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Fugacity 

Welcome back, in the past week we have gone through equational state and intermolecular 

interactions. Now, we are going to discuss a new topic, but before getting there, let me just try 

to explain the need for introductions of specific terms, this is something which mathematically 

or in general is driven by the experience which we have usually when we undertake problems 

and make use of the equations. 
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So, one of such exercise is something called original fugacity. So, let us consider a case where 

we have a pure fluid and we write down the expression for differential form of Gibbs free 

energy in molar terms.  

𝑑𝑔 = −𝑠𝑑𝑇 + 𝑣𝑑𝑃 = 𝑑𝜇 

𝐼𝐺: 𝑣 =
𝑅𝑇

𝑃
= (

𝜕𝜇

𝜕𝑃
)

𝑇
 

𝜇𝐼𝐺(𝑇, 𝑃) − 𝜇𝐼𝐺(𝑇, 𝑃0) = ∫
𝑅𝑇

𝑃

𝑃

𝑃0

𝑑𝑃 = 𝑅𝑇𝑙𝑛
𝑃

𝑃0
 

𝐴𝑠, 𝑃 → 0;  𝜇𝐼𝐺 → −∞ 



Now considering this condition or this limiting condition this equation becomes a little difficult 

for us to use for different substances because ideal gas is approached by all substance had low 

pressure, okay. So, this is something which is highly undesirable, okay.  
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Now, why this is undesirable? Therefore, this property or limiting condition is undesirable 

mathematically because we always consider a reference state as ideal gas for our calculation of 

thermodynamic property almost always this is the case and hence, the issue is that now this 

chemical potential tends towards minus infinity as the pressure is low, so we must come over 

some alternative solutions for that, okay. 
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𝑅𝑇𝑙𝑛
𝑓

𝑓0
= 𝜇(𝑇, 𝑃) − 𝜇0(𝑇, 𝑃0)   𝑓0 = 1𝑏𝑎𝑟  

So this log divergence can be removed by considering a new property or by considering a new 

term, this is what Lewis state, so to eliminate log divergences, okay. What Lewis did, he 

introduced a new quantity which we called fugacity, okay. So, this is something which was 

introduced and thus something which we can write now based on, of course, due to Lewis is 

RT ln f by f0 can be written as mu of T and P minus mu0 which is at T , P0, okay. 

So remember this mu0 reference is at P0, so P0 is some arbitrary pressure, usually we keep it 

at 1 bar, okay. Now this is a ratio, hence f has actually no, strictly has no units here which all 

could be any arbitrary units, so strictly unit of f is arbitrary, okay? But usually we refer, we 

provide of the u something like bar, but it is not a pressure, that is something which should be 

clear from this expression, it is not a pressure but for the sake of some reference value f here 

f0 is also considered to be 1 bar, okay? 
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Now, if you look at it this expression, this will tell you that if f increases, your mu increases 

which is a tendency to escape, so f increase indicate tendency of a compound or component to 

escape from liquid solution into vapor, okay? So this is an indicative so as fugacity increases 

this is a indicative that it will go towards in the vapor phase. 
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So, naturally the fugacity of vapor would be much more higher than that of the liquid, right? 

So that is something which one can prove also that at higher pressure you should have higher 

fugacity. Okay, for the pure fluid. Now, the other thing which you can also look at it this f0 

and mu0 are they independent? So based on this constraint either mu0 or f0 is arbitrary, okay, 

but they are not independent, that means once you fix mu0 the corresponding f0 is also fixed 

because that depends on the conditions which you are imposing, which is at TNP0. 

All right, so this is a statement which we must remember, this essentially means that once if 

one is fixed other would be also fixed, okay? So, now the reason we introduced this is, of 

course, to eliminate the log divergences so unlike mu is diverges as pressure goes to 0, f does 

not, okay. That is something which should be clear here, okay, because it is not the relation 

which we are using here in this case which is this, okay? 
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So, that is important to note that unlike mu f does not diverge at low p, okay. Now, let us look 

at again comparison between ideal gas and for this particular relation, we know from other 

relation, which we have used earlier that mu minus mu0 for ideal gas is nothing but RT ln P by 

P0. So, for a case of our definition of fugacity we can write it there. Now, these two terms, of 

course, get cancelled so considering these that Pf0 is nothing but P0, so if we consider f0 is 

equal to P0 is equal to 1 bar. So, this indicates that for ideal gas, f of ideal gas is nothing but 

pressure, okay? 

𝐼𝐺:  𝜇 − 𝜇0 = 𝑅𝑇𝑙𝑛
𝑃

𝑃0
 

𝜇 − 𝜇0 = 𝑅𝑇𝑙𝑛
𝑓𝐼𝐺

𝑓0
 

𝑓𝑜𝑟 𝑖𝑑𝑒𝑎𝑙 𝑔𝑎𝑠:   𝑓𝐼𝐺 = 𝑃      𝑓0 = 𝑃0 = 1 𝑏𝑎𝑟  

𝜙 = 𝑓𝑢𝑔𝑎𝑐𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑐𝑒𝑛𝑡 =
𝑓

𝑃
   ;     𝜙𝐼𝐺 → 1 
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But remember this is numerically it is a pressure because fugacity is again not a pressure, okay; 

it is a measure of a mu, okay. Note that fugacity is not pressure, it is a measure of chemical 

potential or basically it tells you, what is the behavior of the fluid to escape from the liquid 

phase. Now, in order to define deviation from ideal gas we can come up with another auxiliary 

parameter, which we call it fugacity coefficient, which is nothing but the ratio of f by p, okay. 
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Hence, for ideal gas this will be 1, right? And in other words we can say that fugacity, the 

coefficient, fugacity coefficient will approach towards 1 at low pressure, okay; with, of course, 

the convenient reference is this f0 p0 is equal to 1 bar. 
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Okay, so using this expression, now I can little bit expand a bit of this fugacity understanding, 

okay.  

(
𝜕𝜇

𝜕𝑃
)

𝑇
= 𝑣 =

𝑅𝑇𝜕𝑙𝑛𝑓

𝜕𝑃
|𝑇 

𝑜𝑟, 𝜇2 − 𝜇1 = 𝑅𝑇 ln
𝑓2

𝑓1
= ∫ 𝑣𝑑𝑃  

ln 𝑓2 = ln 𝑓1 + ∫
𝑣

𝑅𝑇

𝑃2

𝑃1

𝑑𝑃 
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So, this is the expression we get here, now this is a very important relation again here we have 

not made any assumption so this is the exact expression we get here. Now, this is a very 

important relation again here we have not made any assumptions so this is the exact expression. 
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𝐿𝑖𝑞𝑢𝑖𝑑 𝑎𝑛𝑑 𝑠𝑜𝑙𝑖𝑑:    ln 𝑓2 = ln 𝑓1 +
𝑣Δ𝑃

𝑅𝑇
 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒,     𝑓2 = 𝑓1𝑒
𝑣Δ𝑃
𝑅𝑇     𝑃𝑜𝑦𝑛𝑡𝑖𝑛𝑔 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 
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Now, this becomes a valuable tool for us particularly to connect, particularly for the case of 

equilibrium conditions. So, for example, if you are interested in a equilibrium let us say two 

phases, between phase 1 and 2, then you know that one of the condition at a given at 



temperature and pressure the condition is mu 1 or mu of a specific component in phase 1 should 

be same as in phase 2, right? For the pure substance.   
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𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝ℎ𝑎𝑠𝑒 𝐼 𝑎𝑛𝑑 𝐼𝐼, 𝑎𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑇 𝑎𝑛𝑑 𝑃,    𝜇𝐼 = 𝜇𝐼𝐼 

𝑜𝑟,   𝑓𝐼 = 𝑓𝐼𝐼 

𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑉 − 𝐿 𝑠𝑦𝑠𝑡𝑒𝑚𝑠:   𝑖𝑑𝑒𝑎𝑙 𝑣𝑎𝑝𝑜𝑢𝑟 ∶   𝜙 → 1 

𝑓𝑣𝑎𝑝 = 𝑃𝑠𝑎𝑡 = 𝑓𝐿
𝑠𝑎𝑡 

 

Now based on our analysis of the chemical potential relation with the fugacity you can show 

that this is nothing but also that fugacity should be same, okay, given that the reference state 

for the fugacity that is f0 of the two phases are same, okay? So, this is something which you 

can show. Now consider case particular for vapor, liquid systems. 

Vapor liquid system, okay. Often for the case of vapor for common fluids, we consider them 

the vapor phase to behave in ideal like gas, so if we consider vapor behave as idle then you are 

talking about or you are implying that fugacity coefficient is 1, in that case f is equal to vapor 

is nothing but p of sat, right? Because the pressure of the vapor in the vapor liquid equilibria 

would be that of the pressure of saturation at the particular temperature. So, the fugacity of the 

vapor will be nothing but the pressure of the saturated vapor which will be p sat. 



Now, p sat has to be same as liquid fugacity and that too at saturation, okay? So this is 

something which we come now. If you are interested to find out let us say fugacity of liquid at 

temperature P and T, then essentially I can make use of this expression here, so for example 

this could be the fugacity at T and P and is essentially could be a fugacity at the saturation 

condition and the v would be the saturation or the molar volume at the saturation and Delta p 

would be the pressure difference from the saturation to the pressure p which we are interested 

in, all right? 
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𝐹𝑢𝑔𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑙𝑖𝑞 𝑝ℎ𝑎𝑠𝑒 𝑎𝑡 𝑃, 𝑇: 

𝑓(𝑃, 𝑇) = 𝑓(𝑃𝑠𝑎𝑡 , 𝑇) exp [
(𝑃 − 𝑃𝑠𝑎𝑡)𝑣

𝑅𝑇
] = 𝑃𝑠𝑎𝑡 exp [

(𝑃 − 𝑃𝑠𝑎𝑡)𝑣

𝑅𝑇
] 

 

Now, of course, here if you have the equational state available for the specific fluid, then you 

can plug-in here v in terms of v by RT can be written in terms of z here or you know something 

which we can elaborate more. 

𝐸𝑂𝑆: 𝑓 = 𝑓(𝑍) 
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So, this can be further elaborated if equational states are available, okay. Then I can write this 

function, this f as a function of some function of z, okay, that could be the compressibility 

factors and other terms, for example, simple equational state could give you literally 

complicated expression of f, but that something which we can take care later I will not describe 

to start with now, okay, something I will explain it in a later part of the course. 
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𝑑𝑔 = 𝑑𝜇 = −𝑠𝑑𝑇 + 𝑣𝑑𝑃  

(
𝜕𝜇

𝜕𝑇
)

𝑃
= −𝑠  

(
𝜕 (

𝜇
𝑇)

𝜕𝑇
)

𝑃

= −
𝑠

𝑇
−

𝑔

𝑇2
= −

𝑔 + 𝑇𝑆

𝑇2
= −

ℎ

𝑇2
 

(
𝜕 ln 𝑓

𝜕𝑇
 )

𝑃
= −

ℎ − ℎ0

𝑅𝑇2
 

 

So, let me just tell little bit more add to this understanding here and particularly in the fugacity, 

how the fugacity change can be related to other thermodynamic property. Let us go back to the 

equation first, the thermodynamic equations which they wrote in the early part of this lecture, 

okay, so this is the one and then essentially if you look at it the del mu by del T by constant 

pressure is nothing but entropy, right? 

Okay and now here I can do a bit of exercise here to obtain the relation Del mu by T, okay, by 

Del T at constant pressure this can be further written as minus S by T minus g by T square, that 

I can show that this is g plus TS by T square which is nothing but minus h by T square, okay?  

All right, so this is something which you can prove it and essentially the way to prove is by 

considering nothing but that mu in this case is g so essentially if you differentiate this you will 



get a term here, minus mu by T square which is nothing but minus g by T square, okay? So this 

is for the pure substance and hence here you can write it, so if you differentiate this the first 

will come this one and with the T in the denominator and a second term will be minus mu by 

T square which is nothing but g by g square. 

So, this is something which we can prove now. Now, this is a one term, okay? Now make use 

of the expression of the, definition of the fugacity, and if you can take the definition of the 

fugacity which we have mu minus mu0 is equal to RT ln f0 and here you can prove that that 

this is d… This can be written as d ln f by dT at constant pressure nothing but minus h minus 

h0 by RT square, okay.  

So this is something which tells you that the change in the enthalpy, Delta h by measuring the 

Delta h, okay, as a function of temperature you can find out the fugacity, okay. So essentially 

or in other words change in the fugacity as a function of temperature can be measured by 

finding out the change in enthalpy. So that is something which one can show that, okay. 
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Now, let me do a little, one exercise before we close this session. This is an example of liquid 

water at 300 degree C, okay? So what we have is the pressure in mega pascal and volume is 

meter cube by mol. And what we have is this information, that 0.15 mega Paschal the molar 

volume is this 10 is 1.8 into 10 to the power minus 5, 20 is 1.79 into 10 to the power minus 5, 

40 is 1.78 into 10 to the power minus 5 and then 100 is 1.76 into 10 to the power minus 5 meter 

cube per mol. 
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So, what we want to find out, what is the fugacity of this, Fugacity at hundred mega Paschal 

with respect to that at 0.1 mega Paschal. Okay, so we are interested in here this ratio. Now 

based on our expression which we have written earlier, the fugacity ratio is nothing but the 



poynting correction, right? So, if you look at it here I can simply write e to the power v Delta 

p by RT and here we can consider that the volume is more or less fix, so I can just take the 

volume at 1.81 which is at 0.1 mega Pascal and delta p is, of course, 100 minus 0.1, so if you 

plug in this, okay if you plug-in this values you are going to get 2.06 as a value. 

 

𝑓2(100 𝑀𝑃𝑎)

𝑓1(0.1 𝑀𝑃𝑎)
= 𝑒

𝑣Δ𝑃
𝑅𝑇 = 2.06  

So, essentially it tells you the fugacity at higher pressure is much much higher, that means it 

has a higher tendency to escape to the vapor phase, okay. So that is something which you can 

evaluate from this exercise. So fugacity also sometimes, fugacity, the original fugacity of the 

particular the word comes from the word Fugree which actually means escaping tendency, 

okay? And this is something which you can clearly see from this example, that had a fugacity 

at this pressure indicates at this pressure is more; it has much more capacity to escape, okay. 

And this fugacity provides you a kind of an idea or it refers to something to the flow of matter, 

right, of phases, right? So it gives you an idea about that and similar that is why it is not a 

pressure, at the end fugacity is not a pressure, it is a similar in nature of the chemical potential 

which is clear from our definition as well, because chemical potential also is the driving force 

for the mass exchange or mass flow and similarly fugacity also gives you a idea of the flow of 

the matter, okay. So, with that I will stop here and I will start a new topic, particularly I will 

start the property of the mixtures in the next lecture, okay, so I receive in the next lecture.  

 

 

 

 

 


