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Lecture – 18
Thermodynamics of Phase Equilibrium

In this  lecture,  we are going to start  a new topic basically  thermodynamics or phase

equilibria that itself is a topic. So, we will start summarize what we have gone through

last few lectures.
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We have discussed that for an open system that the differential form of U can be written

as T ds minus P dv plus summation of mu i d N i. So, this is for an equilibrium system

ok.

And we also know from the Euler’s theorem that U is equal to T S minus P V plus

summation mu i d mu i; this should be N i ok. So, what we have done is basically we

have integrated this and using the extensive property, we got this expression similar to U;

you can show that H is also T S plus summation mu i N i; A is also minus P V plus

summation mu i an i and G is summation mu i n i. So, that is what we know that ok.

Now, making use of this and as well as the differential equation; what you can do our

differential  expression of the potentials,  what we can do is we can come up with an

expression calls Gibbs Duhem equation; equation or relation.
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So, what it does? It gives you a constraint between intensive variables ok. So, it tells you

that considering that this is a constraint and you can obtain from either of this either of

the potential function ok.

So, it tells you that there n plus 2 for any change in state you need n plus 2 variable

intensive variable, but only n plus 1 can vary independently ok. Now what we are going

to do is; we are going to apply this to the equilibrium conditions. Let us just consider that

you have a phase many phases can be considered at equilibrium ok.
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So, you can have phase I phase II phase III and so, forth and phase pi ok. So, there could

be this many because there is no condition of that maximum number is limited to 2 or 3

as far as the equilibrium phases are concerned, you can consider let us say arbitrary pi

phases which are at equilibrium.

But considering the thermal mechanical and chemical equilibrium that for each phases; if

I consider that say T i is the temperature of the phase i; P i for a pressure of the phase i

and mu i , then at equilibrium what are the conditions? There is no net heat flow ok;

there is no net movement of the boundary and there is no net mass exchange.

So, no net heat flow would tend to give us this condition that T 1 is equal to T 2 and this

is same as T of pi no net boundary movement would give us P 1 P pi known that mass

transfer would give us V 1 o; instead of this we need to also define because there i; if

they are let us say n component right.

Then you have to define mu i in phase I that should be same as mu 2 in phase II; mu i in

phase II and that should be same as mu i in phase, but ok. So, this is the condition we

have; now if you want to find out the number of variables, which you can independently

vary that is what we call the degree of freedom, then we can make use of this equation.

So, how many conditions of the constraints we have been put here for the equilibrium? If

they are pi phases, then they are pi minus 1 equation T 1 independent equation T 1 equal

to our constraints T 1 is equal to T 2 T 2 is equal to T 3 and so, forth right and they are

enters to here number of variables ok.

So, what I can write is for each phase you have n plus 1 independent variable so; that

means, the total number of variable is why the n plus 1? Because you have the 1; which

is  constrained by the Gibbs Duhem equation,  so,  for  each  phase  you have n plus  1

variable. So, total number of variables are pi multiplied by n plus 1 ok, but these are total

number of variables and how many constraints we have?

Constrains that would be; so, if you look at it these equations are pi minus 1 and this

number of variables are because. So, this is two temperature pressure is 2 and this i is n

ok; that means, n plus 2 multiplied by this constant, this is pi minus 1 for each variable

we have pi minus 1 constraint so; that means, total constraints are these. So, degree of

freedom is total number of variables minus the number of constraint.
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So, this gives you n plus 2 minus pi and n is number of components, someone can also

write let us say c plus 2 minus pi or c plus 2 minus P; these are same thing right because

this is number of component ok. So, this is what do you call it Gibbs phase rule alright

since we have defined this particular expression ok; this is something which was defined

using Euler  theorem for thermo dynamic function,  which was basically  all  these are

extensive  functions.  We can generalize  this  by  considering  arbitrary  E as  a  function

which is extensive function.
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So, I am trying to now relate this and define something called E which stands for any

extensive  property ok.  So,  what  I  am trying to  do is  basically  connect  the chemical

potential to partial derivatives of this extensive properties ok. And from there, we would

like to get some idea how to get this chemical potential and then we will realize that this

is more ambiguous or as difficult to do that. And then we will try to introduce something

called fugacity ok.

So, let us consider E V stand for any extensive propertyhe could be anything you; could

be E energy U H V etcetera; it could be U H V etcetera. Now I am going to define partial

molar value of E let us say for i th substance or ith component in the mixture ok. So, this

is  the  definition  is  basically  partial  derivative  of  E with  respect  to  N i  ok;  keeping

temperature pressure and all other components amount of components fixed; that means,

N i is not equal to N j ok.

So, example could be U i which is del U by del N i; T P and for all possible js such as j is

not equal to A. Similarly you can also come up with V i ok; so, this is something which

you have you already aware of it right. So, what I am trying to do with this definition.
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Is to write expression E which is a function of T P N 1 till N n and come up with a

differential form a general differential form ok.



I will show that that you can also obtain a generic expression what we have got into

differential form for other known thermodynamic functions; for any extensive property.

Now remember that for total or the molar value or molar properties typically, let us say

for small e; we defined as a molar property which is like E divided by total number of

moles or E divided by N T ok.

So, I we are going to use small variables to define molar properties ok, where is the

partial molar properties are the big symbols with a bar on top of it ok. So, let me just

write this a this E which is basically a function of T P. So, let us assume that this is a

function of T P and all this moles of different component. So, d E is of course, as we are

going to take it as partial derivatives ok.

So, this may be basically all of this right dT plus del E by rho P; T N i plus summation

del E by T P and N j such that such that N j such that j is not equal to i ok. Now if you

compare  this  expression  to  the  expression  of  let  us  say  Gibbs  free  energy  in  the

differential  form ok. So, let  us compare this  to  d G value minus SdT plus vdp plus

summation mu i d N i ok.

So,  it  is  more  or  less  it  basically  if  you replace  A by G;  you get  exactly  the  same

expression with the partial derivatives of a del E by del i and i is nothing, but mu i ok.

So, now given this you can integrate this and we can obtain a generic expression using

the i th (Refer Time: 12:14) as nothing, but E partial molar property of E with respect

and multiplied by an N i.

So, this is a very straightforward exercise; this you can do that exactly the same as you

have done for getting G is equal to summation mu i N i because here this is nothing, but

E i bar ok. So, when you integrate this you get exactly this as the same way as we have

done  for  other  cases  ok.  So,  this  particular  exercise  can  be  done  for  any  extensive

variable for, but T i in this case the reason why you are getting this because of the fact

that what is the component of the extensive variable.

Because  here  e  is  T P N 1 to  N and so,  here  the  homogeneous  function  of  only  n

variables. So, you can do this exercise is something which you must have done in your

earlier courses also as I said this is true for any extensive property. So, if you replace E

by U this would be your U is equal to summation U i bar N i.



If you replace E by H this is going to be similarly E will be replace by partial molar

enthalpy ok. So, in other word I can actually use this information to get U as summation

U i.
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N i V S summation V i N i A is summation A i N i. So, we can write now any extensive

property as a summation of partial molar property multiplied by the number of moles of

that particular component where i or summation is over the number of components it is

ok.

Now, since G is summation mu i N i which means basically if you compare this two

expression means mu i is G i bar ok. So, chemical potential is nothing, but partial molar

Gibbs free energy or space is i ok. So, let me just describe one more thing.
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So, there is a relation between this molar quantities you know H is equal to U plus P V.

If you want to write those in the partial molar quantities in the form of that you can

simply write H i  bar is U i  bar plus P V bar similarly you can write mu i  which is

basically  G i  bar is nothing, but H i bar minus T S i  bar ok. Because G is equal to

nothing, but H minus T yes; so, you can write in the same form I can try to exploit this

and this is something which I am going to get this expression in of partial derivative of

mu in terms of the; so, variables which are experimentally accessible ok.
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So, let me just come up with the two important relation ok. So, let us let me start with d

G is equal to minus S dT plus V dP plus summation mu i dNi I can make use of a

Maxwell’s relation ok. Now I am come up with this expression that del mu i by del P at

constant T N i.  And all other j this should be equal to del V by del N i temperature

pressure and keeping N j constant ok.

So, this is if you look at this expression you can directly get this expression from this

Maxwell relations ok; what you are doing is you are you are taking the derivative of this

with respect to P keeping temperature constant. And all other constant this should be

same as what the if you are keeping N j constants the what remains is basically mu i dNi

and that does you should be getting del mu by del P that should be equal to del V by del i

Ni.

So, remember this conjugate variable which may try to make use of it now given this

expression this is nothing, but V i bar ok. Similarly using the same fundamental equation

we can also write ok. So, again using the Maxwell relation; here we are getting this that

minus of partial molar entropy of component i is nothing, but the partial derivative of the

chemical  potential  with  respect  to  the  temperature  ok.  And partial  molar  volume of

component i is nothing, but partial differentiation of chemical potential with respect to

pressure ok.
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Now, for a pure system of course, you can write this as for pure del mu by del P at T; this

is molar volume and del mu by del T at P is minus molar entropy and we are going to use

this  to  expression  in  the  later  case.  Now let  me and  this  part  of  this  discussion  by

considering the fact that I can also connect the partial  derivative of mu to something

which is more measurable ok. So, not just in trophy and how I am going to do that by

considering that mu i is nothing, but G i bar is equal to H i minus T S i bar ok.

And now S i bar is this expression this; so, I can write this as H i bar minus T del mu i by

del t at P and N constant ok. So, if you rearrange this expression I should be able to

derive this in this form minus H i bar by t square ok. For a pure system, this is equivalent

to saying that this is nothing, but minus molar property for a pure system right.

Now, in this case whatever what we have done is we have connected the changes in the

chemical  potential  with  respect  to  temperature  to  something  which  we  can  measure

enthalpy. Truly speaking this  only enthalpy change which we can measure; now this

brings to a question about chemical potential ok. 

So, stop here and the next  part  we will  continue with the chemical  potential  and its

relation with the fugacity.


