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First law of Thermodynamics for open system 

Welcome back, today’s lecture we have go through the First Law of Open System.  
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Again this is something in a mode of revision so to the, to start with we will look at conservation 

of mass principle for a control volume. The reason why we say control volume because there is 

flow in or flow out in the system, so, for the case of this example, a tank is being filled continuously 

and taken out here with respect to this valves, one can consider this dash line as a control volume. 

So, you have a flow in from this at a given, pressure, temperature, velocity and this E stands for 

its basically specific energy and there is a rate of mass within the control volume which keeps 

changing. And similarly, there is a flow out with these conditions; the exit, pressure, temperature, 

velocity and the effective or the specific energy here.  

Now, if you are applying a mass balance on this control volume within this basically this surface, 

then, essentially, we can write simply total mass entering the control volume during delta t time 

minus total mass leaving the control volume during delta t time. So, essentially total mass entering 



the control volume minus total mass leaving the control volume during delta t time and that must 

be equal to the net change in the mass within the control volume that is nothing but this part. 

So, for a given delta T it will be like this: 𝑚𝑖𝑛 − 𝑚𝑜𝑢𝑡 = Δ𝑚𝐶𝑉 

 But, in general, we can write:  𝑚𝑖𝑛̇ − 𝑚𝑜𝑢𝑡̇ =
𝑑𝑚𝐶𝑉

𝑑𝑡
 

So, this is in the rate form.  
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Now, one can also represent this mass of control volume in a different form. Here is, for example, 

in the case of this as a control volume, contain within this dashed line or curve are which is nothing 

but the control surface, this is your control volume, this is your control surface. One can consider 

the mass of the control volume nothing, but the integral of the density of the food inside multiplied 

by the differential change in the volume and you integrate essentially in some sense what you are 

saying is that you are looking at here, the density multiplied by dV and integrating over this control 

volume.                 

𝑚𝐶𝑉 = ∫ 𝜌𝑑𝑉
𝐶𝑉

 



So that will be the mass of your control volume. The corresponding change of the mass within the 

control volume would be:  

𝑑𝑚𝐶𝑉

𝑑𝑡
=

𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉
𝐶𝑉

 

 

So, we can also write this in a differential mass flow rate, where we are interested in only in del of 

m dot, that will be nothing but the rho.  

𝛿�̇� = 𝜌𝑉𝑛𝑑𝐴 = 𝜌(𝑉𝑐𝑜𝑠 𝜃)𝑑𝐴 = 𝜌(𝑉⃗⃗⃗⃗ . �⃗� )𝑑𝐴  

 

Net mass flow rate,      𝑚𝑛𝑒𝑡̇ = ∫ 𝛿�̇�
𝐶𝑆

= ∫ 𝜌𝑉𝑛𝑑𝐴 = ∫ 𝜌(𝑉⃗⃗⃗⃗ . �⃗� )𝑑𝐴
𝐶𝑆𝐶𝑆

  

So, this is basically the control surface this representation in 2D as we are looking on this, but if it 

is 3D you are taking about all surface, which we do not see in the form of the dash line here, so, 

you just a integral of this d del mdot over the control surface, that is going to be net mass flow rate 

as referring to the what goes out of effective net mass flow rate through the control surface, ok.  

So, this is nothing but only 2 specific streams, one is going out and one is coming in, then this is 

nothing but the difference in the two, ok; But it is just integral of over control surface. So, this now 

can be written as in this form rho Vn, and this can be written in this rho Vn, in the dot product 

form.  
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So, from the point of the conservation energy, what you saying is that, whatever the net flow rate 

which comes out or in, through the control surface that must be equal to the change in the control 

volume mass and that is what it is in the form of this integral. So, that is the conservation mass 

principle.  

𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉 + ∫ 𝜌(𝑉⃗⃗⃗⃗ . �⃗� )𝑑𝐴

𝐶𝑆

= 0
𝐶𝑉

 

One can also write this expression in the form of more expressive where we divide or segregate 

the inlet and outlet through the control surface in the form of here outlets or the number of streams 

which are getting out from the control surface and number of streams which are getting in, through 

the control surface so that is going to be this part and this is remain the same.  

𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉 + ∑𝜌|𝑉𝑛|𝐴

𝑜𝑢𝑡

− ∑𝜌|𝑉𝑛|𝐴

𝑖𝑛

= 0
𝐶𝑉

 

𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉 
𝐶𝑉

= ∑�̇�

𝑖𝑛

− ∑�̇�

𝑜𝑢𝑡

   𝑜𝑟,   
𝑑𝑚𝐶𝑉

𝑑𝑡
= ∑�̇�

𝑖𝑛

− ∑�̇�

𝑜𝑢𝑡
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So, for a steady state that means you have a steady state there is a no change in the system 

properties over the time, in that case the mass of the control volume should remain same at a given 

time, if that is a case then, essentially 
 𝑑𝑚𝐶𝑉

𝑑𝑡
= 0, and this will lead to this expression for the case 

of steady state flow process where the net mass which comes in must be equal to net mass which 

goes out and that is the case for steady flow process. 
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Many engineering devices such as nozzles, diffusers, turbines, compressors and pumps involve 

single streams. So, we can simplify the previous expression, which is meant for multiple inlet and 

exits. So, if it is a single stream it is going to be only m1 m2, ok; for if it is a multiple stream this 

is a illustration for two inlet stream and one outlet stream.  

It is clearly seen: 𝑚1̇ + 𝑚2̇ = 𝑚3̇ . For the case of again steady state process, for the case of single 

stream, it is only 𝑚1̇ = 𝑚2̇   you can represent this in terms of density, volumetric flow and area, 

ok. If it is incompressible then essentially means: 𝜌1𝑉1𝐴1 = 𝜌2𝑉2𝐴2  
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So, in that case we can simply use summation of volumetric flow that must be same for the case 

of air compressor one can show this right. In this case the flow rate must be same, volumetric flow 

rate must be same, for the case of steady state incompressible flow. So, in this case air compressor 

well in this case this is compressible, so, you can apply that but for the case of air steady 

incompressible flow.  

∑�̇�

𝑖𝑛

= ∑�̇�

𝑜𝑢𝑡

 

𝑉1̇ = 𝑉2̇ → 𝑉1𝐴1 = 𝑉2𝐴2 

So, during the steady flow process volume flow rate are not necessarily conserved although mass 

flow rates are. So, this is specific this particular case where you can clearly see volume flow rate 

are same in specific case of incompressible conditions.  
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Let us talk about now energy conservation, so this was all about mass conservation. So, in case of 

energy we need to also account for specific kind of work which is done by the fluid enters the 

control volume or exits the control volume and that expect is often referred as flow work or flow 

energy. So, in the case of simple we can use make use of simple illustration, so, you have this 

control volume and this is the amount of fluid which is getting in at a condition of P and V.  

And so, the idea is that this work, we define a work is the work which is necessary to push this 

particular amount of fluid inside it, ok. So, you can represent this thing in this form that essentially 

you have a piston and there is a force which acts on this in order to push this fluid with a condition 

of V P M.  
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So, this is an imaginary thing, so how do you represent more clear more clearly so you can consider 

this again that you have fluid here, ok, at this condition P and this process is occurring at slowly 

and in that case: 𝐹 = 𝑃𝐴 

𝑊𝑓𝑙𝑜𝑤 = 𝐹𝐿 = 𝑃𝐴𝐿 = 𝑃𝑉  

𝑤𝑓𝑙𝑜𝑤 = 𝑃𝑣  

Now, in order to push we simply use simple F into L that is the length of the distance, this piston 

has to travel in order to push this fluid completely in the control volume and if you make this 

simple expression the simplify this, then this can be shown that W flow is nothing, but PV and this 

is the additional energy which we provide to the control volume. Now, in order to do a complete 

energy balance, we have to consider this flow as a part of this fluid.  
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So, let us now summarize a bit of what we have learnt from the case of closed system and a flow 

system. So, for the case of simple compressible system, we know that energy consists of U, kinetic 

energy and a potential energy. So, this is a system which usually we consider in a closed system 

or in general where there is no flow involved, where the energy is basically nothing, but internal 

energy and its kinetic energy and potential energy, which is the molecular part of it. So, we can 

represent the kinetic energy in terms of velocity of this. 

Now, for the case of control volume energy, we will be using this, but fluids which are entering or 

leaving the control volume contains or possess additional energy and that is the work flow or the 

flow energy, so we have to know account that particular energy also a part of the total energy of 

the following system. So, that is what we are writing here.  

𝑒 = 𝑢 + 𝑘𝑒 + 𝑝𝑒 =
𝑣2

2
+ 𝑔𝑧 

Consider, so, we have now in addition to u + PV, which is nothing but the enthalpy. So, we define 

this as an enthalpy this is the total energy of the flow following fluid u + PV + kinetic energy + 

potential energy. So, you can write simply as h here. So, this precisely the reason actually to use h 

is, because it takes care of flow energy part, so, when if you ignore the kinetic energy and potential 

energy, e is nothing but simply h. 



𝑒 = ℎ + 𝑘𝑒 + 𝑝𝑒 = 𝑢 + 𝑃𝑣 +
𝑣2

2
+ 𝑔𝑧 
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So, this is what I am trying to summarize, so, remember this that we are we are considering here 

is nothing but mole of energy or specific energy depending on the units which you would like to 

use, but most of the time we will be using per mole. Sometimes, we will use per Kg as well. But 

again, this depends on the system which you are interested in.  
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Alright, so now let us little bit take this idea and now apply the understanding of this energy of the 

flow system and concepts here, on the open system to obtain a generic expression for the first law 

for the open system. So, consider this particular system which is bounded by surface, now this 

surface which is I am showing here has certain region which is insulated, and certain which are 

not so there is a possibility or there is a heat transfer possible across that and this Q subscript to 

sigma indicates that this is occurring across this particular surface.  

𝐸2̇ − (𝐸1 + 𝐸𝑖𝑛𝛿𝑛𝑖𝑛) = 𝑄𝜎 + 𝑊𝜎 + 𝑃𝑖𝑛𝑉𝑖𝑛𝛿𝑛𝑖𝑛 

Similarly, it has some piston here so it can also do some work, so the work associated with this 

moving boundary is also represented as W of sigma and then you have this open region where the 

fluids can flow back in and here this amount of fluid at given delta t is nothing but delta nin at Pin 

Vin. And it has energy E in, so, now if you consider at a given moment for within the delta t time, 

that this along with this part as the complete system, then this would be a closed system.  

So, that means sigma here plus this region together will be closed system and then you can apply 

the first law. So, this may be moving, this may be, moving a bit. But at a given time this is the only 

amount which gets inside, so, if you apply the First Law, what you are going to get? So, initially 

you have the energy of this system, this within the fluid plus this part. So, that is your, that is the 

E1 plus the E in. The molar energy or specific energy multiplied by the amount of mass which is 

associated with this.  

So, remember that we are considering the sigma surface plus this as a closed system and applying 

it. So, this is the one way of writing this expression, but of course you can come up with the 

different ways, it is not the only way, to obtain the First Law for Open Systems expression. So, 

this is the amount of energy at the time of T and by the time this completely gets in, this is the 

amount, which we are saying this is E2.  

But now we have to also look into the boundary condition or the boundaries here. So, you have Q 

which is the heat transfer plus ‘W’ which is being applied here and you have to also consider the 

additional work, which this particular region has done and that is given by Pin Vin delta Nin. So, 

this is the kind of heat, piston work around this sigma term plus this part, which is this region, ok. 

So, the work in the moving boundary and this work, due to the flow in, that is given by; this is 



flow work. So, this is the total boundary and this is the energy of this fluid; inlet minus final the 

E2, within this delta theta.  
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So, we can now rearrange this expression and differentiate. 

𝑑𝐸 = 𝛿𝑄𝜎 + 𝛿𝑊𝜎 + (𝐸𝑖𝑛 + 𝑃𝑖𝑛𝑉𝑖𝑛)𝛿𝑛𝑖𝑛 

So, if you generalize this for multiple stream and then integrate it, 

Δ𝐸 = 𝑄𝜎 + 𝑊𝜎 + ∑∫ (𝐸𝑖𝑛 + 𝑃𝑖𝑛𝑉𝑖𝑛)𝛿𝑛𝑖𝑛

𝑖𝑛

− ∑ ∫ (𝐸𝑜𝑢𝑡 + 𝑃𝑜𝑢𝑡𝑉𝑜𝑢𝑡)𝛿𝑛𝑜𝑢𝑡

𝑜𝑢𝑡
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Now, let us try to summarize again, so for a simple system, I can write: 

Δ𝐸 = Δ𝑈 

𝑑𝑈 = 𝛿𝑄 + 𝛿𝑊 + ∑𝐻𝑖𝑛𝛿𝑖𝑛

𝑖𝑛

− ∑𝐻𝑜𝑢𝑡𝛿𝑛𝑖𝑛

𝑜𝑢𝑡

 

 For the case of a non-simple system, we have to include the kinetic energy and potential energy. 

𝑑𝐸 = 𝛿𝑄 + 𝛿𝑊 + ∑[𝐻𝑖𝑛 + 𝑔𝑧𝑖𝑛 +
𝑣𝑖𝑛

2

2
] 𝛿𝑛𝑖𝑛 − ∑[𝐻𝑜𝑢𝑡 + 𝑔𝑧𝑜𝑢𝑡 +

𝑣𝑜𝑢𝑡
2

2
] 𝛿𝑛𝑜𝑢𝑡 

With                                  𝑑𝐸 = 𝑑 [𝑈 + 𝑚𝑔 < 𝑧 > +
𝑚|𝑣|2

2
] 
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So, while we have just summarized and did very quick analysis of the Open System for the mass 

energy expression, so this is an example, it is 4 meter cube storage tank, containing 2 meter cube 

of liquid, so, is about to be pressurized with air, so this is basically the volume, total volume is 4 

meter cube. The current liquid is 2 meter cube, and it is about to be pressurize with an air from our 

large high pressure reservoir, through a valve, at the top of the tank, to permit rapid ejection of the 

liquid. So, you pressurize it and then this is to reject liquid rapidly, the air in this reservoir is 

maintained at 100 bar and 300 kelvin.  
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So, the gas space it was the liquid contains, initially air at so, as air at 1 bar and 280 kelvin, so, 

basically this air, which is there is 1 bar and 280 kelvin. When the pressure in the tank reaches 5 

bars, the liquid transfer valve is opened and the liquid is ejected at the rate of point 2 meter cube 

per minute, while the tank pressure is maintained at 5 bars.  

So, this is something which is very clear that, once, this storage tank is, the valve is opened, it gets 

pressurized until 5 bar and then we open up this valve in order to eject the liquid at the rate of 2.2 

meter cube per minute. So, the question is “What is the air temperature when the pressure reaches 



5 bars? That is the first part of the question and the second is “When the liquid has been drained 

completely what is the air temperature in this condition?  

So, we have to neglect the heat interactions at the gas liquid and the gas boundaries. It is assumed 

that the gas above the liquid is well mixed and that the air is ideal gas with heat capacity of 20.9 

Joules per Mole-Kelvin. So, this is the question, so how do you solve this problem. So, we can 

consider this because, we have been asked to ignore the heat interaction, ok, and there is no 

boundary movement or boundary work associated with the boundary, so hence we know that dQ 

is 0 or Q is 0 and basically dW is equal to zero, in this case.  
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𝑑𝑈 = ∑𝐻𝑖𝑛𝑑𝑁𝑖𝑛 

𝑁𝐶𝑉𝑇 − 𝑁𝑖𝐶𝑉𝑇𝑖 = 𝐶𝑃𝑇𝑖𝑛(𝑁 − 𝑁𝑖) 

𝑁

𝑁𝑖
=

𝐶𝑝𝑇𝑖𝑛 − 𝐶𝑉𝑇𝑖

𝐶𝑃𝑇𝑖𝑛 − 𝐶𝑉𝑇
=

𝑃

𝑃𝑖

𝑇𝑖

𝑇
 



 

In that case, we can simply write dU of the tank, and that will be simply summation whatever 

comes in, because, so this is going to be ok. So, this is going to be heat enthalpy, molar heat 

enthalpy multiplied by the differential of whatever the moles coming in, so it could be actually 

mass or mole, you can consider this mass or mole, but in this case we are simply considering Hin 

and so here it is Hin, because there is only 1 stream, so it is going to be Hin dNin.  

So, this is our basic expression here, so whatever the change in the internal energy of the tank is 

due to the flow in, ok. So, now with this expression we can expand or this is the ideal gas and we 

know when we can (ca) represent U in terms of C V, so when we integrate this, so it could be some 

N Cv Tf minus Ni Cv Ti is nothing but Cp Tin N minus Ni. Now, you may ask this question, “How 

I am writing this?”  

So one other thing which I missed and which is good to tell is that, so you have this liquid, ok and 

then you have this gas here so this is your gas here, so what I am trying to do is, I am taking the 

control volume in this way. So, we are considering the inlet and then this your control volume and 

of course there is no heat interaction, and we are expecting that this particular kind of interface 

remains stable.  

So, there is no exchange of the mass also, from here to here, so there is no exchange of the mass, 

so that does not happen, so; there is no heat interaction and there is no work and this this boundary 



does not move as well. So, with this we can write this expression simply for the gas and hence this 

N Cv Tf minus Ni Cv Ti and this is, this Hin which I can write here as (Tp T) Cp Tin.  

So, what we are assuming is that the temperature of course has been also set temp, what it comes 

here, comes as Tin of the gas. So, what you have is Cp Tin of the particular gas and then number 

of moles which has been transferred, which was been nothing but N minus Ni, whatever the final 

number of moles minus the initial number of moles.  

So, we can now simplify this expression we can write this as N Cp Tin minus Cv T, so, I think 

what we can do is instead of saying Tf because it is our second part, what we can do is, I can 

simply write T here. So, that way it is going to be simple, so this is going to be T and this is going 

to be Ni Cp Tin minus Cv Ti. So, with this I can get Cp Tin minus Cv Ti, Cp Tin minus Cv T, this 

is going to be N by Ni.  

Now, considering this to be ideal gas, you can write, you can make use of ideal gas expression, 

this is going to be Pv by RT and this is going to be RTi by Pv Vi, ok and this I can write as P by 

Pi into T by Ti, because V’s get cancelled, it is same. So, with this, I can rearrange this, expression 

and I can come up with the expression of T as K times Tin, 1 plus Pi by P, k times Tin by Ti minus 

1. So, this is the final expression I can get. 

If you rearrange this now with k as Cp by Cv, Cp is nothing but Cv plus I, so we will put again, 

the values, you are going to get 1.4, so with this your T comes out to be, so and the rest of the 

information we know, Tin is 300 kelvin, Ti is 280 kelvin, initial temperature, Pi is 1 bar, P is 5 bar,  

and ‘k’ you know is 1.4. So, with this if we plug in this information, the ‘T’ comes out to be 382 

kelvin. So, that is how we can solve the first part of this problem. 
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Now, the second part is about, the air when the liquid has been completely drained. So this is little 

bit, little tricky because in this case, you consider this gas and this liquid, so this boundary, even 

if you consider this system, here control the control volume, this boundary is going to move and 

hence, there will be some work which we have to consider. So, let us consider the part b: 

𝑑𝑈 = 𝛿𝑄 + 𝛿𝑊 + ∑𝐻𝑖𝑛𝑑𝑁𝑖𝑛 

   𝑑𝑈 =  −𝑝𝑑𝑉 + ∑𝐻𝑖𝑛𝑑𝑁𝑖𝑛 

𝑑𝐻 = 𝐻𝑖𝑛𝑑𝑁𝑖𝑛 

𝐶𝑝𝑁𝑓𝑇𝑓 − 𝐶𝑝𝑁𝑖𝑇𝑖 = 𝐻𝑖𝑛(𝑁𝑓 − 𝑁𝑖) = 𝐶𝑝𝑇𝑖𝑛(𝑁𝑓 − 𝑁𝑖) 

𝑁𝑓[𝑇𝑓 − 𝑇𝑖𝑛] = 𝑁𝑖[𝑇𝑖 − 𝑇𝑖𝑛] 

𝑁𝑓

𝑁𝑖
=

𝑇𝑖 − 𝑇𝑖𝑛

𝑇𝑓 − 𝑇𝑖𝑛
=

𝑉𝑓

𝑇𝑓

𝑇𝑖

𝑉𝑖
 

  

     



                               

                              

Now, this part of course is 0, because there is no heat interaction, but what about this, because this 

is not any more 0, because this boundary is going to move, as you drain it completely, ok, so this 

has to be Pdv plus summation Hin dNin, ok. So, we are again considering this part here, this 

boundary is going to move, ok. Now, this is your dU, ok, so if you bring it here it becomes dH, ok, 

because pressure is constant, P is constant, it is 5 bar, so this is now with, Hin dNin, ok.  

So, this is now the expression, so now the rest of the thing remains the same, ok, this is again, we 

have to consider molar form, so I am going to write now as quickly expression, this is going to be 

now Cp Nf Tf, now I can write final minus Cp Ni Ti, this is going to be Hin Nf minus Ni, ok, Hin 

can also be written as Cp Tin, Nf-Ni ok. Now, you can re arrange this, or I can combine this terms 

related to Nf that would be Nf times this, is equal to Ni Tf minus Tin, ok, Cp gets cancelled.  

So with this we have, Nf by Ni is Ti minus Tin divided by Tf minus Tin and this Nf can be now 

written as if you make use of ideal gas, then, it is Pvf by RTf, this is going to be RTi by Pvi so this 

is the expression, P is going to be common, so I cancel it, so what remains is this 2 terms and now 

you have to rearrange this part, so this is the last few steps, so this requires a bit of rearrangement.  
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So basically from here you can write it like this, Vi by Vf, Tf by Ti, is equal to Tin minus Tf, Tin 

minus Ti, now if you rearrange this expression, the rest of basically is algebra bit. So, you can now 

come up with an expression as Tf as Tin, Vi by Vf, Tin by Ti minus 1 plus 1, so this is the final 

expression after rearranging. Now, you can plug in all the values, so if you plug in all the values, 

you are going to get, 336 kelvin.  
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So, the message here is that, when the, it comes to the case of the first part, there was no boundary 

movement here, ok. Hence we did not considered any work associated with this because this gas 

liquid was frozen, or was not moving.   
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But in the case 2, when you deplete the liquid this will start moving, and hence you have to consider 

the work associated with this, with a pressure P and the changes in the volume accordingly. So, 



this is why we have considered this and this is nothing but, the basically the differential change in 

the H. So, I hope that you get the complete idea of the making use of the First Law of Open System, 

with this illustration, so we will be continuing some more with some more examples in the next 

class. So, see you next time. 

 

 

 


