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Welcome to this lecture number 9 on this N P T E L course in fluid mechanics for 

chemical engineering undergraduate students. In the last lecture we started discussing a 

new topic and the topic relates to description of motion in fluids. 
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So, this topic is called fluid kinematics or flow kinematics, as I told you in the last 

lecture in any branch mechanics there are two aspects to it, one is dynamics and the other 

is kinematics. Kinematics refers to description of motion without reference to forces that 

cause the motion, these two forces and dynamics is the next branch which will come to 

little later. Where we worry about the forces and the motion, that are caused by applied 

forces that are caused by forces. So, the first job in any mechanical subject is to 

understand how to describe flow (( )). So, in this topic we are going to discuss 

kinematics and we are going to just describe flows how to describe motion in fluids. 



So, in this context we introduced the notion of what is called a fluid particle? It is use full 

in the continuum hypothesis to identify what are called fluid particles, these are not real 

particles as in an as in case of molecule of a fluid, but they are high idealized 

hypothetical objects which are useful in describing flows. What are these fluid particles? 

Well imagine you have fluid the container of a fluid and a time t equal to zero there is no 

motion in this fluid the fluid is static. And let us say you can mark various points in the 

fluid using various color dye. So, I am just let me draw it slightly bigger so, that it is 

clearer. 

So, you can mark various points in the fluid using various colored dye and this is a time t 

equal to 0 so, in principle you can do this for a continuously for all points in a fluid, 

because of fluid is a continuous medium within the continuum hypothesis. But for the 

sake of illustration, I am showing few points. So, what this points will do upon this is a 

time t equal to 0, I am using closed circles and at the later time upon application of force 

this some kind of force we need not worry at this point what causes the motion the some 

kind of force it causes a motion. At a later time t, all these points would move to some 

other positions in general. So, I am using open circles to denote these locations of these 

points at a later time. 

So, this point for example, can move here this point could have moved here, this point 

could have moved here, this point could have moved here, and this point could have 

moved here.  So, that we are assuming that the dye molecules are not diffusing or the 

diffusivity of the dye molecules are so small, that for our time scales of inter estimate 

material that the dye is diffusing. So, the dye faithfully represents a point in a fluid to the 

extent that you can resolve a point by the help of a dye molecule with the help of the dye 

molecule dye drop. And, this dye drop which you are using to identify a point will in 

general evolve in time up on application of forces, because of the fluid is moving. 

So, this is roughly realization of this mathematical or abstract idea of fluid particle so, in 

principle you can identify. At time t equal to 0, the position of various particles so, with 

respect to our co ordinate system, as usual; whenever you analyze any problem in flow 

fluids, you have to put a coordinate system with respect to co ordinate system. 
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You can label various points at time t equal to 0. How do you label the points instead of 

using a dye molecule as I argued in this thought experiment, we can label each point by 

their initial locations, the idea is you are identifying each particle fluid particle on the 

basis of the initial locations with the respect to your co ordinate system. And, at a later 

time, what will happen is that, these initial locations the points that are identified by the 

initial locations will in general evolve to a current location. So, schematically, I will take 

one point and then at later time this will be like this. So, the trajectory of this particle at 

time t equal to 0 is here and then a time t is here. 

So, this particle may move like this and at a later time all this so, this is the position at 

time t equal to 0 is denoted as x p 0 and this is the position of a fluid particle at time t. 

So, the position at time t will of course, of a particle will be a function of where it was 

time t equal to 0. This is called and of course, times because this is you have to follow 

this particle and at any time the location that this fluid particle occupies at time t will be 

a function of time itself as well as, where it was at time t equal to 0. This is called a 

particle path or a particle trajectory. 
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Now, what is the use of having such information? Suppose, you have to experimentally 

measure such information and you can do it for not just one point as I have shown here, 

but you can do it for many points. So, another point will generally in general move like 

this so it can so this point is at a slightly different initial position and the later time of 

course, it will occupy different position. But in general the idea is you can label all points 

based on the initial positions. You can follow the motion and represent it mathematically 

in this form. Usually, this function and form is written as x p at time t, is a function of x 

p 0 and time so, instead of writing a function like this you use the variable itself as a 

function so, this is a concise notation. 

So, once I have this information and I can find what is the velocity of a particle, which 

was at time t equal to 0 at x p 0 at a later time t this is the velocity of a fluid particle, 

which was at time t equal to 0 at x p 0. Velocity from the fundamental definition in 

mechanics is that rate of change of position. So, we will have to simply take the position 

that the particle trajectory, which is given by this functional form, takes the particle 

trajectory and differentiate to time. By keeping the initial the particle label concept what 

you are keeping instant, that you are following the same particle and then you are 

measuring its trajectory as well as you can find quantities like velocity. 



So, what is being kept constant in this time differentiation is very important, what is 

being kept constant is that the initial position of this particle or the particle label is kept 

constant in other words. 
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We are following the same fluid particles, that is the meaning of keeping x p naught 

constant. This description is called fluid motion is called the Lagrangian or some time it 

is called as material description. So, what this description means is that you are 

following properties of a fluid by following the position of each and every particle as 

fluid is moving. So, the independent variables in the Lagrangian description are the 

initial position of the particles and time t. So, initial positions these are the particle 

labeled remember that the particle labeled mathematically, but with the help of the initial 

position and this is time. 

So, for example, I need not just worry about purely kinematic quantities like velocity or 

position, but I can also say things like temperature as the function in the Lagrangian 

description. The temperature of in a fluid flow will be depicted as the function of 

position in the initial position of fluid particle and time t so, what it means, physically is 

that suppose the particle is here at t equal to 0. And it is moving later on to time t, to 

some other location what this Lagrangian description of temperature means is that you 

are attaching a thermometer to the particle. 



And you are moving along with the particle and you are recording the temperature in the 

thermometer as you follow the particle so, that is the meaning of keeping x p naught 

constant, you are attaching yourself, tagging yourself along with the fluid particle for 

example, we are interested in measuring temperature. So, we put a thermometer in our 

minds along with the fluid particle and measure the temperature of the fluid particle as 

you go along with the fluid particle. So, this is the Lagrangian description or Lagrangian 

temperature field. 
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So, what is the advantage of Lagrangian description? We have the motion, the current 

position of particle as a function of it is initial position and time once, I have this is 

called the particle path or particle trajectory or simply the motion of the particle. Now, I 

can calculate the velocity of the particle at the later time by taking the partial derivative 

of the particle trajectory by keeping x p naught constant. Because x p is the function of x 

p naught and time so, various points in the fluid will move differently to various other 

locations. So, if I want the velocity of this particle I have to simply follow this particle at 

time t and then take its time derivative at time t. So, t is this is the rate of change of 

particle is kept constant the rate of change of position with respect to time at a time t. 

Now, this is the velocity of a fluid particle. 
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Now, acceleration in mechanics or kinematics is simply the rate of change of velocity 

that of a particle so, that is also very simple. Simply take the rate of change of velocity of 

particle, by keeping the particle identity to be the same, that is you are following the 

same particle and you are finding the rate of change of its velocity that will be the 

acceleration. Now, while this is a very similar to what is being what is normally done in 

Newtonian particle mechanics of point particles and objects, this is not really suited 

ideally for fluid flow problems, because in a fluid for example, if you are interested in 

flow in a pipe. 

So, this pipe will be in general connected to some reservoir, it is figuratively shown like 

this so, if you are interested in pressure drop across the pipe that is required to pump a 

specific flow rate. Then you are not truly varied about various fluid particles, the identity 

of fluid particles that are entering and leaving. Because all you are interested in is what is 

the force that is being experienced by this pipe what is the drag force and consequently 

what is the pressure drop? So, the Lagrangian description where in we follow the same 

particle as a function of time is really not very useful especially, when you are 

considering fluid flow problems. 
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So, instead of Lagrangian description what is normally followed? So, the Lagrangian 

description so, let me just write this not suited for fluid flow problems. So, what is 

normally done in fluid mechanics is what is called the EULERIAN description or 

SPATIAL description of motion so, what this we mean is the following. 
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In the Eulerian description we again put the coordinate system x, y, z with respect to 

which we measure coordinate laboratory coordinates system let us say the coordinate 

system is fixed in the lab. Now, here quantities such as temperature are measure as a 



function of the three fixed coordinate x y z and time so, what we do here is that you take 

a thermometer and then keep the thermometer at like given point, then move the 

thermometer to various points and then keep measuring the temperature. So, if you want 

the temperature at a given time so, you have to if the temperature is changing as the 

function of both x y z as well as time, then what you have to do is you have to put many 

thermometers at various locations. 

And each thermometer it wills each thermometer will locater will read will indicate the 

temperature at that location as the function of time. So, the in the Eulerian description the 

independent variables are the spatial position of a point x y z and time. So, what is the 

fundamental difference between Lagrangian and Eulerian descriptions in a fluid flow 

problem, in a fluid flow context? Suppose, fluid is flowing and in the Lagrangian 

description you will follow this material point or fluid particle and then you will measure 

its temperature as a function of time. 
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Suppose, you are just worrying about a small time interval t and little later to t plus delta 

t. In the Lagrangian description if you put a thermometer, this thermometer will measure 

the temperature of a fluid particle which was here at t time t and which was here at a time 

t plus delta t. So, you are keeping x p naught constant and you are measuring temperature 

as a function of time so, this is the Lagrangian. In the Eulerian description in contrast 

suppose, you have well let us fix the location suppose you fix the location so, this is the 



fixed location in space at time t. Let us say this location is occupied by a particle colored 

with blue that is this particle was residing at this point at time t, but at a later time what is 

going to happen? So, this let me just write that this is Eulerian. 

At a later time what is going to happen is that a same location which is denoted by a star 

here; this point will not will locate the blue point will not be locating will not be residing 

at the same location. Because at a later time this blue point in general moves to, this is a 

time t at time t plus delta t, but this location will be occupied by some other point at time 

t so, the thermometer at a fixed location in space records. It does not record the history of 

a same fluid particle rather it records the temperature is same the temperatures of various 

fluid particles that happen to be at a given location at various times. 

So, the sense of history of temperature history or velocity history or that this historical 

information of a given fluid particle is lost. Historical information is lost, because we are 

not following or tagging along with the same fluid particle instead, we are sitting at a 

same point and we are merely measuring the temperatures that various fluid particles are 

going to occupy, that point at various times. 
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But, the Eulearian description even though it has lost by its construction it has lost the 

sense of history of information of a given fluid particle. But it is still very useful, because 

in laboratory it is easier to measure temperature, easier to measure properties at fixed 

locations, rather than follow fluid particles or material particles. So, in fluid flow 



problem there are two reasons why Eulerian description is preferred over Lagrangian 

description. Firstly even if it was feasible having the information about what are the 

various fluid particles that are occupying let us say a given section of pipe is not relevant 

to many practical questions, such as what is the pressure drop. 

Because here we are not really worried about which fluid particle is coming and exerting 

a drag force. We are merely interested in the force that is experienced by involves of the 

pipe or shear that is moving or on so. So, the historical information is not practical 

importance in general, in fluid practical applications. And also even if you want to 

measure such historical information in the Lagrangian sense it is not easy to measure in 

lab, because you have to really follow the same fluid particle and it is not easy. Rather, it 

is easier to fix probes such as velocity probes or pressure probes, temperature probes at a 

given point, in special location or at various fix points in a spatial locations rather than 

moving along with a particle. 

So, in the Eulerian description the independent variables are the fixed locations of 

various points in space and time so, the Eulerian description is very easy to measure in 

laboratory. 
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So, if you are interested in kinematic quantity such as velocity of a fluid flow is 

described in the Eulerian description as a function of various points in space and time 

suppose, you have a flow in a pipe and you put a coordinate system x y z. So, you can sit 



at this point and measure its velocity as a function of time, then change the location of 

observation and then or you can put multiple probes for velocity and then measure the 

velocity at various locations, fixed locations in space as well as time. That is the main 

crocks of Eulerian description. But the there is the problem with Eulerian description in 

the sense, that suppose; I have this information temperature as function spatial location 

and time. And suppose, I take this partial derivative temperature is a function of x vector 

is a combination of 3 variables so, x y z and time. 

So, when I take when I say partial temperature by partial time, I am keeping the location 

x y z constant, I will figuratively denote this as vector x. 
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So, suppose, I have given this given temperature field let us say from an experiment so, 

the temperature field is given as T x y z time or in short form I will simply write this as T 

x t given this information. Suppose, if we calculate if I calculate at a spatial location, this 

is not telling me how the temperature is changing so, this is the partial derivative so, if 

this fluid particle is moving from time t to t plus delta t, its temperature can in general 

change as you follow the particle. But this is not giving that information what this 

derivative giving you is that if you sit at a point what is, that rate of change of 

temperature that you will feel at that point locally. 

So, the sense of history is lost in the Euleruian description, while it is not critical in 

probably applications like temperature suppose, you are interested in kinematic 



quantities like acceleration. What is acceleration? In the Lagrangian description, if you 

recall, this is basically the rate of change of its position by keeping the label of the 

particle constant. 
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But in the Eulerian description v is written now not as a function of the initial positions, 

but rather the spatial locations in a coordinate system. So, first of all I do not have this 

particle path information. Even, if I have the velocity information in the Eulerian in the 

sense, I cannot calculate acceleration as partial v partial t, because now I am not keeping 

I am not following the same particle, I am merely sitting at a same particle point in 

space. Where as in the Lagrangian description, acceleration of the particle is the rate of 

change of it is velocity, because you are following the same particle. So, what is being 

kept constant is this so, in the Lagrangian description it is very clear; what is 

acceleration, because you are merely keeping the initial location of the particle constant 

you are following the same particles. 

But in the Eulerian description, if you have the velocity field like this you cannot 

compute acceleration by simply taking the partial derivative. Because this does not have 

information as to how a given particle is moving, given particle is moving as function of 

time this information is not there in the Eulerian description. So, we cannot compute 

accelerations from the Eulerian velocity fields. So, you may ask why is this is an issue 

the reason why this is an issue is that when you want to eventually go to dynamics you 



are going to apply the Newton’s second law of motion to continues fluid. The Newton’s 

second law of motion says that the force on a particle an identifiable piece of matter this 

mass times acceleration. 

So, we need the acceleration when you want to eventually write down equations of 

motion for the flow. But if you also want to work simply with the Eulerian frame work, 

because it is much simpler it is more useful. But fundamentally we need accelerations so, 

we need acceleration, but acceleration cannot be obtained from velocities, like this. So, 

how do I connect the acceleration to the velocity field Eulerien velocity field? That is the 

question is given the Eulerian velocity field v as a function of x t how do I compute 

accelerations? So, there is a very nice frame work for doing this and this is the reason 

why we introduce the Lagrangian description although we are not going to use the 

Lagrangian description. 

We do need the motion of the Lagrangian description in order to compute acceleration of 

fluid particles. So, instead of doing this for acceleration I am going to illustrate this for a 

derivative like temperature. 
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That is the question is given the spatial description or Eulerian description of temperature 

how do I compute partial T as I follow a particle, this is the Lagrangian time derivative. 

See notice, that the Lagrangian description and Eulerian description in differ merely by 

what are independent variables. This is the Lagrangian description, this is the Eulerian 



description so, they change not only by the independent variables that we chose to 

describe the problem with. So, I am going now, do this thing called Substantial or 

material derivative. 
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This will help us to calculate the time derivative as we follow particle from and Eulerian 

description. So, to motivate this it will take a very simple context so; imagine you have a 

channel in which fluid is flowing with constant uniform velocity. The velocity is 

constant in the sense that suppose, you call this x and y the velocity is constant in the y 

direction it is not realistic, but this is just for the sake of our illustration. So, you should 

do not vary about this part that y the velocity is uniform let us assume that the velocity is 

largely uniform. Now, let us imagine that there is a location so, let me introduce a 

location this is x equal to 0 and here a fluid particle, let us focus on fluid particles blue 

and red. 

So, here there is a red fluid particle at time t equal to t 0 let us say we had a time t equal 

to t 0. And then we have another fluid particle which is blue in color at the location x is 

minus v naught delta t since; the fluid is flowing at a constant velocity. And so, we are 

looking at two fluid particles, which are separated by distance delta x and that is delta x 

is v naught delta t, where delta t is a time interval, that we are going to introduce at just 

shortly. So, imagine two fluid particles identified by their colors blue and red and we are 

following the motion of these two fluid particles as a function of time. 



So, this is the time t equal to t 0 this is the situation the red particle is situated at x equal 

to 0 and the blue particle is situated slightly behind and since it is x is positive in this 

direction. So, this is at a distance minus delta x and since delta x is v 0 delta t x is 0 

minus v 0 delta t so, this is minus v 0 delta t this is slightly behind the red particle. Now, 

at a later time, imagine after time t naught plus delta t what would happen? Let us try to 

draw this is x equal to 0 this is x equal to v 0 delta t. Since, the fluid is moving this 

particle will move eventually so, the red particle move from 0 to v 0 delta t and the blue 

particle will move from minus v 0 delta t to x equal to 0, this is a time t equal to t 0 plus 

delta t. 

So, let us mark also at this point the Lagrangian labels of this particles is that initial 

position at time t equal to 0 so, the red particle is denoted by x equal to 0. That is the 

position of the particle at time t equal to t naught and the blue particle is denoted by x 

equal to minus v 0 delta t. So, the Lagrangian so, x naught I mean sense Lagrangian 

variables are denoted with this is the position at time t equal to t 0. 

So, this particle while it is present it is also x naught is minus x naught is minus v 0 and x 

here the red particle x naught is 0. Now, even at a later time t 0 plus delta t this blue 

particle is still denoted by the same Lagrangian label, because the Lagrangian description 

uses the position of the particles at an initial time, let us say t naught, to label them. So, x 

naught is still minus v 0 delta t and x naught for the red particle is still 0. So, this is the 

initial position of the particle which is currently at x equal to 0 this is the initial motion 

of this red particle, which is currently at x equal to v 0 delta t. So, these are the 

Lagrangian coordinates these are the Lagrangian labels or coordinates. 

Now, let us say we are having, if we are measuring temperature at this point we are 

measuring temperature at this point x, x equal to 0. So, we are measuring temperature by 

putting a thermometer at x equal to 0, and so here as well so, we are placing the 

thermometer at x equal to 0 this is the thermometer. What this thermometer is measuring 

as a function of time? At time t equal to t 0 it will measure the temperature of the red 

particle, while at time t equal to t 0 plus delta t it will measure the temperature of the 

blue particle this is the key to our derivation. 

So, it is very simple, because the thermometer is fixed at the same spatial location x 

equal to 0, which I am denoting by this green color. But the points that are occupying the 



same spatial location at different the material particle that are occupying the fluid 

particles are different, because the fluid is continuously flowing. 
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So, let us understand what is what we will do by calculating at the partial t of the 

temperature with respect to time at x equal to 0 at the same location. What is this is from 

fundamental definition of calculus this is t 0 plus delta t minus x equal to 0, t equal to t 0 

divided by delta t in the limit as delta t goes to 0 this is the fundamental definition of 

partial derivative. Since, it is a constant we are keeping x is constant at 0 so, this label is 

the function of two variables t is a function of x and t is Eulerian description since, x is 

kept constant at 0, we see simply have to take the derivative with respect to time. Now, 

let us try to understand what this means, at x equal to 0 and t equal to t 0 plus delta t let 

us look picture, this is time t 0 plus delta t at x equal to 0 the particle that occupied is the 

blue particles. 

So, the temperature that the thermometer will measure is nothing but limit delta t tends to 

0 temperature of the blue particle which is identified by its Lagrangian variable. So, 

which is x naught is minus v naught delta t and the time is t 0 plus delta t minus here, the 

temperature at x equal to 0 time t equal to 0 is namely that of the red particle. Because at 

x equal to 0 at time t equal to 0 notice that it is the red particle that is occupying and the 

thermometer will measure at time t equal to delta t, t zero the temperature of the red 

particle. And the red particle is identified by its Lagrangian variable, which is nothing 



but, t x naught is 0 at time t 0 divided by delta t. So, essentially we are trying to measure 

the temperature at the given spatial location in this example, in this illustration. 

So, we are putting thermometer at the position x equal to 0 the same positions same 

spatial location with respect to this coordinate system. And but at x equal to 0 at time t is 

equal to t 0 the red particle is occupying the location spatial location x equal to 0. At a 

later time, the same spatial location x equal to 0 is occupied by the blue particle. So, 

when you take this measurement and when you take the partial derivative of the 

temperature using these measurements. Partial derivative of temperature with respect to 

time is nothing but the partial derivative of temperature is limit time at that spatial 

location x equal to 0 is temperature at later time minus temperature is t 0 divided by delta 

t as delta t goes to 0. 

But the key realization that we must have is that the temperature at x equal to 0 at later 

time corresponds to that particle which was there at a later time which is near to the blue 

particle. Now, the blue particle is denoted by it is Lagrangian labels x naught is minus v 

0 delta t. Now, the temperature at x equal to 0 at time t 0 is due that of the red particles 

so, we can change from x equal to 0 x naught equal to 0, because the red particle is 

identified by it is Lagrangian variable which is nearly x naught equal to 0. So, this is the 

key realization when going from Eulerian to Lagrangian so, that we can change the 

labels from Eulerian to Lagrangian by knowing which particle was occupying the current 

position and the previous position and so on. 

So, having done this, we will just do simple we are still having on the left side the spatial 

derivative the Eulearian time derivative of the temperature field. So, I am going to do a 

small mathematical simplification by adding and subtracting. So, let me write first two 

terms x 0 minus v 0 delta t time is t 0 plus delta t let me subtract time temperature at x o 

is minus v 0 delta t and t is t 0, and add the same thing again x 0 is minus v 0 delta t, t is t 

0 minus T x 0 is 0 and then t 0 and then divided by delta t so, let we put 1 over delta t 

here that is of course stays. Now, here we are keeping x 0 the same. 

So, what is this term? So, let us let me mark this with red so, that you can see what is this 

term? This term is nothing but the red term, that here is nothing but so let me write this 

from separately the red term is nothing but this write in red color so that it is clear. 
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T at x naught is minus v 0 delta t at time t 0 plus delta t minus T at x naught is minus v 0 

delta t at t 0 divided by delta t, that is of course there here common and limit delta t 

going to 0 is nothing but see here we are keeping x naught constant so, this is nothing but 

the time derivative as you keep x naught constant. So, this is the time derivative as we 

keep x naught constant, this is the Lagrangian time derivative as you follow the same 

particle. Here originally, we are measuring the time temperature at the same location, but 

here this part of this expression corresponds to the rate of change of temperature with 

time as you follow the same particle, because the particle is being fixed here. 

So, this is what we are often we want to calculate the rate of change of temperature with 

time, as you follow the same particle. But, there is one more piece here which we will 

have to tackle so, what is that piece let me write it in blue color. So, we still have this 

additional piece limit delta t tending to 0 one over delta t T x naught is minus v naught 

delta t, t equal to t 0 minus T at x naught is 0 at the same time divided by delta t. Now 

suppose, you consider the change in position delta x, delta x is nothing but v 0 delta t 

recall that this point, the 2 points x the 2 points is separated by at distance delta x, x 

equal to 0 and this earlier distance which is nothing but minus v naught delta t, that so, 

delta x is separating distance is v 0 delta t that is so, delta x is separating distance is v 0 

delta t. So, this is nothing but we can write this as so, one over delta t. 
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T x naught is minus delta x t 0 minus T x naught 0. Now, if you look at what is partial 

derivative of partial t partial x at x equal to 0 you can write this as T at x is 0, but we can 

also before I do that we can also change the labels now. When x naught is 0 x is also 0 

this is nothing but so, let us go back to the figure in the previous slide. When x naught is 

0 x is 0, when x naught is minus v 0 delta t x is also minus v 0 delta t. So, we can change 

this to the Eulerian description as limit delta t going to 0 1 over delta t. When x naught is 

minus v 0 delta T x is also minus v 0 delta t, t 0 minus T when x naught is also 0, x is 

also 0 at t 0 this is what we have. 

But if you recall what is the fundamental definition of the rate of change of temperature 

with respect to position at a given time? Let us say this is T at x equal to 0 minus T at x 

equal to 0 minus delta x divided by delta x, but in our case delta x is nothing but v 0 delta 

t. So, I can write this as so, instead of delta x and write v 0 delta T here so, T at x equal 

to 0 minus T at minus delta x divided by v 0 delta t this is partial t, partial x at constant 

time. 



(Refer Slide Time: 45:37) 

 

So, I can pull this v 0 up here and realize that what I have here in this expression is 

nothing but I have here T at x equal to minus delta x t 0 minus t at 0 this is nothing but 

minus partial T by partial x times v 0 delta t. So, if I go back to my original expression 

where I have two terms, if you remember let us go back to this expression I have two 

terms. So, let me just simplify here itself partial T, partial of temperature with respect to 

time at x equal to 0 so this term is simplified as so, we have still one over delta t, limit 

delta t going to 0 well we are taken the limiting process. So, let us remove the limits now 

this is nothing but you have the first term we already simplified it in to partial T, partial t 

at x equal to 0. 

The second term is now simplifying to minus v 0 delta t partial T partial x. Now, what 

we are after is naught so, let me just write on this result once again partial T partial t at 

constant x is nothing but partial T partial t at constant x 0 minus v 0 partial T partial x at 

constant time. So, what we are after is this term, because this is something that is easier 

to measure experimentally where this is something is difficult, because this is the rate of 

change of temperature as you follow a point, where as this is a rate of change of 

temperature at a fixed point. 

So, finally we have rate of change of temperature when you follow a particular fluid 

particle is equal to rate of change of temperature at a fixed point this term will go to the 



other side, if you take the negative sign to the other side, becomes positive at constant 

time. I am sorry this is x now, because this is in the other side this is x. 
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So, this is called the Lagrangian or substantial time derivative or in fact sometimes it is 

called the material derivative this is the usual partial derivative of time with respect to 

time. When I take partial derivative of temperature with respect to time, I have to keep 

the spatial location constant so, this is the spatial location at a given point space .We can 

call it x equal to 0 in this example but in general it can be x now, this one is what is 

called the convicted rate of change it is called the convicted rate of change of 

temperature. So, here what this is telling is that particle that was here will move from one 

location to another by virtue of flow that is where this velocity is coming in. And the 

temperature difference is going to field is given by the Eulerian spatial derivative of 

temperature. 

So, this is essentially that temperature difference between these two points as given by 

the Eulerian description. And, if you multiply by the velocity of the particle by the 

velocity at which the particle is moving, then that is going to give us the convicted rate 

of change. So, this is sometimes called the local rate of change, this is called the 

convicted rate of change. So, in general therefore, we can write so, this is the Eulerian 

derivative this is the substantial derivative this is the normal partial derivative, sorry this 



is the Lagrangian derivative, this is the normal partial derivative and this is the connected 

rate of change. 
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So, in general, the rate of change of any property like temperature as a function of time 

for fixed Lagrangian particle is given by the rate of change of temperature with respect to 

fixed point in space. Let us still keep x as a single variable, I will generalize it to more 

three dimensions shortly plus the velocity in the x direction the times partial t partial x at 

a given time. So, this right side can be computed completely from Eulerian description 

whereas, this is inherently Lagrangian quantity, because you are following the same 

particle. Now, Some times in text books you will find that instead of having this same 

symbol with respect to different independent variable being kept constant this is 

normally denoted by D T D t. 

So, capital D is reserved for substantial derivative for a single, if the temperature 

functions of only single coordinate x and time so, it is the velocity in the x direction 

time’s partial T partial x constant time. 
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Now, I can generalize this two more dimensions instead of just having the one 

dimension. Suppose, the temperature is a function of not just x, y, z and time, then what 

is the substantial derivative? Substantial derivative is the time derivative of temperature 

as you follow a particle. So, what is it? So, we can generalize very straight forward in a 

straight forward way is partial T partial t at constant spatial location plus v x partial T 

partial x plus v y partial T partial y plus v z partial T partial z. So, again so, here partial T 

partial x is calculated by keeping y, z, t constant this is calculated by keeping x, z, t 

constant it is calculated by keeping y, x and t constant. 
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So, that is the basic idea of a substantial derivative where in by purely having completely 

Eulerian information, we are able to calculate the rate of change of a quantity like 

temperature, as you follow particle infinitely at a later time delta t. Now, if you try to see 

whether we can write this in a slightly better form now, this is let us look at this part of 

the equation and see whether we can write this slightly in a more compact form. So, this 

is like, if I have two vectors a and b and each vector is given by a x in terms of its 

Cartesian coordinates b is similarly, given as b x i plus b y j plus b z k, then a dot b is 

nothing but a x b x plus a y b y plus a z b z. Likewise, if you look at this expression it 

look a dot product of two vectors. 

One vector is the velocity; the other vector is the gradient of the temperature let me just 

explain how this comes about. 
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So, if you look at velocity is v x i plus v y j plus v z k, look at gradient of temperature it 

is nothing but partial T partial x i plus partial T partial y j plus partial T partial z k. If I 

take the two dot products, where the two dot product of this two vectors v dot del t, then 

you get v x partial T partial x plus v y partial T partial y plus v z partial T partial z. So, 

we can write the substantial derivative of temperature in a more compact form is as the 

local time derivative of temperature at a fixed spatial location plus v dot grad T, this is 

for three dimensions. This is the local rate of change sometimes this is called the local 

rate of change and this is called the convicted rate of change. 
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So, this is the very important concept in fluid mechanics, because this is a vehicle that 

allows us to calculate the substantial derivative idea. It is a vehicle that allows to 

calculate the rate of change of many quantities, as you follow a fluid particle from a 

given time to a later time purely based on Eulerian description quantities based on 

Eularian description. So, we will stop here and we will see you in the next lecture where 

we will continue future in fluid kinematics. Thank you. 


