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Equation of State (continued) 

Hi, in today's lecture we are going to continue taking the understanding of what we have 

covered in the last lecture on equation of state and corresponding state principle with some 

examples. So, we have also listed a compressibility chart for use. 
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So, let us start with this question, which is a Virial equation, however in the concentration. So 

the question says that you know show that a Taylor series expansion for the compressibility 

factor z, about temperature T and concentration C which is equal to 1 by molar volume gives 

the form of the virial equation shown in the equation 4.6, which basically referring to the text 

book here, that is chorus key. 
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So let us look at the also what happens to this function at c equal to 0, which is nothing but Z 

T c equal to 0 this means that we are talking about 1 by V goes to 0. Now, this means basically 

the density is extremely low, so all gases will tend towards ideal gas.  
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So one can clearly see that is since we have taken this function as of derivative of c. This B C 

Ds would be dependent on temperature. At the c equal to 0 and hence these are only dependent 

to these coefficients are only depend on temperature. That is something which we have already 

discussed about. So this is just an illustration of how one can also write or develop this kind of 

equation of state for solution phase as well, or in general for some concentration of the gases. 

But note that this B C and D are more fundamental in nature and the origin comes from the 

statistical mechanics approach. B again is nothing but the second virial coefficient which 

essentially reflect how two body interactions contribute to the equation of state or in general to 



the pressure or compressibility here c would be that when you have three particles or three 

body interactions, how that contributes to the Z and D is for full body interaction and so forth.  
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So something which is more profound and more correct and thus it also provides way to address 

inter molecular interactions. You can also get the idea, what would be a typical interaction 

between two particles. So one can calculate the V's from the experiment and make use of this 

experiment to valuate effective interactions, but at low densities. 
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So let me just continue with this exercise and now we can take up a problem where second 

virial coefficient for the hard sphere potential is to be evaluated.  
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So this is your B for hard sphere and similarly, you can actually calculate the virial coefficient 

second virial coefficient for many different potential models which are identical available. For 

example, you can calculate that for Lennard Jones. So the land potentials exponential 6 and so 

forth. 
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So as I said, we can calculate the second virial coefficient for other potentials. So Lennard 

Jones could be one. So, here again. I am trying to describe the same expression B is 2 pi N A 

0 to infinity 1 minus e to the power minus potential energy or between the particles scaled by 

K T and the r square D Square. Now, for L J this is going to be this, so this we plug in here and 

now subsequently, you have to also try to integrate this and that becomes a little tricky but 

nevertheless you can obtain the values of B as a function of r for depending on different 

molecules. 

You can also come up with a reduced B also where this can be in a reduced distance for 

example, and similarly Epsilon can be taken to the left hand side and B can be for the reduced 

value of B can be plotted. But in this case we are just taking the sigma and Epsilon of CH4, 

which is available from the textbook tables and as well as an IST tables are available as well. 

So you making use of that, you can calculate the analytical form of B as a function of 

temperature for CH4 and then this information for CH4 is for the B is available, and this is 

something which V is drawn as a symbols here and you can clearly see how beautifully it is in 

line with the analytical expression. 

So, something which we can make use of it that an analytical forms particularly for a spherical 

particles non polar molecules. The B's are the second virial coefficients are extremely correct 

from the analytical expressions. Something which clearly sees we can see it from this exercise. 
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𝑧 = 𝑧(0) + 𝜔𝑧(1) 

So we have also gone through the compressibility chart earlier which is discussed the reduced 

Cross Penn State principal and the concept has been made use of it by using those Crossman 

step is principal particularly for the compressibility factor, which generalize the relation as a 

function of a reduced temperature and pressure for similar kind of molecules. So I usually it is 

very useful if it is in the form of graphs or tables. In general one can write as we have already 

discussed that a compressibility factor can be written as the two parts one, which is due to the 

spherical nature or non polar nature of the particle. 

And the second part comes where it is the polar nature or the non spherical nature are basically 

added here. So this is usually this should be zero for particles such as argon methane and so 

forth. But if you have a quite a significant polarizable molecules and the shapes are not 

spherical in nature then essentially you will have W's non 0 and as well as there will be Z. So 

now let us see how it looks like as far as the diagrams are concerned or graphs are concerned. 
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So this is a simple Z 0 part are generalized compressibility factor for simple fluids and you can 

see here, there are two things one is your Pr and the Tr. So essentially the idea, is that for a 

given molecule you first calculate Pr. Pr is nothing but P by P C. Similarly T is T r is nothing 

but T by T C. So you obtain the critical property of a molecule. And from there you obtain your 

PC and TC and subsequently you get Pr and Tr.  

Now in order to find Z zero we can take one of those things. For example you if you are if you 

evaluate the PI which turns out to be let us say 1 it you can draw a straight line and 

corresponding to Tr. You can get it something like for example, in this case if it is 1 I am here. 

This is the intersection with this T I is equal to 1 and from here I can draw again a horizontal 

line to get my Z 0. Now, this may be very cumbersome, and that is why a table is also generated 

in order to avoid manual error or estimating from the graph. 

(Refer Slide Time: 13:19). 



 

So this is the corresponding Z of 1 which would depend on again P r and T r. Again, this 

generalized compressibility factor. And this is the correction term because of the spherical and 

the polar nature of the molecule again, you do the same thing. The corresponding table is 

available in the textbook course key where it is C1. Table C 1 and C 2 corresponds to figure 

4.13 and 4.14. 
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Now let us try to make use of it some examples and this is related to generalized compressibility 

chart and as well as the equation of state. So the question here is calculate the volume occupied 

by 10 kg of butane at 50 bar and 60 degree celsius using the R K equation and also compare 

that with the generalized compressibility chart. Now, if you look at R K equation, it is the usual 

the first part charactered by exclusion volume and then the attractive term. 

So this is the attractive term now A and B are related to the critical properties and it is written 

here. So essentially for the butane the idea is to get first TC and PC which we can get it from 

the test book appendix tables or you can also get it from the NIST table that is from the web 

and then obtain your a and then b. Once you obtain in the a and b, then you plug in there. So 

for the given temperature and the pressure that means you know the pressure and you know the 

temperature and as well as a and b. 

Now the question is what would be the be V. So this is a cubic equation. So, one way is to do 

a trial and error in this way that becomes much easier. So you keep doing your trial and error 

until you get a value which you can do it in Excel sheet and the value which comes out to be is 

1.2 into 10 to power minus 4 meter cube per mole. Now from here we can get the volume by 



scaling, by multiplying with the mass here or number of moles basically. So, it should be the 

mass a divided by the molecular weight of the butane so that is this part multiplied by molar 

volume and that way we will get the volume here. 
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So what about the compressibility chart. So we make use of the same thing we know the Pr 

because we have just got the PC so we can calculate the P r and the T r and since it is not a 

spherical molecule so there will be a w so essentially you not only have to look at z 0 but also 

Z 1. Now one way of course is to look at the chart because it is a 1.32 and 0.78. So you can 

look at the chart here 
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So, 1.32 and 78. Now if you look at it is little trickier 0.78 to be somewhere here and essentially 

it will be lot of errors associated with it. 
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So what we have done is instead of using simple chart like this, which we can of course do as 

discussed earlier. 
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We can also make use of the table C1 and C2 which simplifies this. Now here the data point 

are given in this way. So for 0.75 and 1.3 this is the value. For 0.75 1.4 this is a value because 

since our Pr is 1.32 it lies between 1.3 and 1.4. So we have now used this we have just written 

this part, in order for us to do interpolation. The other one is since also TI is 0.78 so I which 

and the data point which is given in table C1 and C2 is 0.75 and 0.80. So we also write this in 

order to have the complete table. 

Now we can do interpolations, for 0.78. Corresponding to 0.78 and then the corresponding P r 

we can calculate that will be this and similarly for 0.78 corresponding P r at 1.4 so 

corresponding Z 0 at 1.4 P r. So, essentially this interpolation is to get the Z 0. So again how it 

started that from the table we got 0.75 the Z 0 value given here. These are the two values which 

are for 1.3 and 1.4 correspondingly and similarly for 0.80 Z 0 value are 0.2098 at 1.3 and 

0.2255 at 1.4 P r and this we can evaluate from interpolation. 

 Now similarly I have to do that for Z 1. So I have to find out this and this at 0.78 from this 

information. So once we have done this exercise then I can get again Z 0.  
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So Z 0 we need to find out Z 0 as 1.32 and 0.75 78. So since we have calculated the interpolation 

for we did that for 1.3 at 0.78. So, similarly 1.4 P r at 0.78. Now the next question is that given 

this information that we have 1.78 we do have now. Now what about 1.32 so we have to do 

again a second interpolation between these two. So keeping the 0.78 fix and that is exactly 

what we are doing here. 
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. So this is the difference 0.03 is nothing but more than 1.3 and this is a difference between 1.3 

and 1.4.  
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And this is the value the difference here 0.2274 minus 0.22 plus the initial Z 0 Value at 1.32, 

so that way we have now into this is the second interpolation which gives us Z 0 2.48. 

Now of course, this is more tedious job, but what we are trying to do is do a more thorough 

more correct information graphically, you can obtain of course, but the others may be very 

large given the nature of the scale of the graph. Similar to this Z 0 we would be also doing the 



same exercise for Z 1. So once we have Z 0 and Z 1 we can get our Z, which is 0.198. So, 

looking at it here. 
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So once we have now our Z here, we calculate our V. So V is 1.1 into 10 to the minus 4 now, 

this is something we can compare. 

(Refer Slide Time: 20:17). 

 

 



(Refer Slide Time: 20:20) 

 

This was 1.2 into 10 to power minus 4 this is 1.1, that means the equation of state was giving 

me a bit more molar volume and corresponding volume turns out to be 0.019 meter cube, which 

is slightly lower than 0.021 meter cube value which came from the RK equation. 
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. So from this RK equation turns out to be very good. 
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Compared to the chart which was turned out to be more rigorous exercise. But otherwise it 

gives you the similar numbers. 
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These exercises where for the gases the equation of state which we are used for example, RK 

and others where the used for the gases, but there are equation of state which are applicable for 

liquid as well. For example, this equation of state provides reasonable estimates for most 

hydrocarbons, and in fact generalized compressibility chart can also be used but often not done 

there are co relations which are developed for the liquid phase. For example, the liquid volume 

at saturation is given by this racket equation, which is nothing but a molar volume liquid 



saturation and it depends on the T C P C and W and as well as TR. So this kind of correlation 

has been also developed. 
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Now we have talked about the pure fluids till date. Now let us try to see how this equation of 

state can be extended to the mixtures.  

(Refer Slide Time: 21:58)  

 

So in this case if you look at a simple VanDer Waal's equation of state you have pressure which 

is related to this term, which is a modified equation, modified ideal gas where the expected 

volume is there and then the attracted term.  



 So here the A and B are the parameters which can be modified for your equation for the 

mixtures. So A and B can be modified for mixtures.  

𝑃 =
𝑅𝑇

𝑉 − 𝑏𝑚𝑖𝑥
−

𝑎𝑚𝑖𝑥

𝑉2
 

Now a mix if you have let us say a binary mixture, so I can write a because a if you think about 

it, a is nothing but the interaction between two particles with basically nothing but the two body 

particle. So if it is one here and one here is just talking about the interaction between this. 

𝑎𝑚𝑖𝑥 = 𝑦1𝑦1𝑎11 + 𝑦1𝑦2𝑎12 + 𝑦2𝑦1𝑎21 + 𝑦2𝑦2𝑎22 

𝑎𝑚𝑖𝑥 = 𝑦1
2𝑎11 + 2𝑦1𝑦2𝑎12 + 𝑦2

2𝑎22 = ∑∑𝑦𝑖𝑦𝑗𝑎𝑖𝑗 

So this gives you a mixture here. So we can generalize this by saying summation, this is 

something we can generalize. What about b excluded volumes, so excluded volume would be 

simply the weighted average. So I can write here b mix is summation y i b i. So this will be 

nothing but weighted average of the excluded volume in a given system. So with this kind of 

mixing rule, I can easily apply to any binary, ternary mixtures. So that becomes much easier 

for me for the application. 
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Now in the similar line I can also come up with the mixing rule for virial equation state. So 

again, let us look at virial equation state. 
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So you have Z is equal to 1 plus B 1 by V plus C V square plus D So the question is, this is for 

the pure fluid. What about if we consider mixture? So B will become B mixV similarly C will 

become mix and similarly D will become D mix. So got to be B mix, so we will be using the 

similar concept as we have done that for Van der Waal equation of state to active parameter a 

we can also come up with a similar kind of concept here where this would be your again y i y 

j B i j. So this is something which will can be written here. Now similarly for C mix this will 



be Triple this y i j k because they are three particles remember that D is for two body 

interactions C is for three body interactions.  

𝑍 = 1 +
𝐵

𝑉
+

𝐶

𝑉2
+

𝐷

𝑉3
+ ⋯ 

𝐵𝑚𝑖𝑥 = ∑∑𝑦𝑖𝑦𝑗𝐵𝑖𝑗 

𝐶𝑚𝑖𝑥 = ∑∑∑𝑦𝑖𝑦𝑗𝑦𝑘𝐶𝑖𝑗𝑘 

So, C mix will become for C i j k. So you are trying to weight it by three mole fractions of 

different components, and so forth. Now, most of the time we often use only for the binary 

mixtures. And in that case, of course, it will become c 1 1 2 or 1 2 2 and so forth. So I am not 

doing any example for this particular aspect but I think you probably can get the idea that how 

this can be extended further for the binary mixtures all the equation of state by considering 

some mixing rule. So mixing rule is certainly is approximation.  
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 For example, if you look at the mixing rule here you may ask this question. Well, we may 

know this a 1 1 and a 2 2 because a 1 1 can be simply a 1, that means that attractive term for a 

given fluid for the pure phase and similarly a 2 2 could be simply a 2, what about a 1 2 so we 

a 1 2 can be considered simply as a square root of a 1 1 a 1 or a 2. So this is the geometric mean 

of this attractive terms or parameters of pure fluid a and 2 in order to get the binary interaction 

parameter for a 1 and a 2. 
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That means a 1 2 but this is one of the approximation, you know, there could be other 

approximation such that we can add this and because it may not actually may not give the right 

kind of interactions and there has been some correction term which people have used such as 

1 minus Alpha 1 2. So this 1 2 becomes a cross correlation parameter and that is also used 

sometimes in the Peng-Robinson equation.  

So this mixing rule becomes an important element in order to address the correct behavior of a 

binary, ternary and so forth mixtures and this corrections is basically is usually driven by the 

non agreement with the experiment and hence people come with these kind of concepts here. 

Now, for the case of Alpha, of course, the variety of different systems have been… people have 

come with this kind of terms. I will not be going into details of that.  
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The text book does give some examples and it is also recommended that you look at it we will 

also try to have a set of examples, set of questions in the as a part of the assignments, to give a 

flavor of this kind of mixing rule. 
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So with this we will end today's lecture and in the next lecture will start a new topic, topic on 

the fugacity and subsequently we will look into the mixtures more in details. So I will see you 

in the next lecture. 

 


