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Generalized thermodynamics potential - II 

Okay welcome back so in the last class we were working on transformation in order to obtain 

the Thermodynamic functions where the natural variables are something which you would 

like to control such as T or pressure and volume and so forth.  
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𝜙 = 𝑈 − 𝑇𝑠 = 𝐴 (𝐻𝑒𝑙𝑚ℎ𝑜𝑙𝑡𝑧 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑜𝑟 𝐻𝑒𝑙𝑚ℎ𝑜𝑙𝑡𝑧 𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦) 

𝐴 = 𝐴(𝑇, 𝑉, 𝑁1, … , 𝑁𝑒) 

𝑑𝐴 = 𝑑𝑈 − 𝑇𝑑𝑠 − 𝑠𝑑𝑇 = 𝑇𝑑𝑠 − 𝑃0𝑊 − 𝑠𝑑𝑇 + ∑(𝜇𝑖𝑑𝑁𝑖) − 𝑇𝑑𝑠 

𝑑𝐴 = −𝑃𝑑𝑣 − 𝑠𝑑𝑇 + ∑(𝜇𝑖𝑑𝑁𝑖) 

𝐴 −
𝜕𝐴

𝜕𝑇
|𝑉,{𝑁}𝑇 = 𝐴— 𝑆𝑇 = 𝐴 + 𝑇𝑆 = 𝑈 

𝑈 = 𝑈(𝑆, 𝑉) → 𝑈(𝑆, 𝑃) 

                                                          𝑈 − 𝑠𝑙𝑜𝑝𝑒 𝑉 = −𝑃  

  



 

  

So we have developed  two expressions, one for Helmholtz free energy  where the natural 

variables is T, V hence and the other one is basically the enthalpy where the natural variable 

is SP. 
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Now we will extending this exercise for the case where essentially we would like to change 

S, V, N1 to something like T, P, N1 so forth, okay. So what would be the function 

appropriate for that? So in this case we have two variables which we are trying to change. So 

in the sense it is multivariable, so that means that we have to worry about two specific slopes. 

The first one is: 
𝜕𝑈

𝜕𝑆
|𝑉,{𝑁𝑖} = 𝑇;               

𝜕𝑈

𝜕𝑉
|𝑠,{𝑁𝑖} = −𝑃 

𝜙 = 𝑈 −
𝜕𝑈

𝜕𝑆
|𝑉,𝑁𝑖

𝑆 −
𝜕𝑈

𝜕𝑉
|𝑆,𝑁𝑖

𝑉 = 𝑈 − 𝑇𝑆— (−𝑃)𝑉 

𝐺 = 𝑈 − 𝑇𝑆 + 𝑃𝑉 

 



So we have two specific slope which is available now in order to obtain the Legendre 

transformation function we are going to use U minus the first slope okay del U by del S 

multiplied by the variable which we would like to change which is S minus the second slope 

multiplied by the variable which is V, okay. So this is the Legendre transformation Phi, so 

this is going to be U minus T S minus of minus P V okay and that is U minus T S plus P V 

and this particular function is often called G. So G is nothing but the Gibbs potential or Gibbs 

free energy we call it.  
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Now G is a function of T, P, N1 till Nt. 

𝑑𝐺 = 𝑑𝑈 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇 + 𝑃𝑑𝑉 + 𝑉𝑑𝑃 

𝑑𝐺 = 𝑉𝑑𝑃 − 𝑆𝑑𝑇 + ∑(𝜇𝑖𝑑𝑁𝑖) 

𝐺(𝑇, 𝑃, 𝑁, … , 𝑁𝑡) → 𝑈(𝑆, 𝑉, 𝑁, … , 𝑁𝑡) 

So you may also like to test whether we are going to get the original expression if you do 

inverse, so let us do that so we have to get back the G that means from G, T, P, N1 till Nt to 

U, S, V, N1 till Nt okay, so this is the transformation you would like to have it and check 

whether we are going to return get back you are not if you this change T and P to S, N, V.  
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𝐺 −
𝜕𝐺

𝜕𝑇
|𝑃𝑖,{𝑁𝑖}𝑇 −

𝜕𝐺

𝜕𝑃
|𝑇𝑖,{𝑁𝑖}𝑃  

𝐺 + 𝑆𝑇 − 𝑉𝑃 = 𝑈 = 𝑈(𝑆, 𝑉, … ) 

 

 So we get back the original function  by doing this inverse approach. So you can also 

consider not just these two variables but you can also try to get H because H is nothing but a 

function of S and P. 

𝐻 = 𝐻(𝑆, 𝑃, 𝑁1 … 𝑁𝑡) → 𝜙 = 𝜙(𝑇, 𝑃, 𝑁1, … , 𝑁𝑡) 

𝜙 = 𝐻 −
𝜕𝐻

𝜕𝑆
|𝑃,{𝑁𝑖}𝑆 = 𝐻 − 𝑇𝑆 = 𝑈 + 𝑃𝑉 − 𝑇𝑆 
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So let me try that and show this demonstrate that part, so what I am trying to say here is that 

we can also try this H to T, P, N1, Nt and this is a function G okay which means we are 

talking about G is equal to nothing but H minus del H by del S or rather I would say some 

function let us say which should be same as G okay. So this could be Phi again this H minus 

del H by del S at constant P, Ni and this is H, so if you look at that differentiation or the 

derivative expression or expression of H in the differential form it is dH here so the derivative 

of this with respect to S keeping the rest constant is nothing but T.  

So essentially we have this as T okay so you have H minus TS okay so but H is nothing but U 

plus PV minus TS and this expression is nothing but the same as the earlier expression when 

we calculate the function G okay. So if you look at the function G it was U plus PV minus TS 

which is nothing but H minus TS okay. 



So this is the same expression which we obtained here, so this is nothing but G so you can 

consider by changing sequentially all these variable or you can consider all the variables to be 

changed by this derivatives that is also feasible in this mechanism, okay.  
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So similarly I can also consider A: 

𝐴(𝑇, 𝑉, 𝑁1, … , 𝑁𝑡) → 𝐴(𝑇, 𝑃, 𝑁1 … 𝑁𝑡) 

𝜙 = 𝐴 −
𝜕𝐴

𝜕𝑉
|𝑇,{𝑁𝑖} 

𝜙 = 𝐴 + 𝑃𝑉 = 𝑈 − 𝑇𝑆 + 𝑃𝑉 = 𝐺 

 So essentially you get the same expression.  
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So if you recall your Euler equation this is the interesting aspect here, 

𝑈 = 𝑇𝑆 − 𝑃𝑉 + ∑(𝜇𝑖𝑁𝑖) using the extensivity of the Thermodynamic function, so we 

obtained this relation if you recall. Now you can extend this relation to the different 

thermodynamic function we just derived. So we can demonstrate this for Gibbs free energy, 

so if you look at the Gibbs free energy definition  

𝑈 − 𝑇𝑆 + 𝑃𝑉 = ∑(𝜇𝑖𝑁𝑖) = 𝐺 
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Now, as of now we just looked into two intensive variable T and P okay we converted S to T 

and volume to P, but now we can think of another intensive variable which is chemical 

potential mu so which so which you like to convert the conjugate variable and to its to mu 

which essentially can be done in a same way that we can demonstrate and let us do this 

consider S, V, N and the corresponding thermodynamic function which is U and what we 

want to do is we want to convert this let us say only T. Pure systems only. 

                                            𝑈 = 𝑈(𝑆, 𝑉, 𝑁) → 𝑈(𝑇, 𝑃, 𝜇)  

= 𝑈 −
𝜕𝑈

𝜕𝑆
|𝑉,𝑁𝑆 −

𝜕𝑈

𝜕𝑉
|𝑆,𝑁𝑉 −

𝜕𝑈

𝜕𝑁
|𝑆,𝑉𝑁 

 

 If it is a multi-component system then we are going to have mu i Ni and there will be 

summation.  

So now if you look at Euler equation which we written earlier, the Euler equation which is 

written here 𝑈 − 𝑇𝑆 + 𝑃𝑉 − ∑(𝜇𝑖𝑁𝑖)       𝑠o this clearly means that this function is nothing 

but 0  and this is sometime we call grand canonical potential which is nothing but a function 

T, P, mu i, mu r okay. So from this expression is basically the Euler expression which we 

come up with and this expression yields the value 0. 
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Now in the later part, what I am going to show is that if you have a system so this is a type of 

system so if it is S, V, N, we have calculated the function or potential okay thermodynamic 



function the corresponding natural variable is U which we are now aware of. The 

corresponding T, V, N, natural variable is A. A natural function is A, that means for A natural 

variables at T, V, N, for the case of S, P, N the thermodynamic function, appropriate 

thermodynamic function is Helmholtz free energy. For the case of T, P, N, the appropriate 

function is G. 

So that means that for U natural variables are S, V, N, for A natural variables are T, V, N, for 

H natural variables are S, P, N, for G is T, P, N. Now in the earlier stage of this course we 

described that for equilibrium we looked into the maximum entropy, in the later part we are 

going to show that equilibrium can be also shown by considering the minimum A, H 

minimum okay and G minimum. So these are the minimization of these some other function 

would also attain the equilibrium conditions for the corresponding natural variables.  

For the case of S, V, N, okay we had either S maximum okay and later on we are going to 

show that S maximum or U minimum are equivalent okay to for the case of equilibrium 

conditions. Okay, so the other set of Legendre transformation we are not going to show those 

are those cases which we are using S as a function for basically U, V, N. So the bases we 

have considered here is basically the internal energy as a function and we were trying to 

transform the variables in our interested variables such as T, P.  

Similarly, you could do the same thing for S okay and you may get another function those 

functions are sometimes called massive function okay, so we are not going to deal with those 

functions because this is something which we interested.  
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𝑈 = 𝑈(𝑆, 𝑉, 𝑁) 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 

𝐴 = 𝐴(𝑇, 𝑉, 𝑁) 

𝑑𝐴 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 

𝐻 = 𝐻(𝑆, 𝑃, 𝑁) 

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁 

𝐺 = 𝐺(𝑇, 𝑃, 𝑁) 

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁 

 

So to summarize this is basically all the aspect of the new Thermodynamic functions which 

we have developed for different intensive variables or the changes in the variables which are 

interested in. 

So these are the four generic expressions which we are going to make use of in the later part 

of the course.  

So that is something which I wanted to cover this class, in the next class will be looking at 

some further expressions or derivations particularly which is relevant in order to get the 

thermodynamic functions in  conditions and that you call it massive relation. Okay, so I will 

see you in the next class. 

 


