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Welcome back, in today’s lecture we are going to describe Maxwell’s relation. So Maxwell 

relation is based on the fact that order of differentiation is unimportant for analytical function. 

so which essential means that, let us say if we consider function f is equal to f x, y and consider 

this to be smooth function, then it is based on the fact that the order of differentiation is 

unimportant and in other way we are saying the following. 

𝑓 = 𝑓(𝑥, 𝑦)  𝑖𝑠 𝑎 𝑠𝑚𝑜𝑜𝑡ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

𝑇ℎ𝑒𝑛,   
𝜕2𝑓

𝜕𝑥𝜕𝑦
=

𝜕2𝑓

𝜕𝑦𝜕𝑥
 

𝐴𝑛𝑑,
𝜕

𝜕𝑥
|𝑦

𝜕𝑓

𝜕𝑦
|𝑥 =

𝜕

𝜕𝑦
|𝑥

𝜕𝑓

𝜕𝑥
|𝑦 

So, Maxwell relation will be developed based on this simple equality of these terms. So, it 

clearly tells you this that the order of differentiation is essentially does not make any difference, 

so this is a based on a mathematical equality of that these two expressions. 

Now based on this, we are going to develop 4 important relation which are going to be extracted 

from our basic fundamental thermodynamic potential relations in a differential form. And I am 



going to now write this first so let us look at u is equal to u s v, so we are considering close 

system for illustration, okay, the other thermodynamic functions are H is equal to H function 

of S and P, A is a function of T and V, and G is the function of T and P. 

Fundamental relations for closed system: 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 

𝑑𝐴 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 
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And now the way Maxwell relation is developed is based on a simple exercise.  

𝑧 = 𝑧(𝑥. 𝑦) 

𝑑𝑍 = 𝑀𝑑𝑥 + 𝑁𝑑𝑦;     𝑀 = (
𝜕𝑍

𝜕𝑥
)

𝑦
; 𝑁 = (

𝜕𝑧

𝜕𝑦
)

𝑥

 

(
𝜕𝑁

𝜕𝑥
)

𝑦
= (

𝜕𝑀

𝜕𝑦
)

𝑥

 

Now use or apply this particular equality or this particular expression on the 4 different 

relations, okay thermodynamic relation. So, let us consider for the case of u.  



𝜕2𝑈

𝜕𝑆𝜕𝑉
=

𝜕2𝑈

𝜕𝑉𝜕𝑆
 

𝜕

𝜕𝑆
|𝑉

𝜕𝑈

𝜕𝑉
|𝑆 =

𝜕

𝜕𝑉
|𝑆

𝜕𝑈

𝜕𝑆
|𝑉 

−
𝜕𝑃

𝜕𝑆
|𝑉 =

𝜕𝑇

𝜕𝑉
|𝑆   𝐹𝑜𝑟 𝑎 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 

−
𝜕𝑃

𝜕𝑆
|𝑉,{𝑁𝑖} =

𝜕𝑇

𝜕𝑉
|𝑆,{𝑁𝑖}  𝐹𝑜𝑟 𝑎𝑛 𝑜𝑝𝑒𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 
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Inverse relations are also valid. 

−
𝜕𝑆

𝜕𝑃
|𝑉,{𝑁𝑖} =

𝜕𝑉

𝜕𝑇
|𝑆,{𝑁𝑖}  

So we have now first relation which comes from the internal energy expression in the 

differential form, now I can consider other relations and try to develop. We can do this same 

exercise for del h here.  
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The second relation is thus obtained as:  

𝜕𝑉

𝜕𝑆
|𝑃 =

𝜕𝑇

𝜕𝑃
|𝑆  
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And then similarly we can get, similarly, from the expression of A and G we have the following 

expressions.  

  𝑑𝐴 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 →   
𝜕𝑆

𝜕𝑉
|𝑇 =

𝜕𝑃

𝜕𝑇
|𝑉  

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 → − 
𝜕𝑆

𝜕𝑃
|𝑇 =

𝜕𝑉

𝜕𝑇
|𝑃  

 

 

So that is the four Maxwell relations we have obtained.  



(Refer Slide Time: 9:40)  

 

 

Now let us look at the problem which we have ended before the start of this lecture, we earlier 

wanted to have this delta u to obtained from the state point are going from t1 v1 to t2 v2, okay 

and we considered this s is equal to function of v so earlier we wanted to have this relational 

delta to u going to t1 v1 to t2 v2 and we did this exercise and we ended up with this expression 

were we stuck with this partial derivative of s with respect to t and partial derivative of s with 

respect to v, and that is why we wanted to say that we must come out with the expression where 

we can change this partial relation to something related to p v t and other relation properties 

which we can calculate from the experiments and that is where the Maxwell relations come. 



So if u look at this side del s by del v, I can now make use of the Maxwell relation because del 

s by del v, if you look it here del s by del v here is nothing but del p by del t at a constant for 

v.  
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So this expression, I can write it here is delta u which was there in t1 t2 T del s by del t at v is 

equal to v2 dT plus v1 v2 T delta s by del v T is equal to t1 minus p T is equal to t1, and this 

this was the expression which we ended in the last class. Now this by definition is c v okay, 

okay c v is by definition is t del s by del t and this from Maxwell relation as I mentioned this 

is this part is nothing but del p by del v, so this is something which you can now calculate from 

the experiment, we can keep the temperature fix and find out the change in the pressure as we 

change the volume or the other way around. 

And then our expression in a differential form not integral would be c v d t plus t and this term 

here del p del p by del v at constant, so del v by del t at t should be del p by del v del s by del 

v at constant t should be del p by del v at constant v. So, this must be at constant v minus p dv. 

So this is the differential form here.  

𝑑𝑈 = 𝐶𝑉𝑑𝑇 + 𝑇 (
𝜕𝑃

𝜕𝑉
|𝑉 − 𝑃) 𝑑𝑉 
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Now in addition to this Maxwell relation as I said we are going to make use of a other 

thermodynamic properties or the variables and one of the important variables are isothermal 

compressibility and the coefficient of expansivity, many times it is because of isothermal its 

symbol is k and t is to identify that it is basically at a constant temperature and this is 1 by v 

del v by del p because you are trying to look at what is the rate of compression as you change 

your pressure, that means basically the amount of the volume which is changed as you change 

the pressure at a constant temperature and the negative sign is meant because is added because 

this should be negative, here the k must be positive and this is something which we would like 

to prove it also later for a stability analyses during when we are going to talk about stability of 

the system.  

In addition to this we would be also interested to have this variable because we can calculate 

this in the experiment coefficient of thermal expansion or expansivity. And many times this is 

also called volume expansivity, usually symbols Alfa is used sometimes or beta is also used 

okay so Alfa or beta could be used here, but the meaning remains the same that you are looking 

at how the volume gets affected as you change the temperature at a constant pressure, okay.  

And it is a important variable which we use so in addition to your beta k you have of course c 

v, and c p. So, this is by definition. 

𝜅𝑇 = −
1

𝑉

𝜕𝑉

𝜕𝑃
|𝑇,{𝑁𝑖}   𝐼𝑠𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦  



𝛼 𝑜𝑟 𝛽 = −
1

𝑉

𝜕𝑉

𝜕𝑇
|𝑃,{𝑁𝑖}   𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑣𝑖𝑡𝑦 

𝐶𝑉 = (
𝜕𝑢

𝜕𝑇
)

𝑉
= 𝑇 (

𝜕𝑆

𝜕𝑇
)

𝑉
 

𝐶𝑃 = (
𝜕ℎ

𝜕𝑇
)

𝑃
= 𝑇 (

𝜕𝑆

𝜕𝑇
)

𝑃
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So again let me summarize Maxwell relation. So we have obtained 4 Maxwell relations okay. 

Summary of Maxwell relation, okay. From the expression u, t u is equal t d s m minus p d v 

and the Maxwell relation is minus of del p by del s del p by del s at constant volume, this must 

be equal to del t here by d v at constant s minus sign is there because one of the coefficient of 

this here is minus, okay.  

Then you have this a function h which gives you d h is equal to t d s plus v d p and from here 

I can get del v by del s at constant p this is equal to del t by del p at constant s, okay. Then we 

have function a, okay sometimes people use f also but let me just use a here minus s d t minus 

p d v okay. and here I have del p by del t at constant v is equal to del s by del v at constant t 

again negative signs here gets cancelled and so you have this relation and then finally you have 

G del G is equal to minus s d t plus v d p and this is del v by del t at constant p and this is 

negative here, this is equal to del s by del p by constant T, okay. So these are the 4 important 

relations which we have, okay.  



(Refer Slide Time: 16:58)  

 

Now having derived this expressions, now let us try to do some examples making use of this 

Maxwell relation in order to simplify the expressions or the changes in the thermodynamic 

variables in terms of something which we can calculate experimentally okay. 

So one of the example could be, let us say this is an example and so the question is to derive 

this expression, okay. So this is the expression here, so here of course beta is same as volume 

expansivity. So let us start with du 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 

𝑈 = 𝑈(𝑇, 𝑉) 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 + (

𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉 

                                                                 (
𝜕𝑈

𝜕𝑇
)

𝑉
= 𝐶𝑉𝑑𝑇 

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑇 (

𝜕𝑆

𝜕𝑉
)

𝑇
− 𝑃 (

𝜕𝑉

𝜕𝑉
)

𝑇
 

(
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑇 (

𝜕𝑆

𝜕𝑉
)

𝑇
− 𝑃 

𝑀𝑎𝑥𝑤𝑒𝑙𝑙′𝑠 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛, (
𝜕𝑆

𝜕𝑉
)

𝑇
= (

𝜕𝑃

𝜕𝑇
)

𝑉
 



(
𝜕𝑈

𝜕𝑉
)

𝑇
= 𝑇 (

𝜕𝑃

𝜕𝑇
)

𝑉
− 𝑃 

𝜅𝑇 = −
1

𝑉

𝜕𝑉

𝜕𝑃
|𝑇      𝛽 = −

1

𝑉

𝜕𝑉

𝜕𝑇
|𝑃 

𝐶ℎ𝑎𝑖𝑛 𝑟𝑢𝑙𝑒,   (
𝜕𝑃

𝜕𝑇
)

𝑉
(

𝜕𝑇

𝜕𝑉
)

𝑃
(

𝜕𝑉

𝜕𝑃
)

𝑇
= −1 

(
𝜕𝑃

𝜕𝑇
)

𝑉
= −

1

(
𝜕𝑇
𝜕𝑉

)
𝑃

(
𝜕𝑉
𝜕𝑃

)
𝑇

= −
(

𝜕𝑉
𝜕𝑇

)
𝑃

(
𝜕𝑉
𝜕𝑃

)
𝑇

= −
𝛽𝑉

−𝜅𝑉
=

𝛽

𝜅
 

𝑑𝑈 = 𝐶𝑉𝑑𝑇 + (𝑇
𝛽

𝜅
− 𝑃) 𝑑𝑉 
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So you can write do this, but there could be other ways which you can remember if you want 

to do that and one of the often used approach is something called bond diagram okay. The way 

it is a written or it works as a following, that a you draw this kind of a square such that you 

have this s v t and p which is a corners of this square and then you can draw these two lines 

which one going from s to t and the other going from p to v and this are the independent 

variables okay so appropriate independent appropriate thermodynamic functions can be added 

now H is for s and p and if you look at t and p this has to be G, if it is v and t then this is A, if 

it is v and s is nothing but U, okay. 



So what we have done is we have written something like this. Now you can write down let us 

say thermodynamic function also in the way in the following way let us say if a generic 

thermodynamic function is Phi, then this is nothing but a sign of coefficient multiply by the 

differential of independent variable, okay. 

So you can demonstrated this so let us consider let us say d of G, okay so G has independent 

variables t and p, so this is your d t and this is your d p so that is part of it and then you need to 

have sign of coefficient, so the coefficient sign are written in this way so essentially for t the 

conjugate variables goes to s, so essentially here I am going to write is the minus of s okay plus 

from p it going from p to v but since its going from originate from p in this direction this is a 

positive in this case, we have to written negative because its coming towards t and hence it is 

written minus s that is what the sign stands for. So sign and the here it would be your for p it is 

v. 

Similarly, I can write here d of h here, okay. So it goes toward from both the corners or both 

the vertices and hence is going to be positive so here I can write d s with t here plus p and this 

is v p so this is by definition and similarly you can write the other terms. Now since our interest 

is basically to get the Maxwell relations a from this diagrammatic approach, let us look at how 

it can be done. 
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So a the idea is the same you write it in this small thing s v t p okay, right, so this is how it is 

written. Now when you look at from here from the one of the sides okay then essentially what 

you have to do is you have to look at the edges, okay. here for example in their edge you have 



v and s and the corresponding vertices here which is connected to s because you are looking 

from it, so essentially you can write it here as del v by del s okay, keeping this p constant. And 

similarly, this would be your h here del t by del p, but the corresponding the other side is s here 

and since both arrows are towards the other sides and hence it is a is basically there is no 

negative sign here.  

Similarly, so until I do not show you the other examples you will not be clear, so let me just 

demonstrate it for the other side, okay. So now we are looking at from this side right so this 

side has 2 edges here, this is the one, the other one is this, so it is going to be del v by del t this 

must be equal to del s by del p, okay.  

Now if you look at it what should be here in a constant for the case of a del v by del t should 

be p, for the case of del d by del p it should be t, okay. But the other things is that weather it is 

going to be positive or negative here, so if you look at it by here again one of them is 

approaching towards the edge okay. So hence, there has to be some negative you can put it here 

or here does not matter okay. 

Now let us look at the other sides also, so we put it here, so this is going to be del s by del v 

should be equal to del p by del t again del s by del v should be the constant as t, for this constant 

is v and both the sides both the arrows are pointed towards this hence this will be positive.  
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Similarly I can so the last one, so this is your del t by del v del p by del s okay, these are the 

two edges, okay two points here del t by del v del p by del s and now for the case of del t by 

del v we have kept s as constant, for the case of del p by del s the v is constant, but if you look 



at from this side one of the arrow is pointing towards itself so there has to be negative sign 

somewhere, okay. 

So these are the 4 Maxwell relations which have evaluated from the Bond Diagram Approach 

which could be very useful if you are not able to understand or directly extract it from the 

thermodynamic expressions the way I was trying to do that. But I will try to show you another 

way to solve problems or remember this Maxwell relation that will be your Jacobean approach 

and I will take that approach in the next lecture, so that will be the end of today’s lecture.  

 


