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Welcome back, in the last class we looked at the changes in the thermodynamic functions at 

equilibrium or the conditions of the equilibrium with respect to the thermodynamic functions. So 

the one which we have looked at is Helmholtz free energy for the parameters or the natural 

variables T, V, N.   
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And what we have done is a simple analysis particularly for, in the last class we covered this 

(part) fact that if you are off equilibrium and going towards the equilibrium state, then in that 

case  
𝑑𝑆𝑇 > 0 ;      𝑑𝑆 + 𝑑𝑆𝐵 = 𝑑𝑆𝑇 > 0 

 

 

So the total energy has to be equal to zero. That means 𝑑𝑈𝑇 = 0;      𝑑𝑈 + 𝑑𝑈𝐵 = 𝑑𝑈 +
𝑇𝐵𝑑𝑆𝐵 = 0. Because of the fact that we are considering in this case no change in the volume and 

hence dU is nothing but whatever the heat exchange associated with the bath which is TB dSB at 

the boundary. And since TB is equal to T because of the thermal equilibrium. We can rewrite 

this now in terms of this expression   Or, 𝑑𝑈 + 𝑇𝑑𝑆𝑇 − 𝑇𝑑𝑆 = 0 

 

 



So, rearranging this expression in this we can get this expression and where we know that for this 

process going from off equilibrium to equilibrium the entropy has to be, the change in the 

entropy has to be greater than zero.  𝑇𝑑𝑆𝑇 = 𝑇𝑑𝑆 − 𝑑𝑈;  

𝑑𝑈 − 𝑇𝑑𝑆𝑇 = 𝑑𝑈 − 𝑇𝑑𝑆 = 𝑑(𝑈 − 𝑇𝑆) < 0Or,   𝑑𝐴 < 0 

 this process we are going from off equilibrium to equilibrium.  The free energy or Helmholtz 

free energy which is a natural thermodynamic potential for variables A, V, N, for variables T, V, 

N. This should approach towards minimum value. At equilibrium dA has to be equal to zero. We 

also showed that (𝑑𝐴)2 > 0 
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Now, we can extend this kind of analysis for other cases. So just for completion of this 

understanding we also, I would also conduct this exercise, where we consider a constant pressure 

bath case system. So you have a system here and essentially we can consider this to be system 

and this is associated with some piston cylinder, some kind of a piston cylinder case  and this 

effectively is also connected to the pressure bath.  

 

So, this is our kind of overall system. So, you basically this system is at essentially P the pressure 

is going to be constant. And of course the number of moles are going to be constant here right. 

The volume is not constant. So what we have now is the conditions of the energy minimum. So, 

basically we are going to use minimum energy principle. So we start with again 

𝑑(𝑈 + 𝑈𝐵) = 0 



The other condition is that the volume effectively for the system and the bath, that must be 

zero.𝑑(𝑉 + 𝑉𝐵) = 0 So, let us also look at d of UB which is 𝑑𝑈𝐵 = 𝑑𝑄 + 𝑑𝑊 = −𝑃𝐵𝑑𝑉𝐵 And 

there is no heat, in this case we would be associating this making to be insulated . So, the only 

change is due to work. So I can write now this expression as  

                                                    𝑑𝑈 + 𝑑𝑈𝐵 = 𝑑𝑈 − 𝑃𝐵𝑑𝑉𝐵 

So, at the equilibrium the pressure has to be equal. That I am not trying to prove it here . So, I am 

going to use this as ,              𝑑𝑈 + 𝑑𝑈𝐵 = 𝑑𝑈 − 𝑃𝑑𝑉𝐵 = 𝑑𝑈 + 𝑃𝑑𝑉 
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Now, since pressure is going to be a constant, we can write this as 𝑑(𝑈 + 𝑃𝑉) So this is nothing 

but H here. So, this is we can write this as 𝑑𝑈 + 𝑑𝑈𝐵 = 𝑑(𝐻) = 0 (at equilibrium). You can also 

consider the second condition of minimum energy principle, that is  

𝑑2(𝑈 + 𝑈𝐵) > 0 

                                                            Or, 𝑑(𝑑𝑈 + 𝑑𝑈𝐵) > 0 

𝑑(𝑑𝐻) > 0 

𝑂𝑟, 𝑑2𝐻 > 0 

So, if you can prove the above by doing this analysis.  
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So, that means in such a case where you have this kind of system insulated here only the pressure 

here and this is of course a movable one. Pressure is maintained here using a pressure bath. And 

you can apply this minimum energy principle. And of course here what we are trying to do is the 

total entropy is constant. So, essentially this would be of course insulated.  
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So, in that case when you are fixing the S, P, N. One can of course make use of the fact of that 

minimum energy principle that have been total internal energy will be minimum. But based on 

this we just derived that this minimum energy principle can be replaced simply by saying that H 

has to be minimum for such a condition. 



 

So, this is equivalently saying that H is minimum for a given at a given S, P, N. Just like A is 

minimum at a given T, V, N. So this is something which we just derived. You can extend this 

exercise and finally this will be our last exercise as far as this is concerned. But for the complete 

diathermal and volume and as well as the temperature reservoir.  
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So, in this case, let us say we have a system and of course I can have this kind of piston here. 

And this is my bath, pressure bath. This is my temperature bath, so this wall I can have this kind 

of wall, which is rigid but diathermal wall. And this we have now TB and this is your system. 

So, if we consider such a system which essentially means the system will be at T, P, N. That is 

what we are trying to say that at equilibrium, the system is maintained at T, P, N.  

 

So, in that case also we can try to extend this exercise of energy minimum principle for such a 

given (state) condition. And we can write  𝑑𝑈 + 𝑑𝑈𝐵 = 0. And dUB here has two components,  

the temperature bath is there and the pressure bath is there 𝑑𝑈𝐵 = 𝑑𝑄𝐵 + 𝑑𝑊𝐵. We can also 

write this expression as 𝑑𝑈𝐵 = 𝑇𝐵𝑑𝑆𝐵 − 𝑃𝐵𝑑𝑉𝐵 

 

And of course we have to write 𝑑(𝑉 + 𝑉𝐵) = 0; 𝑂𝑟 𝑑𝑉 = −𝑑𝑉𝐵. Now, making use of the fact 

that the temperature will be equal pressure will be equal, I can write this  

𝑑𝑈 + 𝑑𝑈𝐵 = 𝑑𝑈 + 𝑇𝑑𝑆𝐵 − 𝑃𝑑𝑉𝐵 = 𝑑𝑉 + 𝑇𝑑𝑆𝐵 + 𝑃𝑑 



Because this is from the total volume is constant hence we can simply write in this way.  
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We have to make use of the fact 𝑑𝑆𝑇 = 𝑑𝑆 + 𝑑𝑆𝐵 = 0 (𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟). And dS is for a given total 

entropy, S is equal to dSB. Therefore, I can write this 𝑑𝑈 − 𝑇𝑑𝑆 + 𝑃𝑑𝑉 = 0 because this is the 

minimum energy principle. So, this must be equal to zero given temperature and their pressure 

constant, I can write this as (𝑈 − 𝑇𝑆 + 𝑃𝑉) = 0 𝑜𝑟 𝑑𝐺 = 0  at T, P, N at a given temperature, 

pressure, N. 

 

So, you can also show that  𝑑2(𝑈 + 𝑈𝐵) > 0 𝑜𝑟, 𝑑2𝐺 > 0. This will give you the condition. The 

second derivative of G should be greater than equal to zero or in other word G should be 

minimum at a given temperature, pressure, N. So, with this exercise we can now summarise our 

understanding as far as the equilibrium state is concerned for different independent variables.  
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So, let me just write it down, this now we have derived it earlier (we) probably have stated that. 

So, U is (minimum) minimum at S, V, N. For given total entropy, A is minimum at T, V, N. H is 

minimum at S, P, N. And G is minimum at T, P, N. So, that is something which now we can 

summarise based on our exercise.  

 

Now, we can further extend this, so instead of just looking at the thermodynamic functions 

which of course provides the idea of how and what are the conditions of the system at particular 

equilibrium or if the process is driving towards the equilibrium, what would be the appropriate 

behaviour of the free energies or the thermodynamic functions. But in addition to that we can 

also look at the specific variables or thermodynamic properties which would be useful to 

examine the conditions of stability of the system. So, now we will be extend this analysis for 

stability.  
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So, let us specifically say that this is what we are looking at. We are looking at Equilibrium and 

Stability. So, the goal is to examine the condition of Equilibrium and Stability of thermodynamic 

system. So, one of the important thing is that the signs of the thermodynamic derivative or 

derivative of the thermodynamic properties, variables plays extremely important role in 

identifying the stability of the system. So something which we are going to pay attention to. 

 

So, that means one of the aim which we have is to obtain constraints on the sign and relative 

magnitude of the thermodynamic function. But mainly the derivatives. So, the derivatives plays 

the big role here. For example, just take an example of alpha which sometimes we call it as 

Thermal Expansivity. This can be positive or negative. For water is negative between 0 and 4. 

So, it tells you a specific behaviour of the properties and also can identify some expected 

stability.  
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So, we will look into that, but the major question is the following. So, the key questions which 

we have to worry about is, does thermodynamic place any constraint or restriction on the 

derivatives, on derivatives. So the derivatives which we are talking about, let us say it is KT or 

Cv or Cp. 

 

Does thermodynamics place any restriction, can it be a negative, can it be positive for stability? 

For real system to have, do you think that a Cv (has) can be negative? That is another question. 

So, these are the questions which bring clarity in the way we deal with the phases and what we 

expect in reality. So, that is one part of it. The other thing is, do we have some kind of a rule 

which gives you a constraint for many phases to coexist? Or in other word do we, can we 

establish general constraints on how many phases can coexist at equilibrium?  

 

So, that is another question. That can we, do we have some kind of constraints that for a given 

set of temperature and pressure only a certain number of phases can coexist? Or for that matter 

you can have only one phase for let us say one particular condition for three phases to be coexist 

on and so forth.   

 

So, the question is, is there any general rule for that? That this is something which we call it 

Gibbs Phase rule. The other thing is that, how property of the coexistence phases, the phases 



which are at equilibrium with each other such as liquid vapour solid liquid. So, how property of 

the coexistence phases vary with temperature? So, this we call Clapeyron Equation. Something 

which we learn.  
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So, these are the questions which we would like to elaborate more and and we will spend some 

time to understand this the conditions of the equilibrium, particularly with respect to the stability 

that means, how the stability criteria brings its constraints on the signs of the derivatives of the 

properties, that is number one.  
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The (second) the other two questions is basically to come up with the constraints which defines 

how many phases can coexist. And the third is that how the coexistence phase vary with 

temperature. So, these are the three things which we have to now elaborate on it. 

 

So, at this point I will stop and in the next lecture I will start with the stability criteria and bring 

this at least address the first part of this questions, which we have listed. So, I will see you in the 

next class. 

 


