
 

Chemical Engineering Thermodynamics 

Professor Jayant K. Singh 

Department of Chemical Engineering,  

Indian Institute of Technology, Kanpur 

Lecture-27 

Intrinsic stability of the thermodynamic system 

 

Welcome back. So, in the last lecture we were trying to look at the equilibrium and stability 

analysis of thermodynamic systems and in particular, we address the conditions or constraints on 

the thermodynamic variable as far as the signs are concerned.  
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𝑈 = 𝑈(𝑆, 𝑉, 𝑁) 

𝑑2𝑈 > 0 

𝜕2𝑈

𝜕𝑆2
(𝑑𝑆)2 +

𝜕2𝑈

𝜕𝑉2
(𝑑𝑉)2 +

𝜕2𝑈

𝜕𝑁2
(2𝑁)2 + 2 (

𝜕2𝑈

𝜕𝑆𝜕𝑉
𝑑𝑆𝑑𝑉 +

𝜕2𝑈

𝜕𝑆𝜕𝑁
𝑑𝑆𝑑𝑁 +

𝜕2𝑈

𝜕𝑉𝜕𝑁
𝑑𝑉𝑑𝑁) > 0 

 To ensure 𝑑2𝑈 > 0 

(
𝜕2𝑈

𝜕𝑆2
)

𝑉,𝑁

> 0     𝑂𝑟, (
𝜕𝑇

𝜕𝑆
)

𝑉,𝑁
=

𝑇

𝑁𝐶𝑉
> 0 𝑂𝑟, 𝐶𝑉 > 0 

(
𝜕2𝑈

𝜕𝑉2
)

𝑆,𝑁

> 0    𝑂𝑟,      − (
𝜕𝑃

𝜕𝑉
)

𝑆,𝑁
> 0      𝑂𝑟, (

𝜕𝑃

𝜕𝑉
)

𝑆,𝑁
< 0 𝑎𝑛𝑑 (

𝜕𝑃

𝜕𝑉
)

𝑆
< 0 

(
𝜕2𝑈

𝜕𝑁2
)

𝑆,𝑉

> 0           𝑂𝑟,                (
𝜕𝜇

𝜕𝑁
)

𝑆,𝑉
> 0 

Consider  (T,V,N)             𝐴 = 𝑈 − 𝑇𝑆 



 

𝑑2𝐴 > 0 

(
𝜕2𝐴

𝜕𝑉2
)

𝑇,𝑁

> 0      𝑂𝑟, (
𝜕 (

𝜕𝐴
𝜕𝑉

)

𝜕𝑉
)

𝑇,𝑁

=      (
𝜕𝑃

𝜕𝑉
)

𝑇,𝑁
< 0 

(
𝜕𝑃

𝜕𝑉
)

𝑇
< 0 

 

                                                                          

So, we try to derive something like this where we showed that for the stability these variables 

such as isothermal compressibility and heat capacity must be greater than zero. This we analyzed 

using a simple fact that I know, using the simple nature of the curve as a function of some 

intensive variable or extensive variable that the second derivative must be greater than zero for 

the equilibrium conditions and this ensures that this derivative as is shown here, this must be 

greater than zero.  

 

Now, note that this S here, these derivatives are with respect to the extensive variable S, V and 

N. Now, this leads to the condition such as C V must be greater than zero and the change in the 

pressure with respect to the volume at constant S must be less than zero and the change in the 

chemical potential with respect to change in the number of moles must be greater than 0. 
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𝐾𝑇 = −
1

𝑉
(

𝜕𝑉

𝜕𝑃
)

𝑇
 

−
1

𝑉𝐾𝑇
< 0      𝑂𝑟,        𝐾𝑇 > 0 

𝐾𝑇 =
𝑉𝛼2𝑇

𝐶𝑃
 > 0 

𝜕2𝐴

𝜕𝑇2
|𝑉,𝑁 − (

𝜕𝑆

𝜕𝑇
)

𝑉,𝑁
=  −

𝑁𝐶𝑉

𝑇
< 0     𝑂𝑟, 𝐶𝑉 > 0 

𝜕2𝐻 > 0 

(
𝜕2𝐻

𝜕𝑆2
)

𝑃,𝑁

> 0    𝑂𝑟,    (
𝜕𝑇

𝜕𝑆
)

𝑃,𝑁
> 0 =   (

𝜕𝑇

𝜕𝑆
)

𝑃
> 0 =

𝑇

𝐶𝑃
> 0    

𝑂𝑟, 𝐶𝑃 > 0  
𝑑2𝐺 > 0 



 

(
𝜕2𝐺

𝜕𝑁1
2)

𝑇,𝑃,𝑁2

> 0     𝑂𝑟,    (
𝜕𝜇1

𝜕𝑁1
)

𝑇,𝑃,𝑁2

> 0 

 

 

Now, this is the further, if you do the analysis particularly with the Helmholtz free energy, this 

gives you the condition that KT must be greater than 0 and similarly other analysis we showed 

that a CV has to be greater than 0 and C P has to be greater than zero. 
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(
𝜕𝑃

𝜕𝑉
)

𝑇,𝑁
< 0 → (

𝜕2𝐴

𝜕𝑉2
)

𝑁,𝑇

           𝑎𝑛𝑑                 (
𝜕𝑇

𝜕𝑆
)

𝑃,𝑁
> 0 → (

𝜕2𝐻

𝜕𝑆2
)

𝑃,𝑁

 



 

 

(
𝜕𝑃

𝜕𝑉
)

𝑇,𝑁
= (

𝜕𝑃

𝜕𝑆
)

𝑇,𝑁
(

𝜕𝑆

𝜕𝑉
)

𝑇,𝑁
 

So, we  have analyzed this constraints on this thermodynamic properties which are nothing but 

the properties which you can evaluate in the experiment and hence you can find it out to whether 

the system you are working on are stable or not.   

 

So, I will now extend this exercise and specifically look at the intrinsic ability of thermodynamic 

system where we would like to little bit differentiate between what is the local stability and 

global stability. 
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 So, in today's class I will try to address the remaining questions which we have listed down in 

the last class. But before that let me first finish the stability analysis aspect, where we did not 

address the global stability aspects and something which in today's class, it probably should 

become clear. 

 

So, the intrinsic stability of thermodynamic system, so to illustrate that let me consider a two 

compartments separated by this partition and initially you have those systems equivalent such 

that this is, both are same. Now, what we are trying to do is we let say we remove Delta U from 

system 1 and transfer it to 2. Now, in that case, the total entropy could be something like  

2𝑆(𝑈, 𝑉, 𝑁) → 𝑆(𝑈 + Δ𝑈, 𝑉, 𝑁) + 𝑆(𝑈Δ𝑈, 𝑉, 𝑁) 
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Now, assuming that entropy as a function of internal energy has this shape.  So, let us assume 

this, so we consider the following shape and here at this point let us assume that this is U and 

then the change which we have considered is U minus Delta U and the corresponding change for 

the other compartments be U plus Delta U and here this is U S, U minus Delta U and this is your 

S U plus Delta U. We can consider this to be something like this. In that case S would be 

somewhere here U. 

 

Now, if you consider this final perturbed version and if you look at the total or specifically if you 

just consider the half of this, so this may turn out to be somewhere which if you connect this two 

points here. I will make and I can draw a solid line instead. So, somewhere in the middle, this 

will be half of S U minus Delta U plus S U plus Delta U.  

 

Now, clearly this means that entropy at the final state, if you have this kind of process where you 

remove Delta U from one end to another end or one compartment to another compartment, in 

that case the final state is going to be having more entropy compared to the original one.  

 

Now, this can happen here. In this kind of a situation if you have transfer, so this means that if 

you take out the constraint then clearly the system will move in such a way to have this high 

entropy, but then the point is that this is not a physical system because the shape tells you that it 



 

undergoes this kind of thing whether you consider the solid one or whether you consider the 

dashed line and this kind of situation would yield phase separation such that it separate into this 

point another phase will come out to be this part. So, this kind of shape yields separation because 

there is no real phase space or the data point in this case. So, let me just write down the 

observation in such a case. 

 

So, clearly the resultant entropy is greater than initial entropy. Now, this means that if this wall 

was adiabatic restraint initially, so if you remove if the adiabatic restraint is removed, were 

removed. In such a system, then in such a system which essentially means that you expecting, 

you assuming that this is a shape so, you can say considering the shape of entropy, where you do 

have this (convex) convexity in the intermediate region. So, if you consider this then the 

resultant entropy would be greater than the initial entropy. 

 

If you transfer a small amount of let us say internal energy from one compartment to another the 

compartment and this would indicate that if you remove the adiabatic restraint then energy 

should flow spontaneously across the wall.  So, if you remove the adiabatic restraint, that means 

we make it a thermal, then the energy would transfer from one compartment to another 

compartment across the wall. So, this means U will increase in one subsystem in that case, of 

course the temperature would be also increasing. 
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Now, this also indicates that there could be you know, there would be loss of homogeneity, if 

you remove completely the adiabatic wall, then essentially this will face separate leading to two 

systems which are stable system. And that is what the statement is loss of homogeneity and this 

is the Classic Hallmark of Phase Separation. 

 

 Now, clearly it tells you that this occurred because there is a convexity in the intermediate and 

the phase separation will have two phases which are in this region somewhere here where is a 

concave and this also tells you or gives you an indication that the condition or stability is the 

concavity of the entropy. 

 

Now, which means: 𝑆(𝑈 + Δ𝑈, 𝑉, 𝑁) +  𝑆(𝑈 − Δ𝑈, 𝑉 < 𝑁) ≤ 2𝑆(𝑈, 𝑉, 𝑁) for all changes in 

Delta U, all changes in U. So, this is for stability. In the case, where is unstable it was opposite 

and that is why it would lead to phase transition in such a case, which is basically due to the 

convexity of the entropy shape of this curve.  

 

So, now if you consider,   Δ𝑈 → 0 ; (
𝜕2𝑆

𝜕𝑈2)
𝑉,𝑁

≤ 0. Now, this is more strong condition. This is 

something which is also would lead to a global kind of condition. This is less restrictive as, this 

is valid for Delta U for very small change in U.  
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Now, similar exercises or similar exercise you can do for change in volume. So, similarly you 

can show that, similarly for transfer of volume : 

                                              𝑆(𝑈, 𝑉 + Δ𝑉, 𝑁) + 𝑆(𝑈, 𝑉 − Δ𝑉, 𝑁) ≤ 2𝑆(𝑈, 𝑉, 𝑁).  

So, this is when you transfer the volume from one compartment to another compartment and this 

would give us the following condition for Delta V tending towards 0. So, this is for the case of 

transfer of volume.  
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Now, if you look at little carefully, this curve then essentially you can consider the tangent and 

look at the tangents which are below the curve or above the curve and then quantify the stability 

condition. 
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So, let me try to elaborate this again by drawing this pictorial aspect of this shape extensive 

variable here and let me just draw. So, this is the curve which we have, alright. So, here if you 

look at it, this is your B. Let us say this is your somewhere and C this is again D. This is your F 

as somewhere this is your E where this, this basically the dot points are related to the kind of a 

slope. If you can draw these slopes at each point, so you can have slopes like this. Let me use the 

other color, so you can slope here, slope here.  

 

So, these are above the curve and here this is slope which goes below the curve and then again it 

comes above the curve. So, if you look at the convexity then this is the range here which tells 



 

you this is a convex from B to F, which essentially will tell you B, C, D, E, F is basically 

unstable. So, all these points along this curve will be unstable. 

 

So, B, C, D, F of the underlying fundamental relation is unstable or it means because if you look 

at from the slope point of view, all the slopes are crossing it is going below the curve. So, from 

the slope point of view the family of tangent line that lie everywhere above the curve can be said 

as stable. Now, you little, little bit carefully you see, one is C, D, E. So C, D, E  if you look at it, 

these are C, D and then you have this B, C, D, E, F. Now, B, C, D, E, F is something which is, is 

unstable or violates the global condition, Global form or Global condition of stability, which is 

the case this, but if you look at the C, D, E, this violates the local conditions.  
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The second derivative differential form or condition of local stability, so it violates the local 

stability. So, B and C in that case this particular case. So, C, D, E is anyway is unstable. But B 

and C and E and F these are the range here and here the second derivative will be also second 

derivative in this case is so this B and C will not violate this derivative form but still is going to 

be unstable. So, that is what we say B, C and E, F are locally stable but globally unstable. So, 

this is something which we can make use of the basic analysis.  
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Now, if we can extend this to arbitrary change in S, arbitrary change in U and V by considering 

this S, U, V subspace or three dimensional things then essentially I can write for the composite 

system completely I can write the following:  



 

𝑆(𝑈 + Δ𝑈, 𝑉 + Δ𝑉, 𝑁) + 𝑆(𝑈 − Δ𝑈, 𝑉 − Δ𝑉, 𝑁) ≤ 2𝑆(𝑈, 𝑉, 𝑁) 

 

 Now, this must be less than 2 S U V N for the stability criteria because essentially the initial one 

should be more should have more entropy and that is why it should be stable. So, if you consider 

these three dimensional S, U, V, the global condition, the global stability criteria would be the 

following.  
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𝑆𝑈𝑈(Δ𝑈)2 + 2𝑆𝑈𝑉Δ𝑈Δ𝑉 + 𝑆𝑈𝑉Δ𝑉2 ≤ 0 

𝑂𝑟, (𝑆𝑈𝑈Δ𝑈 + 𝑆𝑈𝑉Δ𝑉)2 + (𝑆𝑈𝑈𝑆𝑉𝑈 − 𝑆𝑈𝑈
2 )(Δ𝑉)2 ≥ 0   

Now, if you consider the Taylor series, to the second order in Delta U and Delta V one can 

derive the following without I am not illustrating the derivation, where the subscript indicate that 

this is the second derivative with respect to U square. This indicates, this is Del U, Del V and so 

forth. Now, this can be further rearranged in the following way. Now, this indicates because this 

is a positive, so this must be also positive. 
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 Now, this particular condition, which I can now write like this :    
𝜕2𝑆

𝜕𝑈2

𝜕2𝑆

𝜕𝑉2 −  (
𝜕2𝑆

𝜕𝑈𝜕𝑉
)

2

≥ 0.  

This becomes a global stability criteria, which you can now which I can generalize is because 

now this is for the both U and V. So, this exercise which we have done is for only for entropy.  

 

Now, entropy it is very clear that concavity is a criteria for stability. That means anything is a 

convex would indicate locally and or globally unstable. But if you are interested to derive the 

similar exercise for the case of internal energy then without actually going into details because of 

the nature of a entropy and internal energy is opposite.  
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So, whatever the condition which we have mentioned for the case of stability, so, you can just 

reverse that if you are using the energy representation. So, I can now have this criteria in energy 

representation, where concavity condition will be replaced by convexity of energy surface.  So, 

in other word the following would be the case. 

𝑈(𝑆 + Δ𝑆, 𝑉 + Δ𝑉, 𝑁) + 𝑈(𝑆 − Δ𝑆, 𝑉 − Δ𝑉, 𝑁) ≥ 2𝑈(𝑆, 𝑉, 𝑁) 

𝜕2𝑈

𝜕𝑆2
|𝑉,𝑁 ≥ 0 

𝜕2𝑈

𝜕𝑉2
|𝑆,𝑁 ≥ 0 

 

That U has to be minimum and hence any perturbation in the original system leading to total 

energy such as U plus U S minus Delta S for the same two compartment system that must be 

greater than equal to the original two times the original energy. And this would lead to a local 

conditions which without I am deriving this we can write this as square greater than equal to 0 

Del square U Del V square S and N, V and N greater than equal to 0.  
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Now, this we can further simplify by bringing the other information. For example  

                                                                                
𝜕𝑇

𝜕𝑆
|𝑉,𝑁 ≥0 

So, if you bring N here this becomes molar entropy and then you can write it like this  

                                                                             
1

𝑇𝐶𝑉
≥ 0 .  

Similarly,    

                                                             −
𝜕𝑃

𝜕𝑉
|𝑆,𝑁 ≥ 0.  

This will give us: 

1

𝑉𝐾𝑆
> 0 
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 Now, similar to the case of the entropy I can also write the global condition for this. So, Global 

condition would be the same as we have done in a similar spirit, but now the only thing is 

different is, we are taking the derivative of U with respect to the other intensive variables. And 

this must be greater than equal to 0.  

                                                       
𝜕2𝑈

𝜕𝑠2

𝜕2𝑈

𝜕𝑉2 −  (
𝜕2𝑈

𝜕𝑆𝜕𝑉
) ≥ 0 
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So look at this, this was the case here and this is the case here. So, this must be square. Now, we 

have done only for entropy and enthalpy the exercises, but now I am going to summarize if you 

had done similar exercises for enthalpy, Helmholtz free energy or Gibbs free energy that if you 

can just summarize then the following can be written: 

(
𝜕2𝐻

𝜕𝑆2
)

𝑃,𝑁

> 0 

(
𝜕2𝐴

𝜕𝑉2
)

𝑇,𝑁

> 0 
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Now, if you notice the following that all this second derivatives or thermodynamic functions, 

convex function of their extensive variable. So, this is something which you can clearly see H 

here the A here and U also.  

 

Now, if you consider the derivatives with respect to the intensive variable, the following can be 

written here. 

(
𝜕2𝐻

𝜕𝑃2
)

𝑆,𝑁

< 0 

(
𝜕2𝐴

𝜕𝑇2
)

𝑉,𝑁

< 0 

(
𝜕2𝐺

𝜕𝑇2
)

𝑃,𝑁

< 0  

(
𝜕2𝐺

𝜕𝑃2
)

𝑇,𝑁

< 0  

 

So, it tells you this also that the thermodynamic functions are concave function of their intensive 

variable. And when we talk about the stability, we always prefer the extensive variable because 

of the sign here and we usually do not look at the intensive variables in this case. So, most of this 

analysis if you have seen is with respect to the extensive variable. 
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So, let me summarize again. So, what we have done is we have shown  

                                                    𝐶𝑃 ≥ 𝐶𝑉 ≥ 0 𝑎𝑛𝑑 𝐾𝑇 ≥ 𝐾𝑆 ≥ 0.  

So, these are the final conclusion of this exercise. 

 

So, what I am going to do now is I will take a break and I will start with another set of lecture in 

the next class, particularly on the phase transitions and I will look address the other questions 

which we left particularly the phase rules and the Clapeyron-Clausius Equation. So, I will see 

you in the next class. 

 

 


