if you add it up others, so others will 

be straightforward because Delta S ideal gas mixture would be nothing but your summation N 

i okay and Delta S i okay. Because it is extensive so we are simply adding the contributions for 

each particular component, that is the relation I am just simply adding here. 

So Delta S i ideal gas mixture nothing but simply the summation of others. So, here I can 

expand it now, S N I am replacing it this here and now at this point if at this point if I divide 

this by let us say if I consider N i by total N here, R Ln y i here then I can multiply N here and 

that is the total number of particles and then I have a relation now Delta S ideal gas mixture as 

minus NR summation y i. This is the double R here which should not be the case. 

So this would be now ln y i. So therefore delta S IG mixture is minus NR summation y i ln y i. 

So this is how we have now come up to that expression which relates the change in the entropy 

of the ideal gas in the mixtures to the compositions of different components. You can extend 

now these to obtain the Delta G also because you do have now all the information. So let me 

just try to do that and that will be end of the lecture. 
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Δ𝐺𝑚𝑖𝑥
𝐼𝐺 = 𝑁𝑅𝑇 𝑦𝑖ln ∑ 𝑦𝑖 

Δ𝐴𝑚𝑖𝑥
𝐼𝐺 = 𝑁𝑅𝑇∑𝑦𝑖𝑙𝑛 𝑦𝑖 

So the Gibbs free energy change would be Delta G ideal gas mixture would be Delta H minus 

T Delta S and since this mixture and I am going to put here Ideal gas, I am going to put here 

ideal gas and we know from that this is going to be zero. So with this Delta G ideal gas mixture 

is nothing but plus NRT summation y i ln y i. So you put it here, you get this expression that is 

your Delta G ideal gas mixture. Similarly you can also obtain the Helmholtz free energy 

change, so basically the change in Helmholtz free energy. 

So that is Delta A IG mixture, this is going to be Delta U minus T Delta S, again this is ideal 

gas hence I am putting it here and this is for the mixture. So that is the beauty of 

thermodynamics you know the relations remain the same, only you are concerned now with 

the change of the individual properties here. So here of course this is going to be zero and this 

is still minus here, so you plug in the same expression you get again NRT summation y i ln y 

i. So change in the Helmholtz free energy and the Gibbs free energy for the ideal gas mixtures 

is the same. So that summarizes the expressions which we wanted to calculate or which we 

wanted to develop rather for the ideal gas mixture. So let me summarize essentially all the some 

you know what we have developed for the ideal gas mixture just for the sake of having it here. 
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So ideal gas mixture we observed that the change in the internal energy is going to be zero, the 

change in the volume is also going to be zero, change in the Delta H mixture is also zero 

whereas Delta S i mixture is minus NR summation y i ln y i for the case of delta G IG mix. We 

have NRT summation y i ln y i and Helmholtz free energy change is same as that of the Gibbs 

free energy and hence we write the same expressions, okay. 

So the only difference in between this Delta S to other free energy is the presence of 

temperature and the sign is positive. I think for now we will stop here because we wanted to 

just look at first the ideal gas mixtures and subsequently in the next class we are going to extend 

this understanding and particularly for Non-ideal gas mixtures and the reason why you wanted 

to take this ideal gas because this would always be used as a reference for our non-ideal gas 

systems or non-idle systems, okay. So with this we stop here and I will see you in the next. 

 


