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Welcome back, today’s class we will be starting with the multivariable calculus and this will 

be over basis for later on connecting different expressions in thermodynamics particularly in a 

derivative form which are going to be extremely valuable in our ways to obtain properties. So, 

one of the important thing which we have done in the last class is to define the potentials, we 

have developed the potentials here, and so we need about of course U, but we develop the 

thermodynamic potentials A, H and G and for A the Helmholtz Free energy the natural 

variables as we know is T, V, N number of moles and similarly for H and G they are certain 

natural variables. 

But these are all energies, so these are all energies and energy variables basically, and there is 

one of the important thing is there is nothing call like energy 0, that is a something which we 

must understand that, so what we typically calculate is, if there is a change in the state then the 

corresponding the change in the variables we are interested in such as delta U delta A delta H 

and delta J. 

So, what we will be dealing with in thermodynamics is most was the time is basically change 

in the such kind of favorables. So for example, if you look at simple example like say we can 

talk about state process where we change from state from S1, V1 to S2, V2. The question would 

be, what is the change in delta U, so this could be one of the questions because for U the natural 



variables is S, V and assuming that the number of moles remains the constant and hence with 

this question is very obvious and in that case what we going to do is you are going to do just 

write down this as integral of delta U from let us say 1 to 2, and you are going to write the 

thermodynamic expression of dU which is T ds minus P dv, now this both we know it is 

depends on the path.  

ΔU = ∫ 𝑑𝑈
2

1

= ∫ 𝑇𝑑𝑆 − 𝑃𝑑𝑉
(𝑆2,𝑉2)

(𝑆1,𝑉1)

 

So, you can come up with the various variety or different path enough to achieve this process 

change from S1, V1 to S2, V2. Now in order to achieve this we need to first understand some 

aspects of calculus and that is what I am going to do, kind of quick review of that, which is 

going to be extremely useful in the later part of this lecture or in general the understanding of 

this multivariate calculus should be quit useful. 
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So, let us suppose: 𝑓 = 𝑓1(𝑥, 𝑦)  𝑦 = 𝑓2(𝑥, 𝑧) 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑓 = 𝑓1(𝑥, 𝑓2(𝑥, 𝑧)) = 𝑓3(𝑥, 𝑧) 

𝜕𝑓

𝜕𝑥
 𝑖𝑠 𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑢𝑛𝑡𝑖𝑙 𝑤𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑦 𝑤ℎ𝑎𝑡 𝑖𝑠 𝑓𝑖𝑥𝑒𝑑 

 



(Refer Slide Time: 04:23) 

 

So, 

𝜕𝑓

𝜕𝑥
|𝑦 =

𝜕

𝜕𝑥
𝑓1(𝑥, 𝑦) 

𝜕𝑓

𝜕𝑥
|𝑧 =

𝜕

𝜕𝑥
𝑓3(𝑥, 𝑧) 

In general,  

𝜕𝑓

𝜕𝑥
|𝑦 ≠

𝜕𝑓

𝜕𝑥
|𝑧 

 

Now you can clearly see that this mean that in general del f by del x at constant y need not be 

equal to del f by del x at constant z. So what is relation between these 2 partial derivatives? So 

in order to calculate the relation we can do a simple exercise and we can write:  

𝑑𝑓 =
𝜕𝑓

𝜕𝑥
|𝑧𝑑𝑥 +

𝜕𝑓

𝜕𝑧
|𝑥𝑑𝑧  

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑛𝑔 𝑤𝑟𝑡 𝑥,   
𝜕𝑓

𝜕𝑥
|𝑦 =

𝜕𝑓

𝜕𝑥
|𝑧

𝜕𝑥

𝜕𝑥
|𝑦 +

𝜕𝑓

𝜕𝑧
|𝑥  

𝜕𝑧

𝜕𝑥
|𝑦  

𝜕𝑓

𝜕𝑥
|𝑦 =

𝜕𝑓

𝜕𝑥
|𝑧 +

𝜕𝑓

𝜕𝑧
|𝑥

𝜕𝑧

𝜕𝑥
|𝑦  
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So, this is the relation between these 2 partial derivatives, so, this was the question which we 

raised here, so this is one example, or one particular relation which we can use in solving some 

of the problems. But many times we are interested as said, I am going for one state to another 

and this may require some kind of contour integrals, that is something which I am also going 

to now, describe that. 
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So in that case particularly which is relevant for thermodynamics would be something like 

where f is that say function of many variables, in that case, I can write, df as summation del f 

by del x i and here j is not a equal to i, where we look through, so that means for all or rather I 

should write this as for all xi is xj not equal to i and this is now, dx i. 



𝑓 = 𝑓(𝑥1, … , 𝑥𝑛)    𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑑𝑓 = ∑
𝜕𝑓

𝜕𝑥𝑖

|𝑥𝑗≠𝑖
𝑑𝑥𝑖

𝑛

𝑖=1

 

So, this is the differentiation in this form of a multivariable, now if we integrate this, between 

two to such that we have two specific state point then I have this left hand side has x 1, x n this 

is a kind of state point which have multiple planes and then the difference will be f x1 to some 

other initial point, and this is going to be summation integral of this del f del xi, xj equal to i 

dxi. 

𝑓(𝑥1, … , 𝑥𝑛) − 𝑓(𝑥1
0, … , 𝑥𝑛

0)  = ∑ ∫
𝜕𝑓

𝜕𝑥𝑖

|𝑥𝑗≠𝑖
𝑑𝑥𝑖

𝑛

𝑖=1

 

Now, the question is how so you find this path, how do we find the path or in other words if I 

define this path this symbol gamma, so how do we decide the path from going to 1 point to 

another? One of the easiest way if there is a 2 dimensional, or 2 variables state then it will be 

a simple collection of straight lines, so that is something which we can demonstrate for a simple 

problems, so choosing gamma or path is sometimes tricky business, but the easiest would be 

to compose this path or this particular path is composed of straight lines, or straight segments. 
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So, let us try to demonstrate this so, we can consider let us say this y and x and you have a 

initial point is x0, y0 and finally we would like to go through x1, y1 so that kind of two state 

point on a y and x. Now what we interested is to find out the delta f which is the function of x 

and y, so initially this is 1, 1 or in the final state is 1, 1 or and this is initial x0, y0 right.  



Δ𝑓 = 𝑓(𝑥1, 𝑦1) − 𝑓(𝑥0, 𝑦0) =  ∫
𝜕𝑓

𝜕𝑥
|𝑦𝑑𝑥 + ∫

𝜕𝑓

𝜕𝑦
|𝑥𝑑𝑦 

Now here I can choose many paths so as I said the easiest gamma would be composed of 

straight segments, so there are 2 possible ways to do that, one is of course I can take it here, 

keeping y 0 constant and then, I take the vertical path and that would be where I keep x1 

constant. So, this is something which we have going to say is gamma, gamma a, the other 

possibility is the that we keep this x0 constant and then we take this path where we say this is 

gamma b so we go from here till y1 and then keep the y1 constant and go along this path from 

x0 to x1. So there is a two different paths, so let me write it out write this here: 

Γ𝑎: (𝑥0, 𝑦0) → (𝑥1, 𝑦0) → (𝑥1, 𝑦1) 

Γ𝑏: (𝑥0, 𝑦0) → (𝑥0, 𝑦1) → (𝑥1, 𝑦1) 
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So, let us consider the gamma a as our possible path which we would like to use it in order to 

obtain delta f and let us try to develop the expression finally.  

Δ𝑓 =  ∫
𝜕𝑓

𝜕𝑥
|𝑦𝑑𝑥 

(𝑥1,𝑦0)

(𝑥0,𝑦0)

+ ∫
𝜕𝑓

𝜕𝑦
|𝑥𝑑𝑦 + ∫

𝜕𝑓

𝜕𝑥
|𝑦𝑑𝑥 

(𝑥1,𝑦1)

(𝑥1,𝑦0)

(𝑥1,𝑦0)

(𝑥0,𝑦0)

+ ∫
𝜕𝑓

𝜕𝑦
|𝑥𝑑𝑦 

(𝑥1,𝑦1)

(𝑥1,𝑦0)

 

Δ𝑓 =  ∫ (
𝜕𝑓

𝜕𝑥
)

𝑦
𝑑𝑥

𝑥1

𝑥0

+ ∫ (
𝜕𝑓

𝜕𝑦
)

𝑥

𝑑𝑦 
𝑦1

𝑦0
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Similarly, I can use gamma b, if I use gamma b I am going to get a different expression. So 

without deriving it I am actually writing it here, so these are two different expressions, but 

since, is a thermodynamics, if we apply to the thermodynamic conditions the change is in the 

potentials or the variables which are state dependent, their value should be same, it respective 

of whatever the segments or the path we have taken 

Γ𝑏:       Δ𝑓 =  ∫ (
𝜕𝑓

𝜕𝑥
)

𝑦=𝑦1

𝑑𝑥
𝑥1

𝑥0

+ ∫ (
𝜕𝑓

𝜕𝑦
)

𝑥=𝑥0

𝑑𝑦 
𝑦1

𝑦0

 

 

Now, let us for the continue this exercise and try to develop a relation again something called 

change rule and as well as the inverse rule, so this is also relevant in variety or different 

calculations which we are going to do. 
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So, this is, so let me start with the inverse rule.  

(
𝜕𝑓

𝜕𝑦
)

𝑥

=
𝜕𝑓

𝜕𝑧
|𝑥

𝜕𝑧

𝜕𝑦
|𝑥 

𝐼𝑓 𝑓 = 𝑦    1 =
𝜕𝑦

𝜕𝑧
|𝑥

𝜕𝑧

𝜕𝑦
|𝑥 

𝜕𝑦

𝜕𝑧
|𝑥 =

1

𝜕𝑧
𝜕𝑦

|𝑥

= (
𝜕𝑧

𝜕𝑦
|𝑥)

−1

 

So ,this is sometime is called inverse rule or minus 1 rule here. So ,what we are saying is simply 

that this is nothing but we can just inverse it in this way.  
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Consider z is a function of z x, y so this is inverse rule and then now I am going to develop a 

relation for which we call it minus 1 rule. 

𝑧 = 𝑧(𝑥, 𝑦) 

𝑑𝑧 =
𝜕𝑧

𝜕𝑥
|𝑦𝑑𝑥 +

𝜕𝑧

𝜕𝑦
|𝑥𝑑𝑦 

𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑤𝑟𝑡 𝑥 𝑎𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑧,    
𝜕𝑧

𝜕𝑥
|𝑧 =

𝜕𝑧

𝜕𝑥
|𝑦

𝜕𝑥

𝜕𝑥
|𝑧 +

𝜕𝑧

𝜕𝑦
|𝑥

𝜕𝑦

𝜕𝑥
|𝑧  

Now, if you take a partial derivative with respect to x at constant z so, if we do this the following 

expression will comes, so we talking about partial derivative with respect to x keeping z 

constant, so essentially this is nothing but 0, this should be del z by del x so this must be 1 plus 

del z by del y keeping x constant del y by del x, z here. So, you have an expression as: 

0 =
𝜕𝑧

𝜕𝑥
|𝑦 +

𝜕𝑧

𝜕𝑦
|𝑥

𝜕𝑦

𝜕𝑥
|𝑧 

−1 = (
𝜕𝑥

𝜕𝑧
)

𝑦
(

𝜕𝑦

𝜕𝑥
)

𝑧
(

𝜕𝑧

𝜕𝑦
)

𝑥
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This expression is sometimes we called a chain rule also.  

So these are very we know valuable expressions and something which we can now demonstrate 

in our calculations.  

Δ𝑈 = ∫ 𝑑𝑈 = ∫ 𝑇𝑑𝑆 − 𝑃𝑑𝑉
(𝑆2,𝑉2)

(𝑆1,𝑉1)

 

Δ𝑓 = ∫
𝜕𝑓

𝜕𝑥
|𝑦=𝑦1

𝑑𝑥
𝑥1

𝑥0

+ ∫
𝜕𝑓

𝜕𝑦
|𝑥=𝑥0

𝑑𝑦 
𝑦1

𝑦0

 



𝑊𝑒 𝑜𝑏𝑡𝑎𝑖𝑛,   Δ𝑈 =  ∫ 𝑇|𝑉=𝑉1
𝑑𝑆

𝑆2

𝑆1

− ∫ 𝑃|𝑆=𝑆1
𝑑𝑉

𝑉2

𝑉1

 

So, if we do this exercise if we make use of this expression, expression which you have used 

here, in here and then we should obtain del U as s1, s2 T at constant v is equal to v2, v1, v2 P 

as constant s is equal to s1, dv. Now this is something which clearly obtain from the expression 

of the contour integral, what if we have to find out delta U for a different set of variables so s 

and v are natural variables for U but, what if we, if we interested or if we wish. 
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Suppose we wish to calculate delta U from state 1 to 2, but these are defined as T1 v1 and this 

is as T2 v2. So, how do you calculate because these are not the natural variables corresponding 

to thermodynamic function U. So for a closed system I can write: 

𝑈 = 𝑈(𝑇, 𝑉) 

𝑑𝑈 =
𝜕𝑈

𝜕𝑇
|𝑉𝑑𝑇 +  

𝜕𝑈

𝜕𝑉
|𝑇𝑑𝑉 
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So if we integrate this:  

Δ𝑈 = ∫
𝜕𝑈

𝜕𝑇
|𝑉=𝑉1

𝑑𝑇
𝑇2

𝑇1

+  ∫
𝜕𝑈

𝜕𝑉
|𝑇=𝑇1

𝑑𝑉
𝑇2

𝑇1

 

𝑇𝑜 𝑔𝑒𝑡 
𝜕𝑈

𝜕𝑇
 𝑎𝑛𝑑 

𝜕𝑈

𝜕𝑉
,     𝑑𝑈 =  𝑇𝑑𝑆 − 𝑃𝑑𝑉 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒,
𝜕𝑈

𝜕𝑇
|𝑉 = 𝑇

𝜕𝑆

𝜕𝑇
|𝑉;     

𝜕𝑈

𝜕𝑉
|𝑇 = 𝑇

𝜕𝑆

𝜕𝑉
|𝑇 − 𝑃 
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So, we have: 

Δ𝑈 = ∫ 𝑇
𝜕𝑆

𝜕𝑇
|𝑉=𝑉1

𝑑𝑇
𝑇2

𝑇1

+ ∫ (𝑇
𝜕𝑆

𝜕𝑉
|𝑇=𝑇1

− 𝑃
𝑉2

𝑉1

|𝑇=𝑇1
)𝑑𝑉 

 Now this becomes more complicated further the issue is that we do not usually know s as 

function of T and V and what we want do is we want to express this delta U finally in terms of 

something which we can measure experimentally. 

So what we can measure experimentally? We can measure experimentally P V T relations, we 

can change the pressure and observe the change in the volume in terms density, we can change 

the temperature again find out the changes in the P V T expression, but in addition we can also 

calculate CP heat capacity at constant pressure Cv and we can also obtain something isothermal 

compressibility and other terms which I am going to mention it in a later part.  

So one of the important thing is that, which comes directly from this expression, that we would 

like to finally convert this all this partial derivative which is not accessible directly into 

something which we can measure experimentally, and this is where we need to know how to 

do that, and one of the way is making use of something called Maxwell relations. So this is 

where it comes very valuable to make use of this in order to express this, of this derivatives 

into something which we can measure and this is something which I am going to describe in 

the next lecture, I will stop here, so I will see you in the next lecture. 

 


