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Welcome back, in today’s lecture we are going to talk about thermodynamics of mixtures. In 

case of pure fluid, the interaction between the components are similar. So, for example if you 

have only component, let us say i, so ii interactions govern the thermodynamic properties such 

as the internal energy, free energy and so forth, okay. However, for the case of mixtures you 

will have unlike introductions. 

So, for example, in the case of, let us say 2 component system A and B you will have an 

interaction such as between aa, ab and as well as bb. So, these are the interaction which will 

govern the properties of the system, okay. So, that means intermolecular interactions between 

different components or that is interspecies interaction will affect the properties. 
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Okay, so that is what I expect of it. Of course, the nature of the species or the component will 

also affect the properties. Okay, so let us take an example to illustrate bit of the impact of 

mixing 2 comments. One of the examples could be, a mixture of ethanol and water. So, let us 

say we have taken, let us say 50ml ethanol and we add this to 20ml water. So, what you expect 

the final volume of the system. Would it be 70 or will it be more 72, 73 or will it be less? 

So it turns out that the final volume in this case would be 67 milliliter of mixture of ethanol 

with water. So what is the reason for reduction in the volume effectively? So, in this case since 



ethanol also has OH group and water has also OH group, so essentially it allows them to form 

hydrogen bond. So, due to the nature of the hydrogen bond involved in the structure, the final 

solution behaved differently than simple additive effects of these 2 components. 
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So, that means the nature here, the final volume which has been reduced is due to the nature of 

hydrogen bond involved in the structure of the liquid, okay. This hydrogen formed bond allows 

specific kind of the geometry and which eventually shrinks the solution, so that means the 

solution has shrunk the ethanol and water that means ethanol and what can form or can pack 

together more tightly, right? That is why the volume has reduced. So then can each species by 

themselves. 

Now, notice that the final mass of the final mixture still remains the same that means the total 

mass is conserved, right, is constant or conserved, okay. However, V mix is not equal to V of 

ethanol plus V of water. So, what is something which is evident from this exercise is that the 

properties in this case clearly depend on the interactions, okay. And, of course, it also will 

depend on the amount which we added here that is something which we are going to look at 

but interactions play a big role, okay. 
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So, properties of mixture still depend on the amount present of each species and resulted, its 

resultant interaction. So that is why we prefer to express the mixtures property in terms of the 

contribution from each component. So, this is the reason that we desire, so it is desirable to 

express mixture property in terms of contribution by the component, okay. So, let us little bit 

explore this how to express mixture properties in terms of contribution by the component, okay. 

So, for that let me consider going back to the fundamentals of thermodynamic expressions.  

𝑑𝐺 =  −𝑠𝑑𝑇 + 𝑣𝑑𝑃 + ∑𝜇𝑖𝑑𝑁𝑖    

𝐺 = 𝐺(𝑇, 𝑃, 𝑁1, … 𝑁𝑛) 

𝐺 = ∑𝜇𝑖𝑁𝑖 = 𝜇1𝑁1 + ⋯ + 𝜇𝑛𝑁𝑛 



𝜇𝑖 =
𝜕𝐺𝑖

𝜕𝑁𝑖

|𝑁𝑗≠𝑖,𝑇,𝑃
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𝜇𝑖 = 𝜇𝑖(𝑇, 𝑃, 𝑥1, … , 𝑥𝑛−1) ≠ 𝜇𝑝𝑢𝑟𝑒(𝑇, 𝑃) 

𝑘 → 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑣𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦  

𝑘 = 𝑘(𝑇, 𝑃, 𝑁1, … , 𝑁𝑛) ;   𝑘 = 𝑉, 𝐻, 𝑈, 𝑆, 𝐺 

𝑑𝑘 = (
𝜕𝑘

𝜕𝑇
)

𝑃,{𝑁𝑖}
𝑑𝑇 + (

𝜕𝑘

𝜕𝑃
)

𝑇,{𝑁𝑖}
𝑑𝑃 + ∑ (

𝜕𝑘

𝜕𝑁𝑖
)

𝑇,𝑃,{𝑁𝑗≠𝑖}

𝑑𝑁𝑖

𝑚

𝑈=1
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𝑊𝑒 𝑑𝑒𝑓𝑖𝑛𝑒,   𝐾𝑖̅ = (
𝜕𝐾

𝜕𝑁𝑖
)

𝑇,𝑃,{𝑁𝑗≠𝑖}

= 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑚𝑜𝑙𝑎𝑟 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 = 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑣𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

𝐾𝑖̅ = 𝑘𝑖    lim 𝑥𝑖 → 1 ;     𝐼𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝐾𝑖̅ ≠ 𝑘𝑖 

𝐸𝑥𝑎𝑚𝑝𝑙𝑒:   𝑉𝑖̅ = (
𝜕𝑉

𝜕𝑁𝑖
)

𝑇,𝑃,{𝑁𝑗≠𝑖}

 

𝐻𝑖
̅̅ ̅ = (

𝜕𝐻

𝜕𝑁𝑖
)

𝑇,𝑃,{𝑁𝑗≠𝑖}
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Now, similar to the case of the Gibbs free energy when the Euler expression, Euler integration 

was used in order to get this expression, similarly, we can also look at that for the case of K.  

𝐺 = ∑𝑁𝑖𝐺𝑖̅ = ∑𝑁𝑖𝜇𝑖 
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So, let me now extend this thing exercise for the case of K.  

𝐸𝑢𝑙𝑒𝑟 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛:    𝐾 = ∑𝑁𝑖𝐾𝑖̅ →   𝑉 = ∑𝑁𝑖𝑉𝑖̅   𝑜𝑟, 𝑣 = ∑𝑥𝑖𝑉𝑖̅ 

𝐾

𝑁𝑇
= ∑ (

𝑁𝑖

𝑁𝑇
𝐾𝑖̅)   𝑜𝑟, 𝑘 = ∑𝑥𝑖𝐾𝑖̅    
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So, let us again look at K is nothing but summation Ki bar dn bar.  
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𝐺𝑖𝑏𝑏𝑠 − 𝐷𝑢ℎ𝑒𝑚 𝑒𝑞𝑛:    𝑎𝑡 𝑐𝑜𝑛𝑠𝑡 𝑇, 𝑃  

𝑑𝐾 = ∑𝐾𝑖̅𝑑𝑁𝑖  ;   𝐾 = ∑𝑁𝑖𝐾𝑖̅ 

𝑑𝐾 = ∑𝑁𝑖𝑑𝐾𝑖̅ + ∑𝐾𝑖̅𝑑𝑁𝑖  

∑𝑁𝑖𝑑𝐾𝑖̅ = 0  𝑎𝑡 𝑐𝑜𝑛𝑠𝑡. 𝑇, 𝑃   
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𝑒. 𝑔. ∶   ∑𝑁𝑖𝑑𝑉𝑖̅ = 0 

∑𝑁𝑖𝑑𝐻𝑖
̅̅ ̅ = 0 



∑𝑥𝑖𝑑𝑉𝑖̅ = 0 𝑎𝑛𝑑 ∑𝑥𝑖𝑑𝐻𝑖
̅̅ ̅ = 0  

So, that means I can write this as Ni dvi, bar this has to be 0 at a constant temperature and 

pressure. Similarly, this will also hold the following, okay. I can also divide by total number 

of molecules, total number of moles here and I can get here in terms of composition and 

summation xi dHi equal to 0, okay. So, this is what we have is generalized Gibbs Duhem 

relation. That is something which you can say that, okay. 
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Now, let us apply for the property of volume for the binary mixtures. So, let us try to do an 

example for the binary mixture, okay and use this Gibbs Duhem relation. So, for the binary 

mixture let us say, it is a, b, okay. I can write this as N of a, okay and since, we are interested 

in let us say volume, property for volume, volume property.  

(Refer Slide Time: 17:18) 



 

We want to apply this summation expression for volume.  
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𝐵𝑖𝑛𝑎𝑟𝑦 𝑀𝑖𝑥𝑡𝑢𝑟𝑒:  (𝑎, 𝑏)  

𝑁𝑎𝑑𝑉𝑎̅ + 𝑁𝑏𝑑𝑉𝑏
̅̅ ̅ = 0 

𝐷𝑖𝑓𝑓 𝑤𝑟𝑡 𝑥𝑎 ∶  
𝑁𝑎𝑑𝑉𝑎̅

𝑑𝑥𝑎
+

𝑁𝑏𝑑𝑉𝑏
̅̅ ̅

𝑑𝑥𝑎
= 0 

𝐷𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑏𝑦 𝑁𝑇 :  
𝑥𝑎𝑑𝑉𝑎̅

𝑑𝑥𝑎
+

𝑥𝑏𝑑𝑉𝑏
̅̅ ̅

𝑑𝑥𝑎
= 0 
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𝑅𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑖𝑛𝑔 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑛𝑔:  𝑉𝑏
̅̅ ̅ = − ∫

𝑥𝑎

1 − 𝑥𝑎
(

𝑑𝑉𝑎̅

𝑑𝑥𝑎
) 𝑑𝑥𝑎 

Now, let us try to simplify a bit here. Okay, so if you rearrange and integrate, okay. So, if you 

rearrange and integrate, I can get this expression as, let us say if you are looking at only b here 

then it is Vb bar is going to be minus, okay. I can write xa plus xb is equal to 1 or in other 

words I get xb as 1 by xa and this term as dva by dxa. So, essentially, I have this divided xb 

here and replace xb by 1 minus xa taking to the other side, got a negative sign here and then 

this is the term which I got and then we have to integrate with dxa, okay. So, this is the 

expression we got, okay.  

So, it tells you that va bar versus xa that means partial molar property of a component A as a 

function of the composition of the component A if that is available then I should be able to find 

out the partial molar property of a Vb, okay. So, if this relation is available, I should be able to 

find out the Vb, okay. That is what we got from this exercise. 

So, let me continue this, now we talked about typical property and in terms of molar properties, 

the typical property of a mixture can be expressed in terms of the molar properties. So, that is 

something which we have looked at but what about the change in mixing. For example you 

added the volumes, so what about the change in the volume which you observed upon mixing. 

So that is something which many times is relevant and important.  
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So, now let me just talk about that. So what we are interested is now is property change of 

mixing upon mixing, okay. So, if we are talking about generalized extensive variable K then 

we can use this K here, Delta K mix all we can define this as the K of the mixture minus 

summation and I, small ki, okay. So, it tells you that if you have added the components K and 

the corresponding moles here, so it is like literally the effective additive individually if you are 

just adding up the pure component and then you subtract that from the file property and 

whatever the changes there that would be a change in the mixing. 

So, in other words if you are talking about let us say volume this would be your V minus 

summation ni, vi, okay where Vi is a pure molar volume of component i, okay. And this is the 

moles of a component i, okay and similarly for Delta H mix, okay. So, if you think from this 

point of view let us consider this that essentially, so if you have added, let us say component 

1, okay. 

At a constant let us say temperature and pressure, okay. And essentially what you are looking 

at is, for the case of let us say volume here, looking at the change here would be your Delta V, 

if you have had mixture of 1 plus n here. So this Delta V mix is nothing but whatever the 

volume it is there final, okay minus the individual volumes here multiplied by molar volumes 

here multiplied by ni or individual volumes, okay. 

So in other words if it is V1 till Vn essentially what is there is Delta V is nothing but V minus 

of all this Vl till Vn, alright. So we will try to do some examples to understand this bit more. 

So, we can extend this understanding from V we can also extend to let us say H here, okay. So 

now in that case I can little bit simplified this expression, okay let us look at again the 



generalized variable. Now I know that K, we just did that exercise K can be written as nI partial 

molar property Ki minus Ni small ki. So this can be written as now summation Ni Ki minus ki, 

okay. 

So it just tells you the difference between the molar property and the partial molar property 

multiplied by the moles and summing it up over all components would give you the change in 

the property of the mixture, okay.  
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𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑖𝑥𝑖𝑛𝑔:     Δ𝐾𝑚𝑖𝑥 = 𝐾 − ∑𝑁𝑖𝑘𝑖 

Δ𝑉𝑚𝑖𝑥 = 𝑉 − ∑𝑁𝑖𝑣𝑖 

Δ𝐻𝑚𝑖𝑥 = 𝐻 − ∑𝑁𝑖ℎ𝑖 

Δ𝐾𝑚𝑖𝑥 = ∑𝑁𝑖𝐾𝑖̅ − ∑𝑁𝑖𝑘𝑖 = ∑𝑁𝑖(𝐾𝑖̅ − 𝑘𝑖) 

𝐷𝑖𝑣𝑖𝑑𝑖𝑛𝑔 𝑏𝑦 𝑁𝑇:  Δ𝐾𝑚𝑖𝑥 = ∑𝑥𝑖(𝐾𝑖̅ − 𝑘𝑖) 

So if you divide by NT I get now Delta k mix as summation xi Ki bar minus Ki, so this is my 

final expression as far as Delta k mix is concerned, okay. 
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Now, let us try to little bit of some kind of exercise here. So, let us consider case of mixture, 

okay. And let us say that we are giving this component, we are adding this component 1, 2 and 

let us say this is m here, okay. And finally, so these are component 1, 2 and 3 to the m and 

finally we have a mixed system which is at T and P, okay. And these are all components; let 

us assume that they are also at T and P.  

So, at a steady-state we can apply the first law for the open system and we can write this Delta 

u of this system here which is the mixtures is Q plus W whatever the work related plus 

summation N of in h in minus summation N of out h out. Now, consider that there is, of course, 

a rigid mixture that means there is no boundary work. Considering, of course, the steady-state 

of course this has to go to 0. 

What remains is now this Q. Q can be written as summation N out h out minus summation N 

in and small h in, okay. Now this here is nothing but single 1, okay there is only one here and 

essentially this is nothing but H of mix at TP and this is nothing but summation Ni small h i, 

right? 
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𝐴𝑡 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒:    Δ𝑈 = 𝑄 + 𝑊 + ∑𝑁𝑖𝑛ℎ𝑖𝑛 − ∑𝑁𝑜𝑢𝑡ℎ𝑜𝑢𝑡 

𝑄 = ∑𝑁𝑜𝑢𝑡ℎ𝑜𝑢𝑡 − ∑𝑁𝑖𝑛ℎ𝑖𝑛 = 𝐻(𝑚𝑖𝑥 𝑎𝑡 𝑇, 𝑃) − ∑𝑁𝑖ℎ𝑖 

𝑄 = Δ𝐻𝑚𝑖𝑥 

Now, if you look at the expression here, okay. This expression tells you that for a steady-state 

system function like this Q is nothing but Delta H mix. So Q is nothing but Delta H mix 

essentially enthalpy of mixing is the amount of Q required to produce a mixture at TP from 

pure component at the same temperature pressure in a continuous flow process, okay.  

So this is what clearly tells out that their Delta H mix in this case is nothing but simply the Q 

which is required to makes the component at the same temperature and produces at the same 



temperature. So what we did is, we simply defined how to use the partial molar property which 

is the contribution given by each component towards the final property. 
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And now this particular definition and exercise what we have just gone through is something 

which you are going to now taking in the next lecture with some examples and elaborate more 

on this concept, okay. So that to be the end of this class. 

 

 


