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Fugacity of Liquid Mixture – 1

Come back in this lecture, I will start a new topic Fugacity in Liquid Mixtures.
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So, let me just write down first a generic expression of the fugacity and liquid phase is

written as gamma i  times x i times fi 0 ok. And fi 0 is a function of T P and some

concentration or mole fraction. So, gamma i is nothing, but activity coefficient whereas,

this fi 0 is the fugacity of i at a standard state ok.

Now, it is important to understand that gamma i and fi 0 are interlinked. So, as we know

that gamma is equal to 1 when solution is ideal now; however, gamma equal to 1 can

have different interpretation; that means, the ideality depends on the reference state. And

thus its it is it is important to understand that whether this reference is with respect to

dilute conditions or in general it is in Raoult’s law sense; so, something which I am going

to elaborate now.
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So, that is this can be ideal in the Raoult’s law sense or Henry’s law sense. So, what I am

going to do is I am going to define formally the ideal solution.
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So, at a constant temperature and pressure the fugacity of every component in an ideal

solution; in an ideal liquid solution is proportional to the mole fraction; that is what the

definition of ideal solution is. So, in other word what we are saying is that f i L is equals

to some proportionality constant R i multiplied by x i which holds for x i from 0 to 1 ok.



So, note that R i is just a function of temperature and pressure independent and it should

be independent of x i ok. And if gamma i equal to 1 which essentially means R i is

nothing, but fi 0 that is what we have written here ok.

Now, for the case of now large range it is; that means, when typically the x i is large then

it turns out to be Raoult’s law kind of sense, but when x i; that means, the concentration

of the solute is extremely small, still you can define ideal solution so; that means, if xi is

close to 0; if it is still possible to have an ideal solution.

Now, such solution is with reference to the Henry’s law. So, this leads to the Henry’s law

ok. So, I will come back to this in a bit.
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But let me now consider the case for 0 x 1 in that case I can write f i L as a function of T

P x i as simply x i f L pure i T P ok. So, that would be the case for the Raoult’s law point

of view.

Now, what I am going to do is; I am going to connect this to for the case. So, I will I will

try  to use the expression of Gibbs Helmholtz  equations  and from there  I  will  try  to

connect the logarithm form of velocity to enthalpy and molar volumes. So, what we have

from the Gibbs Helmholtz equations is the following; this is something which we have

we have looked into for the pure fluid ok. So, I am just reproducing this; so, for the case



of the mixtures this is going to be V i bar and this is something which we can now make

use of it for the case of what we are looking at ok.

So, I am going to apply this Gibbs Helmholtz equations; since mu we have defined in

terms of the fugacities, mu i minus mu i 0 is equal to your R T l n fi by fi 0. So, if you

use this those expression directly and so, you can replace d mu or mu in terms of that and

then the derivative would turn out to be with respect to the fugacity ok.

So, using standard relation of mu and f; I can now write I can plug in here and I can

show that without going to derivation I can show that del ln fi by del T P x is nothing, but

minus of H i say 0 by R T square; now this is something which you can show yourself

ok.

Now, for the remember the for the pure fluid we have del ln f pure; i del T P is equal to

minus of small h i; H i 0 by R T square here. For the case make sure you have partial

molar enthalpy, in case of the pure you have simply molar enthalpy and this is with

reference to reference,

So, when you are going to use this mu i there is a reference mu i and that will give us this

information ok. So, you can derive this without you know ah; so, you can derive it at

home I am not going to go into the details of it. I can also avoid this for the case of this

where the partial derivative is raised with respect to the pressure; for the case of the pure

fluid this would be simply V i by R T ok.

Now, this is the partial molar enthalpy of i, this is your partial molar enthalpy of the

reference state which is basically the ideal gas let us say at T.
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So, H i bar is nothing, but partial enthalpy of i; similarly V i bar is partial volume here of

i and small h i is molar enthalpy of pure fluid and h i 0 or V i 0 is basically molar

enthalpy of an ideal gas or the reference state at T ideal gas at T ok.

So, this is something which I have written without going through the rigorous derivation,

but I believe that you can you can do that; knowing their relation of mu and fugacity you

can plug in all these and come up with the derivation. So, the question is why we are

doing this? Let us come to that. And now I am going to do is I am going to consider for

the idea solution; what would be the del log of i as a function of with respect to or the

derivative of log of f L with respect to T at a constant P x.

So, what is this for the case of ideal liquid solution? So, I am going to consider this and

here since this is your ideal solution, I can replace f L; i L as f pure multiplied by x i ok.

And since  this  is  had derivation  is  or  sorry this  differentiation  is  with respect  to  T;

keeping P and x is equal to constant. So, essentially I can write this as d ln f L pure and

del T at P alright.

So, now this if you look at it del f by del T is nothing, but H i bar minus H i small H i 0

divide by R T square. So, this essentially means this should be minus of H i minus hi 0

by R T square. And on other hand this is a pure fluid this should be H i minus hi 0 by R T

square; now this must be seen, this implies that H i bar is equal to H i for the case of



ideal solution ok. Similarly you can show that for the case of ideal solution V i is equal

to V i.

So, earlier we have done this exercise for ideal gas mixtures now we are looking at liquid

solution remember that.
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And liquid solution; you have the this kind of property for the case of ideal conditions

ok. So, what does that mean? It by obtaining this, you can conclude that for an ideal

solution and a liquid solution mixing takes place a thermally because that H i bar is equal

to H i which essentially means delta H mix should be 0 ok.

Similarly, upon mixing for an ideal liquid solution; you should not have or you should

not change its volume; that means, the mixing takes place without change in volume

which means  delta  V mix is  equal  to  0.  So,  this  is  the  statement  directly  from this

expression.
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Now, other statement which I am going to make is that the real fluid; of course do not

exhibit ideal mixture ok. So, though real fluids do not mix form ideal mixture, but if the

similar fluids of similar kind, similar molecule nature they are mixed they behave more

like ideal liquid solution ok.

So, but similar liquids exhibit close to ideal behaviour; now other important thing is that

all solution of chemically stable non electrolyte; this is important behaves behave ideally

in the limit of infinite dilution, which essentially means that if the solution is extremely

dilute then they will start behaving like a ideal solution ok.

So, how do you represent deviation from the ideality if the solution real fluid does not

behave like a ideal solution; then there is a division from the ideal solution behaviour.

So, we make use of excess function; I am could I am going to define that.
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So, the correction term is given in terms of excess function that is for any extensive

property; let us say E I am going to define x excess function as E T P N with respect to E

I S T P N. In a similar way where we define for the gas mixtures; so, for the solution also

I am going to define it.

Now, as we have already discussed earlier therefore, any extensive any excess function

you can make use of the standard relation of the enthalpy or in general thermodynamic

functions. And the thermodynamic function in terms of excess function will hold such as

for example, this ok; so, this holds ok.

Now, usual relation of the derivative also holds for example, this now one of the most

important thing in this excess function is basically G excess Gibbs free energy.
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Now, this if it is greater than 0; it shows that it is a positive deviation from ideality frizzle

less than 0; it shows that negative deviations from ideality ok. So, both ways when you

say negative deviation for identity which means basically G excess must be less than 0

ok.

Partial molar excess free energy excess partial molar excess quantity; so, it is E i x and

this is nothing, but del E i x divided by del N i; T P all other i constant ok; all other let us

say j constant such that j is not equal to i. We know from earlier expression or that earlier

lectures  that  E  is  nothing,  but  summation  of  N i;  E  i  bar.  Similarly  E  x  would  be

summation N i E I excess 

So, this  is  something which we have done this  exercise.  So,  the most useful for our

analysis of a liquid mixtures and its property is nothing, but G i partial molar excess

Gibbs free energy. So, G i bar excess because this gets reduced to gamma it is connected

to  gamma  which  is  activity  coefficient.  So,  let  me  now  talk  about  this  activity

coefficients and try to connect with this G i excess.
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Let me formally define activity and activity coefficient ok. So, activity is defined as ai

which is a basically nothing, but the ratio of fi T P x i with respect to fi 0; T P some

reference state pressure xi 0. So, this  is  basically  nothing, but arbitrary, but must be

specified and ai is nothing, but u x i gamma i ok. So, in other word gamma i is nothing,

but ai divided by x i ok. So, this is something which we already know ok.

So, I am defining this here; now let us see how we can connect this gamma i or H to the

G i excess ok. So, let me start with G i excess definition which is nothing, but G i bar

minus G i with respect to ideal solution ok. So, what is G i? So, G i you can relate this G

i to mu i and since mu i is related to R T ln fi, you can show that this is nothing, but R T

ln fi ok; minus R T ln fi I S; the reference part which comes here, the second part get

cancelled because you are using the same reference here. So, R T ln fi I S remain same

which essentially means G i x excess bar is nothing, but R T fi; fi I S ok.

Now, you can relate this to because you know the fi s I S for solution final liquid is

nothing, but R T fi x i; fi 0 ok. So, this is for ideal solution; now using the definition of fi

is x i fi 0 gamma i that is the definition of f i with respect to gamma i. So, I should be

able to now plug this in here and I can write here G i excess as R T ln gamma i ok.
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Now, the next thing which we would like to do is to make use of the fact that G i excess

is summation N i; G i excess this. If we divide by N; i get N here and this is nothing, but

small g excess molar x excess Gibbs free energy per particle and this since nothing, but if

you if you use G i excess at this then becomes R T summation x i ln gamma i. So, we got

an expression of g excess as R T summation x i and ln gamma i alright ok.

So, now what is the next thing which we can do? So, we got an expression of molar

Gibbs free Gibbs excess free energy with respect to the activity coefficient. Now let us

consider  consider  T P derivative  of  gamma  i  ok.  So,  consider  the  ideal  you  know

consider reference state; for ideal solution from the sense of Raoult’s law ok. So, this is

in the sense of ok; so, I can write gamma i s; f i L x i f I l pure i ok.

So, when you consider this we use this f i 0 is nothing, but f i L pure i. So, essentially

means I can write ln gamma i as ln f i L T P x minus ln x i minus ln f L pure T P ok.
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Now, we know the expressions of the derivative of fugacity. So, for example, if just rho

T then this should P and this is nothing, but minus H i bar minus H i 0 by R T square ok.

So, what we can do is we can use this expression; so, you have now expression of ln

gamma i ln fi.

So,  you can  take the  derivative  of  log of  gamma i  with respect  to  temperature  at  a

constant pressure and this is the right hand side. So, you can also make use of that and

now from here given this expression of Gibbs Helmholtz expressions, you can you can

directly connect this the logarithm to the partial molar properties such as enthalpy ok.

So, I will try to show this; so, let us say this is what we want the derivative of log gamma

with respect to temperature at put pressure and x. So, this is going to be you can show I

am not going to get into details of that. So, you have to take the derivative of this which

essentially is as such as 0; this is going to be 0 you have to take the derivative of this also

which is nothing, but small hi bar minus H i 0 and says and since is this is at constant

temperature.

So, since it is given temperature the H i 0 will cancel out. So, what remains is nothing,

but the following only H i will remain ok. So, this will be minus h i add E by R T; so,

excess h i.



Similarly, you can show that gamma i by del P by at a constant T i x is nothing, but V i

bar T P x minus small v i T P for the pure fluid; R T square here it will be R T here and

this will be nothing, but V i excess by R T ok. So, this is by considering the law Raoult’s

law sense ok.
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Now, for the case of dilute ideal dilute reference rate; if you consider and apply the same

expression what we have got here. Then if you apply the same relation which you have

got here, for the case of the system where one particular solute is has a has a critical

temperature much lower than the temperature of the system. Then we have a serious

problem because typical  mixtures  will  not  occur  in  the liquid  state  at  that  particular

temperature.

So, in that case we have to worry about whether we should use the Raoult’s law sense of

reference state. So, in such case ideal dilute reference state can be considered. So, this is

useful is useful whenever liquid mixture do not exist; over the entire composition range

ok.

So, for a given temperature one of the fluid will may remain as a liquid in the pure state,

but other one may not it may remain in a supercritical state. So, by considering Raoult’s

law sense which essentially is valid when the system remains in a liquid phase from 0 to

1 composition; then in that case you have to come up with a kind of fictitious reference



state if you want to use a Raoult’s law for as a as a different state from the Raoult’s law

sense.

So, we need to keep we need to change a different reference state that is what the ideal

dilute reference state comes into the picture. So, as I was saying that if you consider a

liquid  mixture  containing  gaseous  solute  ok.  So,  in  such  case  let  us  say  this  is  the

scenario that critical  temperature of the solute which is 2 is much less than T of the

system, this implies that a liquid phase cannot exist as composition of two approaches

towards 1 ok.

Now, if you want to use the Raoult’s law based reference system and then the relation

which we have developed here for the gamma ok; in order to achieve this we come we

must  have  come  up  with  a  hypothetical  standard  state  for  state  2  at  that  particular

temperature ok. So, therefore, relation based on the sense of Raoult’s law can be used

only after introducing a hypothetical reference state or standard state standard state for

solute 2 ok.

So, this is why in such a scenario it is more convenient to consider ideal dilute reference

state, which avoids this kind of difficulty and that is where the Henry’s law comes into

the picture ok; so, let me write that.
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So, consider; in this such case we consider x 2 is very small and in that case we the

Henry’s laws  states  that  f  2  at  T P X this  approaches  towards  0,  this  fugacity  of  2

approaches towards x 2, H 2 1; T P where H 2 1 is Henry’s constant of solute 2 in solvent

1 ok.

So, going back to the original definition of the fugacity which we came up here if you

look at this expression ok; so, what would be R 2 in this case R 2 would be f 2 L divided

by x 2, where x 2 approaches towards 0. So, therefore, R 2 is equal to limit f 2 L divided

by x 2 at x 2 approaches towards 0 ok. And this is nothing, but H 2 1 T P. So, this is a

Henry’s constant of solute 2 in solvent 1 ok.

In contrast what would be R 1? The R 1 is basically that same R, but for the solvent. So,

a solvent will be considering limit f 1 L limit divided by x 1, where x 1 goes to 0 and this

will be in the sense of Raoult’s law ok. So, this is what is very clear that when you have a

system like that, where you may have to consider two different different state; one for

different for solvent one for solute. So, I will come back to this in a next lecture and

elaborate more on this and particularly other concepts such as normalization ok. 

So, I will see you in the next lecture.


