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Repulsive Interaction  

Okay, welcome back. In the last class we were talking about the interactions due to various 

different contributions. So, we looked at point charge interactions, we looked at dipole-dipole 

moment the intermolecular interactions then permanent dipole and induced dipole and 

subsequently we looked at London dispersion or something we called it dispersion forces, ok. 
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So, this is what we last we talk about that non polar molecules may have momentarily a dipole 

moment which can induced a dipole moment in a molecular tube and leading to something 

called London forces interactions and effectively all these interactions which we talked about 

where in the point charge once they follow this dependency that interactions are proportional 

to minus 1 by R6. So, this includes the dipole-dipole, dipole induced and dispersion, ok.  
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But what about the repulsion, ok. So, with this is all attractive in nature. But of course there is 

a repulsion in molecule which originate due to the overlap of an electronic cloud principle, ok. 

So, this is basically this two practically this is the major reason for having an repulsion and in 

fact molecular beam experiments suggest a kind of an expression analytical expression for such 

repulsive force .  

So, molecular experiment indicate that except at R almost equal to 0 for spherical symmetrical 

molecule Gamma overlap can be written as minus of a br overlap i and j or we can say Gamma 

ij can be approximated as e to the power minus br and some constant. So, this is this kind of 

potential model is also is something we should called sometimes Morse potential, ok. Now, 

combining this repulsive and attractive term we can come up with a intermolecular potential 

which can be of many times, we already discussed some aspects of that but let me just write 

down formulae, some popular potential models, ok. 
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So, one is the hard sphere like this, distance is Sigma which could be the size of molecule, ok. 

So, potential module is the following is 0 when r is greater than Sigma ok and which essentially 

means that the distance between the particles are more than the size of the molecule and infinity 

which is less than when r is less than sigma, ok. 

So, this is more like a kind of a billet ball kind of a concept here that as soon as the particles 

touch they have infinite repulsion and hence it cannot penetrate and otherwise there is not 

attraction, ok. So, this is a hard sphere model very popular in early days which is acted as 

reference for many systems then one can come up with a expression of a attractive forces and 

modify this intermolecular potential by considering something like this where still as a shock 

repulsion but then there is a attraction as well, ok. 

So, this is something which is called Sutherland potential, ok. Where you have the following 

for r greater than Sigma and of course infinity for r less than equal to Sigma, ok. So, this is the 

potential well ok which is nothing but c6 by r6, ok. And in this case since in this case r would 

be Sigma so this would be Sigma by 6. So, that is a maximum value it is, ok. 

But this not of course a useful in analytical expressions for when you come up with the 

thermodynamic functions and so forth. But one can come up with a general expression which 

a called Lennard Jones kind of potential, ok. Well you can have repulsive part instead of using 

exponential ok, and can be written as this here cn, rn and then we have c6 r6.  



Now, normal 6 -12 potential would be here to be c12 by r 12 minus c6 r6, right. And potential 

module may look like graphically look like this where it is something like here, ok. This 

particular repulsive one if you plot also along with this exponential then some exponential then 

this is very close to what seen in the molecular beam experiment, ok. 

So, that is why this analytical you know the kind of expression which is very close to the 

molecular beam experiment leading to that Morse potential kind of a repulsive force or 

repulsive attraction is something which we can use because this way analytically this because 

much easier formulation which is useful theoretically to solve many other problems. So, this is 

one of the reasons why this become very very popular expression.  
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In fact one can write more in detail this Lennard-Jones potential by writing it like 4 epsilon 

Sigma by r to the 12 minus Sigma by r to the 6, ok. Here, of course c6 is 4 epsilon sigma 6 c12 

is 4 epsilon sigma 12. So, this becomes a typical Lennard Jones potential 6-12 potential which 

can be written in this form. Now, one can plot this also and if you plot this ok, this would be 

your epsilon this would be your sigma, ok. Usually when you look at the data of Lennard-Jones 

of course many systems can be model here mostly gases and simple systems the usual data are 

be something like epsilon this is scaled by Boltzmann constant and this would be in the Kelvin 

unit as sigma are in the unit of A square. 
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So, now we try to look at what happens when you consider different system. Consider let say 

take for an example, if you change molecules let say cl2 o2 and c6h6 how does the Lennard-

Jones potential looks like for all three different molecules here and the way it looks like is 

following this would be let say for o2 this is for cl2 and this is for c6h6, this is for cl2 this is 

for o2, ok.  

Now, how do we generalize our treatment of intermolecular interaction that lead to let us say 

non idea behavior. But, one of the thing which we can do is of course we can if we try to scale 

this, ok in a way that this is reduced by epsilon and by kt this can be reduced by epsilon and 

essentially this can be reduced by sigma, then essentially what we can do is we can try to get 

very generic reduced property where all three of this curve may get to just one single value 

with a reduced let us say potential energy and distance here. 

So, this is something which we can do as far as the reductions are concern ok, and this is also 

the curve something which will lead to something called principle of corresponding state. So, 

it tells you that if you reduced this potential energy appropriately then it leads to universal 

curve or universal expression for all molecules, ok. So, dimensionless potential energy 

apparently here can be applied to any species. Now, from here if you can plug in back sigma 

and epsilon for specific molecule you should be able to obtained the potential energy of that 

specific molecule.  

So, this gives you a function of some quantity function of this cross-bedding state principle 

here which is something like this. So, this way we can obtain something like this kind of graph. 



Now, we can extend the principle of cross bedding state to microscopic thermodynamic 

property so just like for example equation of state where we have tried we can apply equations 

on other by scaling it into right kind of a properties. 

So, critical properties one of those which can allow us to reduce the thermodynamic property 

and since it the critical point is something which is very unique where the behaviors of the 

systems are almost similar ok, and is an unique state for given intermolecular potential and 

hence can be used in order to scale the variables which we are interested in. 
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So, if you reduce for example temperature by tc we can call it like tr, ok. And similarly pr 

would be p by pc and vr would be v by vc. So, that is a case I can now write just like an any so 



instead of saying intermolecular potential I am trying to now extend this two equations of state 

and then in that case I can write this as t by tc p by pc and v by vc, ok. 

So, similarly we can try to have a or we can also consider different approach we can also try to 

generalize it in this way, we can consider it as a pv by rt which is non dimensional parameter. 

And then we consider this f function f t by tc p by pc. So, this will tell you that all the fluid at 

same tr and pr would have the same z we will have the same z, ok. 
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Now, this is for the case of a non polar molecule, ok. So, this was for non polar molecule, what 

about the polar molecules. Now, polar molecules due to the strong dipolar interactions would 

be here differently from non polar molecule. So, it will not only depends on the simple tr pr if 

you want to come up with the generalize equation of state or generalize behavior we have to 

also consider some kind of asperity some kind of non polar popularizibility of polar nature of 

molecule, ok.  

So, to improve the principle of state corresponding state, it would be better if we can group 

molecules according to the class and assert that only one class intermolecular scale differ 

similarly. So, essentially the idea is that if we can group molecules according to class. So, if it 

is a polar you separate part if it is a non polar you separate part if it is of same size you separate 

it if it is you know same size can be consider as a one group, ok.  

And I assert that only one class of intermolecular interaction scale similarly. So, scaling would 

be done for a group of a molecule having similar nature of interaction. So, thus in order to have 

different you know kind of non-spherical  molecules, we need to introduced a different factor, 

where eccentric factor omega was introduced ok, which signifies how non spherical the 

molecule is so, it is kind of a more it is not exactly straight because it also capture the polar 

nature of it, ok. So, it is kind of arbitrary, ok. 
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So, the definition is omega is minus 1 minus log of tan, base tan p sat at tr is equal to 0.7 ok 

and pc, ok. So, as I said definition is somewhat arbitrary. So, if we look at this expression it 

tells you how quickly the vapor pressure decreases with t less than tc, ok. So, it is very loosely 

connected as far as the non-spherical nature is concern. 

So, based on the observation if we look at the origin of the expression it turns out that the it is 

meant for the non-polar common gases such that at tr is equal to 0.7, ok. The value the vapor 

pressure is about 1 10 th of the pc. That means the Ar argon nitrogen oxygen and CH4 kind of 

non-polar molecules or gases, ok. We will have omega is equal to 0 at tr is equal to 0.7 because 

this is about 1 10 th of the pc, ok. So, based on this these was taken as a reference, ok. That this 

is p sat is nothing but 1 10 th of pc at tr is equal to 0.7 for non polar gases, ok. And thus for 

other system we expect w to be greater than 0 for other system.  
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So, now coming back further to get the generalize microscopic equation which would be now 

f as a function of tr pr vr and omega, ok. Or often we can write z as a two part now, f not 

function of tr pr and then we have this w factor which will now have some other function f1 

which is a function of only pr and tr but w is now inserted to provide this non spherical nature 

of the molecule, ok. 

𝑓(𝑇𝑟, 𝑃𝑟 , 𝑉𝑟, 𝜔) = 0 

𝑧 = 𝑓0(𝑇𝑟, 𝑃𝑟) + 𝜔𝑓1(𝑇𝑟 , 𝑃𝑟) 

So, let us now look at a generic van der waal equation first and then subsequently we will try 

to summarize some other equation of state. So, now we just concluded this corresponding 

statement basically z can be now segregated in two parts, one with basically non polar nature 

and because of the non-spherical nature of the molecules. So, this z and this function is usually 

drawn in a compressibility charge something which we will look at in a next lecture. But here 

let us go back again to the basic equation of a state which is your van der waal equation of state 

where this is the equation, right.  

𝑃 =
𝑅𝑇

𝑉 − 𝑏
−

𝑎

𝑉2
  

If we look at this part only this is nothing but a excluded volume, right where it is written as 

half 4 by 3 pie r cube times the number of  moles and this comes directly from the basic 

geometry of the molecule which is nothing but the volume of volume occupied by one mole of 



molecule. Now, as far as this is concern this comes from our understanding of the 

intermolecular interactions where we say that gamma is proportional to minus r6. And now, 

we can convert this thing in the volume because volume is proportional to r to the power 3 that 

means gamma is proportional to v to the power minus 2 and that is where it comes here and 

this has to be negative and hence this is added here. So, with this now equation this was first 

of course given by Wander walls.  
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𝑉𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠:   
𝑎

𝑉2
 

𝑅𝑒𝑑𝑙𝑖𝑐ℎ − 𝐾𝑤𝑜𝑛𝑔:   

𝑎

√𝑇
𝑉(𝑉 + 𝑏)

 

𝑆𝑜𝑎𝑣𝑒 − 𝑅𝑒𝑑𝑙𝑖𝑐ℎ − 𝐾𝑤𝑜𝑛𝑔:   
𝑎𝛼(𝑇)

𝑉(𝑉 + 𝑏)
 

𝛼(𝑇) = [1 + 𝑘(1 − √𝑇𝑟)]
2

     𝑘 = 𝑓(𝜔) 

So, let me summarize the kind of a different attractive groups or terms which we get. So, most 

of the cases you will see the equation of state having the repulsive part in this following way 

or most of the cases you will find this ideal gas modified this exclusive volume will be in this 

way and then you have this attractive terms, ok. 

So, this term keeps changing for various different equations of state for the case of the wander 

wall if we know this a by v square. Now, for the case of Redlich Kwong is modified bit here, 

ok. And this is added here and this all cubic equation of state by the way and the other one is 

Soave Redlich Kwong which is a alpha which is function of t v v plus b alright. Where alpha 

T is something like 1 plus K times 1 by under root square Tr square. Where k it is a function 

of omega, ok. 
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So, something which is available in the text book when you look at the details and the last one 

which is also popular is Peng Robinson. But this is more complicated. But these are all cubic 

equations of state, ok. So, something which one can use it and Peng Robinson is one of the 

most popular now which can be used for many systems and can be applied for real and practical 

situations as well where the complicated molecules are used, ok.  

𝑃𝑒𝑛𝑔 − 𝑅𝑜𝑏𝑖𝑛𝑠𝑜𝑛:    
𝑎𝛼(𝑇)

𝑉(𝑉 + 𝑏) + 𝑏(𝑉 − 𝑏)
 

So, before closing what we can do is we can also look at one another popular equation of state 

which has statistical mechanics origin. And this is something called Virial equation of state. 

So, as I said this originates from the statistical mechanics and hence this is an exact kind of 

expression, ok. Or this can be written as 1 by b dash p plus c dash p square D dash p cube and 

so for, ok.  

So, one is as a volumetric form as well as in pressure form in fact this are related B dash is B 

by Rt C dash is C minus b square by Rt square. Now, in this case B, C, D, E these are called 

Virial coefficients and these are only function of, Virial coefficients are only function of 



temperature, ok. So, they only function of temperature.  And it has some meaning and it is 

molecular in nature.  
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So, B for example is called 2nd Virial coefficient. So, it is something that this B represent the 

contribution of 2 particles, C is the contribution of 3 particles it like a contribution when they 

come closer and D would be contribution of 4 particles and so forth. Typical expression for B 

which comes directly from statistical mechanics and hence it is absolutely correct.  2 Pi NA 0 

to infinity 1 minus e to the power minus potential energy by KT r square dr, ok. So, this is 

something which is an expression so essentially if you want find out what is a 2nd real 

coefficient for hard sphere or Lennard Jones we have to plug in the potential energy and obtain 

this integral, ok.  

Now, you may ask like how do you calculate these coefficients from the experiment. Now, for 

that we can just consider one of the examples here, let us say this is Z ok.  
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And this I can write this again what I can do is I can take one hale and I can write this as z 

minus 1 is B by v plus c by v square and so forth, right. And if I plot the z minus 1 v here then 

this is going to be B plus cv square and so forth. So, if I plot z minus 1 v as a functional v then 

at v limits of 1 by v goes to 0, when v is infinity that means extremely large volume or very 

less dense system, then this essentially I can find out the data and I can take this slope and this 

particular slope would give us 2nd Virial coefficient. And similarly, of course I can try to take 

it B other side and find out C also but, usually a this becomes much more easier particularly 

for 2nd Virial coefficient. 

So, for the case if a low pressure which would be the case here, I can consider z I can trunked 

it and I can consider only the 2nd Virial coefficient, ok. But, for little bit higher pressure so this 

would be low pressure for little bit higher pressure let us say 15 to 50 bar, we may have to 

consider the 3rd viral coefficient also, ok. 



So, this is a common equation of state for low pressure considerations, ok. So, I think with this 

a what we can do is we can stop here and we will take this understanding particularly try to do 

some problem solving sessions for the calculations of a viral coefficients and as well as will be 

making use of compressibility chart which I talked about where we will see how to make use 

of that to obtain a properties and compare that with equation of state so that understanding will 

be try to understand that particularly using example in the next lecture. 

So, that would be, this would be end of the today lecture I will see you in the next lecture. 

 

 


