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Maximum work and entropy of ideal gas 

 

Welcome back. In today's lecture we are going to discuss maximum work and entropy of ideal 

gas and with some certain examples to illustrate our understanding and our, rather to test our 

understanding.  
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So, let us look at this combined First and Second Law on this Single Phase and Simple Systems. 

So, what we have is a similar kind of geometry which we have discussed earlier. So, you have 

the insulated regions which is in the shaded form, piston cylinder geometry and this is a flow 

system and this is a non-insulated hence heat can be transferred here. So, there is inlet and as 

well as there is an outlet in this case. So, this is a very generic open system.  

 

Now what we are considering is that these are, this is internally reversible, quasi-static process 

with mass entering and leaving the system. Under this condition,  𝑇𝑖𝑛 = 𝑇𝑜𝑢𝑡 = 𝑇; 𝑃𝑖𝑛 =

𝑃𝑜𝑢𝑡 = 𝑃 

If we do a mass balance:  𝑑𝑁 = 𝛿𝑛𝑖𝑛 − 𝛿𝑛𝑜𝑢𝑡 

Applying First Law, 𝑑𝐸 = 𝑑𝑈 = 𝛿𝑄𝑟𝑒𝑣 − 𝑃𝑑𝑉 + (𝑈 + 𝑃𝑉)𝑑𝑁 

So that is the basic, the First Law for the open system. Now this, now what you can do is we 

can try to relate this delta Q reversible to entropy and how do we do that?  
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So, let us first look at what is the changes in the entropy of the system that is your d S, So there 

will be two contribution, one due to the heat, exchange or heat interaction that would be simply 

your del Q reversible by T, T is constant here. So the second part is the, is the contribution due 

to the mass flow and that is why it is written as specific entropy multiplied by the differential 

change in the moles or if it is molar entropy that would be multiplied by differential change in 

moles or if it is specific entropy then you have to consider this as mass.  

𝑑𝑆 =
𝛿𝑄𝑟𝑒𝑣

𝑇
+ 𝑆𝑑𝑁 

Combining previous two expressions, 𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + (𝑈 + 𝑃𝑉 − 𝑇𝑆)𝑑𝑁 

𝜇 𝑖𝑠 𝑡ℎ𝑒 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑜𝑟 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 

𝜇 = 𝐺 =  𝑈 + 𝑃𝑉 − 𝑇𝑆 = 𝐻 − 𝑇𝑆 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 
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Now what we can do is we can combine this expression with the previous one. We can rewrite, 

we can take this here and redo this, rearrange this expression and plug in this expression of del 

Q in this expression and, so this would be your T d S minus S T d N right, so this is nothing 

but del Q reversible.  

𝛿𝑄𝑟𝑒𝑣 = 𝑇𝑑𝑆 − 𝑆𝑇𝑑𝑁 
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So, if you plug in this the T d S comes here and we can take the minus T S d N in this, in this 

part okay. That is what is done here. 

𝛿𝑄𝑟𝑒𝑣 = 𝑇𝑑𝑆 − 𝑆𝑇𝑑𝑁 
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So, this combined expression is now T d S minus T d V plus this molar internal energy plus P 

V bar again, molar volume and then you have this molar entropy here multiplied by T and then 

the whole expression is multiplied by d N. Now we will define this mu. This is something 

which we will learn more about this expression or this particular variable mu. That is something 

very valuable in the later part of this course.  

 

So, mu, this is nothing but basically mu because this is by default G something which we have 

already discussed in the first week of this course. So G bar which is a molar G, sometimes we 

also write g like this. So mu is nothing but G, and this is nothing but mu U bar plus P V minus 

T S and this can also be written as H minus T S by definition, this would be mu. So you plug 

in mu here. So this is going to be mu d N.  

 

So the final expression comes out to be this and this is something which is true for open 

systems. So this is not open system of course so you can keep earlier, this will go to 0 and that 

case you will get back the original expression which is nothing but d U is equal to T d S minus 

P d V for quasi-static and slow process, an equilibrium process. So, this will be true for closed 

system. So, what we have this expression is for only open system, or you can consider this to 

be a generic expression. 
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So, if you have many components in the system then you have to sum it up, mu i multiplied by 

d N i so this is the generalized expression of d U for open system, with multiple component 

system. U is indeed from this U would become a function of S, V and N 1, N 2 and so for. That 

is something which we have discussed in the first week also.  

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + ∑ 𝜇𝑖𝑑𝑁𝑖

𝑛

𝑖

 

 

So that is something we can clearly see that you have also proved it from the basic analysis of 

your First Law of Thermodynamics considering the relation of the entropy with the heat 

interactions and the mass flow and basically considering the basic definition of the chemical 

potential, you obtain the same expression as we have discussed earlier. 
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So, let us move forward and talk about minimum and maximum work or the reversible work 

of expansion or compression in flow systems. Often engineers are interested in finding out 

what is the minimum amount of energy which is required for operating a device, or rather 

minimum amount of work required to operate a device or the maximum amount of work that 

can be generated from a device.  

 

So, the relevant devices would be, for a compressor we would be interested in minimal amount 

of work required to operate and for turbine the maximum amount of work which we can 

produce. So, these are the two important usual questions which comes in the mind of engineer 

because he would like to minimize the energy required, overall cost is associated with energy 

and we would like to maximize the energy and produce of course more value out of it.  

 

So, one can deduce the minimum energy, minimum and maximum amount of differential work 

for a given process in the following way.  

𝛿𝑊 = 𝛿𝑛 ∫ 𝑉𝑑𝑃
𝑝2

𝑝1

 

For device operating at a steady state,  𝑊̇𝑠 = 𝑛̇ ∫ 𝑉𝑑𝑃
𝑝2

𝑝1
 

Now this is something which you can prove it also and if you have taken the earlier class of 

Engineering Thermodynamics you would see this expression and the derivation as well. So 

where this one is nothing but the power input, and n dot is nothing but the molar flow rate of 

the working fluid, which could be gas, which could be steam and so forth. So, we will do some 

examples on that later.  
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But let us take different ways to understand this concept of maximum work and this is 

something which is described by Callen. So, consider a system that is to be taken from a 

specified initial state to a final state, so there are two ways we can work in. You can actually 

interact with the reversible heat store, heat source or you can also interact with the reversible 

work source W R W S and the change in the internal energy is given in this way.  

 

So, what the Maximum Work Theorem says that for all processes leading from the specified 

initial state to the specified final state of the primary system the delivery of work, which is in 

this case is maximum for a reversible process. Furthermore, the delivery of work and of heat 

is identical for any, for every reversible process. Now this is something very interesting. So let 

us try to make use of this concept and let us look at this a bit more in detail.  
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So, by definition Callen says that reversible work sources are defined as systems enclosed by 

adiabatic impermeable walls characterized by relaxation time of the system sufficiently short 

that all processes within them are essentially quasi-static. So, what he says that whatever you 

are doing associated with the devices, the equilibrium is reached so fast that they can be 

considered at each moment you are moving from one point to another, you are basically 

undergoing a quasi-static process.  

 

Similarly, the reversible heat sources can be defined as the following. Systems enclosed by 

rigid impermeable walls characterized by relaxation time sufficiently short that all processes 

within them are essentially quasi-static. So, one deals with the adiabatic impermeable wall, 

there is no heat interaction as well as the work as far as device is concerned, the other talks 

about rigid internal wall that means there is no movements of the boundaries when it comes to 

heat sources. But, both of them should have relaxation time sufficiently short so that they can 

be considered as quasi-static.  
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Now let us look at the mathematical relation of this diagrammatic way of representation of 

interactions of the system in, with the reversible heat source and reversible work source so let 

us look at the First Law. So, you have, by definition you know this. 

𝑑𝑈 = 𝛿𝑄 + 𝛿𝑊 

𝑑𝑈 + 𝛿𝑄𝑅𝐻𝑆 + 𝛿𝑊𝑅𝐻𝑆 = 0 

 Now what we assume that the work is being done by the system and hence this is going to be 

negative. So, you bring it here.  

 

Similarly, you are also interacting in the way that heat is being given out from the system so 

essentially this is the expression of the First Law. Now for totally reversible process  

Δ𝑆𝑡𝑜𝑡𝑎𝑙 = 0 

 Now if you look at delta S what are the changes associated with this system.  

𝑑𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑑𝑆 +
𝛿𝑄𝑅𝐻𝑆

𝑇𝑅𝐻𝑆
 

So, combining the expression  

𝛿𝑊𝑅𝐻𝑆 = 𝑇𝑅𝐻𝑆𝑑𝑆 − 𝑑𝑈 

So, if you combine these expressions, we are going to get this expression. 
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Now further we can expand this and try to come up with the integral form. So, if the reversible 

heat source is the thermal source then the previous expression can be integrated. That means 

there is no changes in the properties of this thermal reservoir over time, within the time of the 

interest of the process. So that means it is so large that heat transfer can be, does not alter the 

temperature of the thermal reservoir and T can be considered as a constant here, T R S, T R H 

S so if you integrate this you are going to get this. This is from the first equation. This is from 

the second equation and this is from the third equation.  
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So, this is from the first equation, this is second equation, this is third equation. So that is the 

integral form of this.  

Δ𝑈𝑠𝑦𝑠𝑡𝑒𝑚 + 𝑄𝑅𝐻𝑆 + 𝑊𝑅𝐻𝑆 = 0 



Δ𝑆𝑡𝑜𝑡𝑎𝑙 = Δ𝑆𝑠𝑦𝑠𝑡𝑒𝑚 +
𝑄𝑅𝐻𝑆

𝑇𝑅𝐻𝑆
 

𝑊𝑅𝐻𝑆 = 𝑇𝑅𝐻𝑆Δ𝑆𝑠𝑦𝑠𝑡𝑒𝑚 − Δ𝑈𝑠𝑦𝑠𝑡𝑒𝑚 
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So now let us look at some examples to make use of our understanding. So, this is the first 

question. This is 1 meter cube tank that initially contains air at 1 bar and 300 Kelvin is to be 

evacuated by pumping out the content. The tank contents are maintained at 300 K throughout 

the operation by heat transfer though the walls. So, it is maintained at 300 Kelvin.  

 

The only thing it loses out is basically the air. The compressor discharges the air at 1 bar and 

is operated isothermally at 300 Kelvin. So, this is 1 bar but this is operating at 300 Kelvin. So, 

what is the total work done by the compressor when you take the whole amount of the gas and 

pumped out from the or discharge it to the air? So, what you have to do is the other thing which 

you have to assume is the compressor operates reversibly and air is an ideal gas.  

 

So this is very gross approximation but this will ease out the problem to solve. So we will just 

simply jump with the fact that this is reversible process and essentially for this, the work 

associated with this reversible process is nothing but integral of V d P.  
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So, let us consider that this is the differential work to move a pump a small amount of air delta 

N from the pressure, tank pressure to discharge pressure which is nothing but 1 bar and this is 

V d P.  

𝛿𝑊𝑆 = 𝛿𝑛 ∫ 𝑉𝑑𝑃
𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑃𝑡𝑎𝑛𝑘

= 𝛿𝑛 ∫
𝑅𝑇

𝑃
𝑑𝑝 = 𝛿𝑛 𝑅𝑇 ln

𝑃𝑑

𝑃𝑡
 

𝛿𝑛 =
𝑉𝑡

𝑅𝑇
𝑑𝑝𝑡 

𝛿𝑊𝑠 = 𝑉𝑡 ln
𝑃𝑑

𝑃𝑡
𝑑𝑃𝑡  

𝑊𝑠 = 𝑉𝑡 [𝑃𝑡 ln
𝑃𝑡

𝑃𝑑
− 𝑃𝑡]

1

0

= 𝑉𝑡 = 105𝐽 

So, this is the reversible work done by the compressor which is nothing but 10 to the power 5 

Joules from the values which is here.  
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So, let us now try to work on example related to entropy change in ideal gas. So, this is the 

question, the 10 moles of an ideal gas with heat capacity at temperature 300 Kelvin and pressure 

point 3 mega Pascal occupy the left of an insulated vessel. The other half is evacuated. So you 

can consider something like this, that you have insulated vessel, and this is separated by a 

partition and now this contains the ideal gas, okay with that 300 Kelvin and .3 mega Pascal. So 

this is your partition. Now at time t equal to 0, 1 kilo Watt electrical heat element is turned on.  

 

So, you can consider that you have a heating element where it is turned on at t equal to 0 to let 

us say 30 seconds which is being set here. The particle dividing the vessel ruptures at, after 30 

seconds and the heating element is turned off. Now we need to find out the basically the final 

temperature and pressure of the gas in the vessel and so forth. So we will assume that this 

partition does not as such volume, it is a 0 volume and hence when it ruptures basically the 

ideal gas occupies the whole volume. So now let us try to solve this problem.  

 

One of the things which we can do is we can first find out First Law of Thermodynamics over 

this system here so: Δ𝑈 = 𝑄 + 𝑊 = 𝑁𝐶𝑉Δ𝑇 = 𝑁𝐶𝑉(𝑇𝑓 − 𝑇0) 

𝑇𝑓 = 𝑇0 +
𝑊

𝑁𝐶𝑉
 

 

W in this case would be your 1 kilo Watt multiplied by 1 kilo Watt is 1000 Joules per second 

multiplied by 30 seconds. So, this is the work, electrical work which is done on the system. 

System is defined by this here so we can consider this to be system. So, what will be the delta 



T here? Delta T is T f final minus T 0, right so I can obtain the T f would be your T 0 plus W 

N C V, and what about N? N is, we know number of moles are 10 moles.  

 

C V we know are 20.8 Joules per mole and W of course we know. T initial is given as 300 

Kelvin. So when we plug in these values, N is 10 moles, C V is 20.8, the value comes out to 

be 444 Kelvin. So that is the final temperature of the gas in the system. So now let us find out 

what is the pressure of the gas in the final state. 
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So to obtain the pressure, that means what is the final pressure, we have, we can consider that 

since the number of machines.  

𝑁 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
𝑃𝑉

𝑅𝑇
 

𝑁𝑓 = 𝑁𝑜 

𝑃𝑓𝑉𝑓

𝑅𝑇𝑓
=

𝑃𝑜𝑉𝑜

𝑅𝑇𝑜
 

𝑃𝑓 =
𝑃𝑜𝑇𝑓

𝑇𝑜

𝑉𝑜

𝑉𝑓
 

So, let us look at again this. 
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So essentially what I am going to consider is that initial volume which is occupied by the gas 

is actually half of the final volume. So essentially my system is not going to this but rather this, 

so what I am going to do is I am going to erase this part, because essentially I am going to 

consider this which expands so actually I am looking at the volume initial which is this half 

part, the first compartment and then the final one is the first and second compartment.  
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So that is the system which basically has a non-rigid boundary and it can expand and if that is 

the case we can consider this to be 1 by 2, and T f we know, T 0 we know, P 0 we know, so if 

you plug in these values which are available from the question it comes out to be 2.2 mega 

Pascal. This is something which you can try and try to solve this problem at home.  

 

Now second part of the question is the entropy change of the gas. We can try to think that why 

can not we use this simply delta S del Q by T? Well we cannot because this process we know, 

this is not a reversible process. So how do you solve and obtain delta S? 
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So, obtain entropy change we will revert back to the thermodynamic equation, the fundamental 

equation so that is going to be:  

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 

𝑑𝑆 =
𝑁𝐶𝑉

𝑇
𝑑𝑇 +

𝑃

𝑇
𝑑𝑉 

𝑑𝑆 =
𝑁𝐶𝑉𝑑𝑇

𝑇
+

𝑁𝑅

𝑉
𝑑𝑉  

∫
𝑑𝑆

𝑁
=

Δ𝑆

𝑁
= 𝐶𝑉 ∫

𝑑𝑇

𝑇
+ 𝑅 ∫

𝑑𝑉

𝑉
 

Δ𝑆

𝑁
= 𝐶𝑉 ln

𝑇𝑓

𝑇𝑜
+ 𝑅𝑙𝑛

𝑉𝑓

𝑉𝑜
 

So, when we plug in this value this comes out to be 13.9 Joules per mole Kelvin.  

So, we can multiply with the number of moles to get the total change in entropy that is going 

to be 10 into 13.9 Joules per Kelvin and this is certainly greater than 0. This is also indicative 

of that the system or the process is irreversible. So that is the part which to solve this particular 

problem. Now one can also come with an expression of delta S with P f and V f also. So that 

is something you can also come up with. I can just write it down for you. 

Δ𝑆

𝑁
= 𝐶𝑃 ln

𝑇𝑓

𝑇𝑜
− 𝑅𝑙𝑛

𝑃𝑓

𝑃𝑜
 

This is another expression you can evaluate for your delta S of ideal gas. So, in that case if you 

have the pressure information you will be using pressure information. The one which you have 

used is the volume information.  

 



Both yield the same expression because it is a state property and hence the final and initial 

states are the same for a given process then this expression delta S whether you use this 

expression or the other one both of them should yield the same value.  
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Okay so now I can move to the other problem. This is the problem which is related to the 

forging. Consider a common problem of forging, of immersing hot steel in water for hardening. 

Consider a process in which 1 k g steel blade at T 800 degree Celsius is immersed in a large 

vessel filled with water at 25 degree Celsius and immediately quenched. So, you have a large 

vessel and the steel blade at very high temperature.  

 

So large vessel is there maybe, so essentially large vessel and then this is filled with water at 

25 degree Celsius and then you have steel blade which could be considered like this and this is 

at 800 degree Celsius and immediately it quenched at T equal to 0 basically you put into this 

water and it will get quenched. So the question is what is the change in the entropy during the 

process for the steel blade and the water and the universe.  

 

Consider that the steel has heat capacity of 460 Joules per K g Kelvin and it is independent of 

temperature. That is one thing which we can consider. Also assume that there is enough water 

in the vessel so that the water temperature does not change upon immersion. So this remains at 

25 degree Celsius. So what we saw in this problem? So one of the things we can do is we can 

ignore the change in volume of the steel. So, this is something which you can consider for 

metals for this temperature range. 
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Let us look at the steel blade and apply this First Law. So for steel blade:  

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉  

𝑑𝑆 =
1

𝑇
𝑑𝑈 =

1

𝑇
𝑁𝐶𝑉𝑑𝑇 

ΔSblade = 𝑁𝐶𝑉 ln
𝑇𝑓

𝑇𝑜
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So essentially if you look at, this is in Joules per k g.  
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So this is different from this, which was in moles, remember that so unit does make a lot of 

difference.  So one has to look at the units of the heat capacity in order to appropriately use this 

N here.  
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So N in this case would be in kg, so this would be like say 1 kg, that is what the given to us 

and C v is 460 and then I put the value of T f. T 0 is 800 degrees Celsius for steel blade and 

eventually at equilibrium this is going to be 25 degree Celsius, okay. So this turns out to be 

minus 589 Joules per Kelvin. Now you might think about why it is negative, because again the 

blade is the subpart of the overall process.  

But even for irreversible process you can have a delta S of subsystem can be negative. That is 

something which is evident from this, even if it is irreversible process. Now let us try to get 

more information. The second part was for the water. 
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What is the delta S for the water?  
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Now this is a rather tricky part. So in order to obtain this we need to have some information 

for the water.  
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But of course in the problem, nothing is given as far as the water is concerned besides only the 

temperature.  
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Then we cannot use also directly simply this delta Q reversible by T, for that we need to find 

out this but the process is irreversible. So, what we should do that is the important question. So 

how do we do that? Now one can think of, because the temperature difference here for the 

water, so this is your water here. 
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So the temperature difference here around this and the water is extremely large. So delta T is 

quite large right. So what you can think is a kind of a thought process where basically we can 

device a thought process in which Q transfer to the water is done reversibly. So eventually we 

know what is the amount of the heat which is transferred from the steel to water because 

essentially, we know that the change in the delta U of the blade and since there is no work 

associated with it. So essentially the delta Q is nothing but delta U.  
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So Q is nothing but minus of delta U blade. So this we know, so and then we can plug in this 

value to get the value of the 356 kilo Joules. So this is the amount of the heat which is 

transferred from the blade to the water. Now this is done of course irreversibly but what you 

can do is now to calculate the entropy change of the water we can come up with the way to 



find out a thought experiment where we can device this amount is transferred in a reversible 

way. So in that case we can write, so this is something which is a thought experiment and this 

case Q transfer to water is done in a reversible manner.  
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So with this we can find out the delta S for the water, that is going to be simply the Q reversible 

by T and that is what we can find it out. So this is one way of doing it. This T is 273 plus 25, 

and then we can find out the delta S of the universe which is delta S of blade plus delta S of 

water. But, yeah so this is one thought experiment based delta S calculation, because we are 

not being given any information.  

Δ𝑆𝑤𝑎𝑡𝑒𝑟 =
𝑄𝑟𝑒𝑣

𝑇
 

Δ𝑆𝑢𝑛𝑖𝑣 = Δ𝑆𝑏𝑙𝑎𝑑𝑒 + Δ𝑆𝑤𝑎𝑡𝑒𝑟 
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Otherwise if you consider this there is no change in the volume and there is no, you know, if 

the other properties are not being affected then one can also find out using the First Law 

Analysis also one can try to do that but I am trying to avoid that part in this problem. But it is 

something you can try different ways to solve such a problem.  
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Okay so this is one way of approaching it. Okay so with this I think we will stop and then in 

the next day class which will be the last lecture of this Engineering Thermodynamic aspects in 

the particular course. I will be covering Power Cycles. So, I will see you in the next class. 

 


