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Mathematical properties of fundamental equations 

 

Welcome back. Today we are going to start a new set of lectures on particularly mathematical 

properties of fundamental equations. In the first 2 weeks we looked into the fundamental 

thermodynamic equations as basic derivations and the concept behind that. And subsequently 

we looked into the equilibrium properties, the driving force for different changes in the 

thermodynamic properties. And then we spent some time to revise First Law and Second Law. 

So, with that background now we can start little bit more mathematical aspects of 

thermodynamics.  

(Refer Slide Time: 00:54) 

 

So, this lecture will specifically focus on mathematical properties of fundamental equation, 

okay. Now we will start with the Euler’s equation, okay. So we will look into the 

thermodynamic function or the potential which is usually a function of S, V and some other 

variables. So we are considering all these variables are extrinsic. Now the Euler’s Equation or 

Theorem says that if you are going to consider a different size of the system such that the 

entropy is multiplied by lambda and the volume corresponding is also multiplied by lambda. 

𝑈(𝜆𝑆, 𝜆𝑉, 𝜆𝑋1 … 𝜆𝑋𝑡) = 𝜆𝑈(𝑆, 𝑉, 𝑋1 … 𝑋𝑡) 

𝑈(𝜆𝑆, 𝜆𝑉, 𝜆𝑁1 … 𝜆𝑁𝑡) = 𝜆𝑈(𝑆, 𝑉, 𝑁1 … 𝑁𝑡) 



So this comes directly from the extensive properties of these thermodynamic potentials which 

are extensive in nature. So where x could be, because it is extensive property, x could be 

something such as moles of the component. So we can consider something like this where we 

have U, lambda S, lambda V and instead of x I can put number of number of moles, okay and 

in that case this will be lambda U, S, V, okay.  

Now if you take a partial derivative, partial derivative with respect to lambda on each side, in 

that case I can get this: 

𝜕𝑈

𝜕(𝜆𝑆)

𝜕(𝜆𝑆)

𝜕𝜆
+

𝜕𝑈

𝜕𝜆𝑉

𝜕(𝜆𝑉)

𝜕𝜆
+ ∑ (

𝜕𝑈

𝜕(𝜆𝑁𝑖)

𝜕(𝜆𝑁𝑖)

𝜕𝜆
) =

𝜕(𝜆𝑈)

𝜕𝜆
= 𝑈  
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So in that case, so what you have now is your U, okay. This is right hand side so I brought it 

here.  

𝑈 = 𝑇𝑆 − 𝑃𝑉 + ∑𝜇𝑖𝑁𝑖  

This is the standard Euler relation. So we started with a property of the extensivity of the 

thermodynamic functions from there we can obtain Euler equation, okay. Now you can do the 

similar exercise not just considering the internal energy but if you consider this as entropy also, 

entropy as a function of U, S, V and so forth.  

Then essentially you should be able to obtain a different expression for Euler which would be 

your something like this. So if we consider in the, based on the entropy relation representation 

that is S is equal to S of U, v and so forth, then S, the corresponding other relation would be, 



you would do the similar exercise as we have done for the U and you would now obtain the 

expression of S in the same sense or the same line as we did for internal energy and I would 

write it directly without deriving it.  

So you can obtain this as Euler relation based on that.  

𝑆 =
1

𝑇
𝑈 +

𝑃

𝑇
𝑉 − ∑ (

𝜇𝑖

𝑇
𝑁𝑖) 
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Now if you take this relation, okay so now you can take the derivative of this expression. okay 

let me just, so we do differentiation, differentiate the above expression we get  

𝑑𝑈 = 𝑇𝑑𝑆 + 𝑆𝑑𝑇 − 𝑃𝑑𝑉 − 𝑉𝑑𝑃 + ∑𝜇𝑖𝑑𝑁𝑖 + 𝑁𝑖𝑑𝜇𝑖 

Now earlier we know that fundamental expression of internal energy in a differential form:  

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + ∑𝜇𝑖𝑑𝑁𝑖 

So if we use this expression, so this is let us say 1, this is 2, so using 1 and 2 I am going to get 

this if you just subtract this then I can get 0, so that means 0, it is like the following:  

0 = 𝑆𝑑𝑇 − 𝑉𝑑𝑃 + ∑𝑁𝑖𝑑𝜇𝑖 

So now this expression puts the constraint on the intensive variable. You can clearly see this. 

It says that the differential amount of T is connected to the other variables. So it gives you a 

relation or constraints of the internal of the intensive variable among the intensive variables. 



So essentially it gives a relation between T, P and mu i. So this expression is called Gibbs-

Duhem equation, okay.  
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Now let us consider for a single component. So if it is for single component:  

𝑆𝑑𝑇 − 𝑉𝑑𝑃 + 𝑁𝑑𝜇 = 0 

Now as I said this gives you a relation or constraints between T, P and mu. 

𝑑𝜇 =
𝑉

𝑁
𝑑𝑃 −

𝑆

𝑁
𝑑𝑇 (𝑅𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑖𝑛𝑔) 

𝑑𝜇 = 𝑣𝑑𝑃 − 𝑠𝑑𝑇 (𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑚𝑜𝑙𝑎𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 

Now this is for the case of expression based on the internal energy, right. Now I can use the 

similar kind of exercise. Or I can do the similar exercise based on entropy, okay. So if you start, 

or let us try to do this.  
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So let us say this is based on entropy relation if we try to come up with the expression. Then I 

will start with the S here, this I would rewrite again in this way: 

𝑆 =
𝑈

𝑇
+

𝑃

𝑇
 𝑉 −

1

𝑇
∑(𝜇𝑖𝑁𝑖) 

𝑑𝑆 = 𝑈𝑑 (
1

𝑇
) +

1

𝑇
𝑑𝑈 +

𝑃

𝑇
𝑑𝑉 +

𝑉𝑑𝑃

𝑇
− ∑ (𝜇𝑖𝑑 (

𝑁𝑖

𝑇
) +

𝑁𝑖

𝑇
𝑑𝜇𝑖) 

𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑑𝑆 =
1

𝑇
𝑑𝑈 +

𝑃

𝑇
𝑑𝑉 − ∑ (

𝜇𝑖

𝑇
𝑑𝑁𝑖) 

𝑈𝑠𝑖𝑛𝑔 𝑎𝑏𝑜𝑣𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠, 𝑈𝑑 (
1

𝑇
) + 𝑉𝑑 (

𝑃

𝑇
) + ∑ (𝑁𝑖𝑑 (

𝜇𝑖

𝑇
)) = 0 
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Now, if you consider for a single component,  

𝑈𝑑 (
1

𝑇
) + 𝑉𝑑 (

𝑃

𝑇
) − 𝑁𝑑 (

𝜇

𝑇
) = 0 

𝑢 𝑑 (
1

𝑇
) + 𝑣 𝑑 (

𝑃

𝑇
) = 𝑑 (

𝜇

𝑇
) 

So this is the expression which we are going to get based on the entropy, okay. Now what I am 

going to do is I am going to apply a bit of, what I am going to consider is a simple case and try 

to extend this understanding. 

So Euler again, let us summarize this, so the purpose of this exercise is to demonstrate the 

expression which connects between the intensive variables. So it gives you the constraints 

between the intensive variables, okay. And the Euler expression which we made use of it here, 

okay later on we use these Euler expressions, okay which was based on the extensivity of the 

variable and later obtain the expression of the Gibbs-Duhem relation. So the Gibbs-Duhem 

relation basically is nothing, which provides the constraints on the intensive variables.  

You can come up with the internal energy based expression or you can come up with the 

entropy based expression. That is why we did these both the exercises and clearly you see these 

relations are different. So this is the one which is entropy-based, and this is the one which is 

internal energy based. Both provides or both gives you the constraints between intensive 

variable, okay. So taking this forward, now let us consider an ideal gas.  
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So consider a simple ideal gas, a monatomic in some sense, okay. Now this is characterized by 

two equations. One is of course we know the equation of state which is:  

𝑃𝑉 = 𝑁𝑅𝑇 

𝑉 = 𝑐𝑁𝑅𝑇   (𝑐 =
3

2
 𝑓𝑜𝑟 𝑚𝑜𝑛𝑜𝑎𝑡𝑜𝑚𝑖𝑐 𝑖𝑑𝑒𝑎𝑙 𝑔𝑎𝑠) 

So remember that this is for high temperature and low pressure, right. So that is the definition 

which, or rather the validity of ideal gas, high temperature and low pressure.  

Now the question which we are interested in is to determine the fundamental equation, okay 

where in this case U is explicitly expressed, U expression is given. So we need to use this 

expression to obtain a fundamental, x equations. So let us try to do this exercise. So we will 

rewrite this expression.  

So rewriting the equation in the corresponding appropriate form, so what would be appropriate 

form? We will write:  

1

𝑇
= 𝐶𝑅 (

𝑁

𝑉
) =

𝐶𝑅

𝑢
 

𝑃

𝑇
= 𝑅 (

𝑁

𝑉
) =

𝑅

𝑣
 

Now these are the expressions which come directly from here. So, we are going to use certain 

relation which brings this intensive variable or connects this intensive variable.  
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So let us look at Gibbs-Duhem relation to start with. So we will take Gibbs-Duhem relation 

here. So Gibbs-Duhem relation says that following:  

𝑑 (
𝜇

𝑇
) = 𝑢 𝑑 (

1

𝑇
) + 𝑣 𝑑 (

𝑃

𝑇
) 

So this is directly from the, which came from the Gibbs-Duhem relation based on the entropy 

relation and now I can integrate this: 

𝜇

𝑇
−

𝜇0

𝑇
= ∫ 𝑢 𝑑 (

𝐶𝑅

𝑢
) + ∫ 𝑣 𝑑 (

𝑅

𝑣
) 

𝜇

𝑇
−

𝜇0

𝑇
= −𝑐𝑅𝑙𝑛

𝑢

𝑢0
− 𝑅𝑙𝑛

𝑣

𝑣0
 



But Euler equation of the entropy is S is equal to:  

𝑆 = (
1

𝑇
) 𝑈 + (

𝑃

𝑇
) 𝑉 − (

𝜇

𝑇
) 𝑁 

𝑆 = (
1

𝑇
) (

𝑈

𝑁
) + (

𝑃

𝑇
) (

𝑉

𝑁
) − (

𝜇

𝑇
) 

𝑠 = (𝐶 + 1)𝑅 −
𝜇

𝑇
 

𝑠 − 𝑠0 =
𝜇0

𝑇𝑠
−

𝜇

𝑇
= 𝐶𝑅𝑙𝑛

𝑢

𝑢0
+ 𝑅𝑙𝑛

𝑣

𝑣0
 

So that is your, basically the fundamental equation which comes for the ideal gas system which 

we have just described, for the simple one. So, this is what we have made use of two things. 

We have made use of the Gibbs-Duhem relation, that number 1. Number 2 is we have made 

use of the Euler relations also. So, with that I will stop in today's lecture and I will continue 

this exercise and bring more mathematical relations to obtain variety of different ingenuity 

which normally we see in thermodynamics course.  

So, we will build it upon what you have learnt today and in the next lecture we will take up 

something called generalized thermodynamic function. So, I will see you in the next lecture. 

 


