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Welcome to this forth lecture on Fluid Mechanics for Chemical Engineering under 

graduate students. In the previous lecture, we described the continuum hypothesis and 

explained when it is valid and when it can break down potentially, and we also said that 

in most engineering applications, it is it is possible to use the continuum hypothesis 

without any problem. And in the continue hypothesis, we treat the variables in the fluid 

such as pressure, velocity, temperature, density and so on as smooth and continuous 

functions of position coordinates like x, y, z and as well as time. 

 Then, we started our discussion on what a fluid is. In order to do this, it is useful to 

contrast the mechanical behavior of a fluid with that of a solid. 
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So, that is what we will do. We will start again with the notion of an elastic solid, and 

then, will contrast the behavior of fluid immediately after this discussion. So, what we 

did in the last lecture was to take a slab of a solid like a rubber, elastic solid light rubber, 



imagine you have a rectangular slab and this width of this slab in this third direction; let 

us put a coordinate system x, y and the third direction that is pointing out of the board is 

z. 

So, this is w, and the thickness of the slab in the y direction is h, and we are going to 

consider a slab such that w is very very large compared to h. So, when w is very very 

large compared to h, you need not worry about the variations in the z-direction. So, all 

we will do is to consider a plane, the planar cross section in the x y plane. 

So, we will take, we will assume that will take the x y coordinate system like this and we 

will assume that the slab is like here, just a cross section in the x y plane, and what we 

did was, we imagine that this slab, this piece of elastic material is kept between two 

plates, and the bottom plate is stationary, and the top plate; we want to apply a stress in 

the x direction which I will denote as f x.  

So, essentially what we are doing is, let us consider this area of the top surface which I 

am going to shade, this force in the x direction is being acted upon the entire area. f x 

acts on the top surface and let the area of the top surface be a. So, f x is acted upon f x 

axis on the top surface which is at y equals h. And this at y equals zero, and this 

thickness is h. 

This is the system. One can think of doing this experiment in lab, and I am going to 

discuss this as if we are doing this experiment in a mind and then, so we are doing a 

thought experiment, and then we are going to discuss how this solid is going to behave 

under the influence of applied forces. 



(Refer Slide Time: 04:27) 

 

So, let us imagine, at in the… This is the unstressed, suppose at time, at some initial 

time, the solid is unstressed state before the force has been applied. No force has been 

applied in the unstressed state, and in the unstressed state, imagine that we are going to 

mark a line in the solid; a vertical line at a given location, and we are going to follow the 

position of this line as we are going to apply a force on the top surface. So, when there is 

no force, no stress in the solid. So, this line will be a vertical line.  

Now imagine that we are going to consider the same rectangular slab in between two 

plates, and this is x and y as usual, and we are going to follow, this is in the undeformed 

state or the unstressed state, but now we imagine that you are applying a force. So, we 

start applying the force at some time t equals zero, and then we allow an interval delta t, 

a time interval delta t. 

And then watch the evolution or the motion of this line. When you apply a force to the 

solid on the top surface, the solid responds by undergoing a deformation. So, what this 

solid will do is in fact, this line; force is being applied only on the top surface. So, this 

point that was here will move here, whereas, this point at the bottom surface is 

stationary, there is no force is applied; the solid is stuck to the bottom surface. So, this 

point will remain here. It would not deform. So, this line will move in general in the 

deformed. Upon application on force, this line will move like this.  



So, this green line is no force in the unstressed state, whereas, this red line is when you 

apply a force, and then you record the motion or location of this line at a time delta t. 

Now, imagine applying this force for continuously on the top surface, and what will and 

let us try to understand what will happened to this red line as you continuously apply the 

force. 

So, even if you where to wait for more times; 2 delta t, 3 delta t, 4 delta t, a solid merely 

undergoes a deformation in response to an applied force, and once it undergoes, once it 

has once it has underwent a deformation, it will stop deforming due to resistant resisting 

elastic forces that are built in the solid. 

So, this let us call this displacement of the point on top close to the top plate as delta l. 

This delta l will remain the same even at higher times, even suppose you have to measure 

the displacement of the top point versus a function of time. So, at time delta t, 2 delta t, 3 

delta t and so on, in a solid, you will observe experimentally that the displacement of the 

top point remains delta l. And you can also characterize this deformation by this angle 

delta alpha. So, and this thickness is of course h. 

So, a solid responds to an applied stress by undergoing a deformation, and this 

deformation, the solid if deformation stops after you know, it does not continue to 

increase.  
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It undergoes a finite deformation and if you were to do experiments at different values of 

stresses, so, this is for a given value of stress if you want to do experiments at different 

values of stress or force sorry, so, if you have to do that experiment for f one, let us call it 

just f; a force f x, the displacement will be delta l, then if you were to do 2 f x, the 

displacement will be 2 delta l, and 3 f x.  

If it is a purely a elastic solid, you find that the force that you applied will be directly 

proportional to the displacement the solid undergoes or the displacement which is a 

response to the forces is directly proportional to the force in a solid.  

So, while this is how experimentally you will characterize the deformation in a solid, in 

order to make the information from experiments more general, it is useful to talk in terms 

of a stress rather than a force. Stress is force per unit area. 

Now this force, in this example, in this example, the force is applied in the x direction; 

plus x direction and the area of the surface on which force is exerted is A. 
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So, this is simply f x divided by A. So, that is what we said in the beginning that... So, 

the area is A. So, the area of surface is A and this is called as stress. 
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Now the stress is given denoted by the symbol usually tau in fluid mechanics; in 

mechanics in general, (( )) mechanics in general. And it is described with two subscripts. 

One is the subscript which is let me write down the subscripts and explain what those 

two subscripts mean. 

The subscript x is the direction of the force. The stress is force acting on a surface per 

unit area. So, force itself has a direction. This y denotes the unit normal to the surface 

direction of the unit normal; unit vector if you want to the surface on which force is 

acting, force is acting. Now in our example, the surface; we took this slab and the force 

was in the x direction, and the direction of the unit normal in the plus y direction which 

is traditionally denoted by unit vector j. 

So this y denotes a direction of the unit vector which is divide that unit vector along the y 

direction. So, it is a direction of the unit vector perpendicular to the surface. That is 

called unit normal, and x denotes the direction of the force. So, this is called stress. 

Stress is force by the area, but we have to specify the direction of the force on the surface 

as well as the orientation of the surface by specifying the unit normal or unit vector 

perpendicular to the surface. So, for a solid, you will find that tau y x in our example, tau 

y x is simply f x divided by A. 



And you will find that this stress if you do experiments is directly proportional to the 

deformation which is characterized by the angle delta alpha. We call that you had this 

line, original line in stressed case and then deformed case. 

The deformation can be characterized by the angle by which this line tilts upon 

application of force in the x direction. So, this is x, this is y. So, this angle can be taken 

as a suitable measure of the deformation or the strain in the solid. 

Once a solid undergoes a deformation, we said that it is strained. So, the strained; a 

measure of the strain in the solid, deformation of solid is the angle delta alpha. So, you 

will find that delta alpha; the stress that you apply is directly proportional to the 

inclination of the this tilt of this line upon the application of stress and the stress will not 

change in a purely elastic solid as you wait long enough, sorry, the angle will not change 

if you wait long enough, even if you apply a stress continuously, the angle will still 

remain the same. That is because the nature of the solid to resist deformation. So, it 

resists deformation. It under undergoes some deformation that it does not continue to 

deform under the application of a force. 

So, that is the definition of a purely elastic solid. So, let us do some simple geometry. So, 

this high course, h. So, from this and this, displacement of this line from here to here was 

delta l at the top plate. So, tan delta alpha from this figure is delta l by h, but when you 

apply small enough forces, delta alpha will be small. 

So, when delta alpha is small, tan delta alpha is roughly proportional to delta alpha. So, 

this equation tells you the delta alpha is approximately delta l by h or I can write… So, 

that is a delta l by h, that is fine. So, this stress; tau y x is proportional delta alpha. So, I 

can write tau y x is proportional to delta l by h, because delta alpha this is, please do not 

confuse this, this is a proportionality sign. This alpha is the angle. So, let me try to write 

it like this. The proportionality sign slightly different from alpha. So, tau y x is 

proportional to delta l by h. 
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And you can replace the proportionality constant, the proportionality sign with a constant 

of proportionality. That is called a modulus of elasticity. This is called the modulus of 

elasticity. So, and we can work out the dimensions or units of this quantity tau y x is of 

dimensions of stress. Stress is force per unit area. Force is mass times acceleration 

divided by area.  

So, stress becomes m l to the minus 1 t to the minus 2, and this group is a ratio of two 

lengths is dimensionless. It has no dimensions because it is length divided by length. So, 

strain in a solid is a dimensionless. So, the modulus of elasticity will have the same 

dimensions of stress. So, the mod normally the dimensions of a quantity are denoted by 

this square bracket. 

So, m l to the minus 1 t to the minus 2. This is the dimension; these are the dimensions of 

modulus of elasticity and or stress for that matter. 

And in SI units, g is, so if you put m as k g, per meter for l to the power minus 1 and t to 

the minus 2 second square, this is called one pascal. So, stress and modulus of elasticity 

everything is measured in pascal. 

So, now this stress is therefore, directly proportional to the strain. Now previously, in 

this simple thought experiment, we considered a slab of the thickness h, but we could 

take the tiny thickness delta y in the y direction, within the slab itself, we will take a tiny 



thin slice, sorry take just to illustrate, this is your slab and even within this slab, you can 

take a tiny slice of the slab. 

And then worry about what is the stress with respect, what is a how does the deformation 

change with respect to stress within this slice. So, we will do the same thing. So, we will 

find the tau y x is proportional to… So, this within this thin slice, line that was original 

like this would have moved like this. Lets called as delta l. So, again it will be 

proportional to delta l by delta y.  

So, in the limit, now if you take the limit when the thickness of the slice goes to zero, 

this becomes a derivative in calculus. So, tau y x is proportional to d l by d y. And we 

can write this as a constant proportionality as d l by d y. This is called a strain in the 

solid.  

So, while the previous discussion where you took a finite piece of material h is the valid 

for the particular experiment alone. This is this expression is valid in general because 

you can take a solid of any thickness and look at the deformation at the point or within 

the continuum approximation, a tiny slice of volume around a point, and then you will 

find this equation is valid. 
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So, now let us contrast this behavior with a fluid. I am going to do the same thought 

experiment have a fluid between a two slabs like a viscous liquid; lets imagine a viscous 



liquid like honey. Take two slabs; let us mark the coordinate systems. Again I am going 

to assume as before that in principle, it is two slabs, and on the top slab, you apply a 

force f x. This width is very very large compared to the thickness edge in which the fluid 

is present. So, we need not worry about the variation in the z direction. So, in our scheme 

of thing, this is x, this is y and this is z. So, we will just consider the x y plane and we 

will put a colored dye in the fluid at time t equal 0, when there is no force that is exerted. 

Now a time a time t is equal to 0 plus, we start applying a constant force f x. Now what 

we are going to do in this discussion is look at the evolution of this colored line as a 

function of time, when the force is being applied on a top plate and as before, the area of 

the top plate is A. 

Now, so, let us imagine that after a time delta t, we look at this line. So, the bottom plate 

is stationary. There is no force. So, the fluid here close to the bottom plate, just adjacent 

to the bottom plate will not move, while the top plate; fluid process a top plate since you 

are exerting a force, this line would have deformed like this. 

So, this is at a time let say delta t, but a fluid continues to deform under the application of 

stresses, especially shear stresses. So, here we are applying a force on a surface and the 

force is parallel to the surface. So, the force is parallel. This is the surface on which the 

force is being applied. And these are called shear or tangential stresses. Tangential forces 

or stresses are force per unit area is a stress; shear or tangential stresses because it is 

tangential to the surface on which the force is acting. The force is tangential to the 

surface itself.  

In contrast to normal stresses which are perpendicular; as the name suggest, so, here we 

are applying a shear stress or a shear force on a tiny slice of a fluid with between two 

plates and we are finding that you will find that, if you do this experiment, if you watch 

this evolution of this colored line as a function of this line, it will continue to move at 

later and later times. A fluid continues to deform under the application of shear stress in 

contrast to solid which deforms to some extent and then stop deforming. 

So, the fluid continues to deform. So, what you will find in experiment is that, at 2 delta 

t, this line will become like this, at 3 delta t, this may become like this. So, if you think of 

this distance as delta l, and this is a 2 delta t, this line is a 3 delta t and so on. So, this line 



continues to deform; that means, the fluid continuous to move under the application of 

shear stresses. We say that a fluid flows under the application of shear stress. 

So, you will find that if you do this experiment, that if you were to plot at t equal to 0, 

this line will be here. So, I am going to draw different snap shots, t equals delta t, this 

line which was originally here would have moved like this. It would have moved by an 

angle delta alpha. And the top point would have moved by the length delta l and at a later 

time; t equal 3 delta t, it would have moved, I am sorry just 2 delta t; just keep 2 for 

simplicity. It would have more than two alpha. The angle would have increased to 2 delta 

alpha and the length of this point from which original position is known to be 2 delta l. 

So, a fluid cannot resist any shear stress. So, it continues to move upon application of 

shear stress. So, clearly, this thought experiment suggest; this can be done really in a lab 

also, that one can do it, but here for the sake of illustration I am just doing a thought 

experiment. 

So, the stress in a fluid, unlike a solid cannot be a proportional to deformation. The 

reason is you can get any amount of deformation if you are prepared to wait a long 

enough. This slice which was originally here underwent a deformation of delta l at time 

delta t, 2 delta l at time two delta t and so on. So, it would keep deforming as you wait 

long enough. So, stress really cannot be proportional to deformation. So, what is then 

stress a function of? 

Let us slightly change the experiment. Instead of keeping... So, here I am applying a 

force f x; same force. So, here I mean a time t equal to 0, there is no force. So, there is no 

force, but at later times, we are applying the same force.  

But now let us take this experiment. Instead of applying f x, I am applying 2 f x. You 

will find that even a time delta t, this line would have moved by 2 delta l. So, if you 

increase the force, for the same amount of time that your waiting, the deformation will 

increase for the same amount. So, for example, here f x was the force here, the force is 2 

f x. For the same delta t, we are finding that the deformation has doubled. 

So, the stress is not proportional to deformation for say because the same amount of 

deformation can be obtained in a fluid at you know, if you are prepared to wait long 



enough. So, even if you apply a very very tiny amount of force, you can get the same 

amount of a deformation delta l, if you wait sufficiently long enough. 

So, clearly stress is not directly proportional to deformation. Indeed, it is proportional to 

how fast the fluid deforms or we say more clearly or more specifically; the rate at which 

the fluid deforms. So the stress is proportional in a fluid as this experiment suggest. 
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So, we have that for force f x, the deformation; this is applied force, this is the 

deformation that one gets as we measure through the angle was delta alpha at time delta 

t, 2 delta alpha at time 2 delta t. And similarly, if you apply 2 f x, you get 2 delta alpha at 

delta t itself. 

So, the stress tau y x which is the same which has the same meaning as what we had in 

the previous illustration from elastic solid, this is the force in the x direction; on a surface 

whose perpendicular is in the y direction to the surface. 

So, tau y x is the stress that you are exerting on the top plate. This is simply equal to f x 

by A divided by A. It cannot be a proportional to delta alpha, but infact, it proportional to 

the rate at which alpha changes with time; delta alpha by delta t 

Then this, because this what the experimental result would suggest, if you wait for delta t 

for the same f of x, you get delta alpha. If you wait 2 delta t, you have 2 delta alpha. But 

if you double this stress, for the same delta t, the deformation doubles. So, all this is 



captured by simple hypothesis or propotion that the stress must be proportional to the 

rate of deformation. 

For example, in this proportion, if I double the stress, so, let say tau 1 was the stress, the 

delta alpha 1 was the deformation at time delta t 1. If aware to wait for 2 delta t 1, for the 

same stress, then proportional to, then I would get 2 delta alpha 1; because I am keeping 

stress constant. If I wait 2 delta t 1; since it directly proportional, it will be 2 delta alpha 

1. 

But if I keep 2 tau 1 and I keep delta t 1 the same; since is directly proportional, the 

angular displacement has to be increased by 2 delta alpha 1. So, all this is captured by 

this simple relation that tau y x must be directly proportional to delta alpha by delta t in a 

fluid. 
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Now, let us look at the geometry again, once again. So, this was the original line. This 

was the deformed line, this is delta alpha, this is delta l, but in a fluid, the top plate 

continues to move because the fluid is also moving. The top plate will also; if you exert a 

force, top plate will continue to move. So, this delta l, so, the top plate will acquire a 

velocity, if you apply a force to the fluid. 

So, it is u times; delta l will be u times delta t, and this is h. So, from geometry, we know 

that tan alpha is delta l by h, tan of delta alpha, sorry and for small delta alpha, tan delta 



alpha is approximately delta alpha; small angles. This we discussed few a minutes back 

for the case of elastic solid also. So, delta alpha is delta l by h, delta l is delta u times 

delta t divided by h. So, delta alpha by delta t is equal to u by h.  

So, u is a velocity of the plate; top plate, and h is the thickness. So, tau y x is 

proportional to u by h, where u is the velocity. Suppose you have exerted a force in the x 

direction on the top plate, this plate will start moving if whatever is the material that 

present between the two plates is a fluid, and you can characterize that motion with a 

velocity u of the top plate. So, this is the velocity of top plate, and in the x direction, h is 

the thickness of the fluid.  

So, instead of taking finite thickness, we can also consider an infinitesimal thickness 

delta y, then tau y x will be proportional to… So, infinitesimal slice of fluid will be 

proportional to delta u by delta y, which is essentially the velocity of this top layer with 

respect to the bottom layer. 

And when all the things when in the limit delta y tending to 0, tau y x will be 

proportional to; this will become a derivative, will be proportional to d u d y. This is 

called the velocity gradient. It is the derivative of the x velocity u with respect to the y 

coordinate. It is called the velocity gradient. 
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So you can replace the proportionalities six symbol with a constant of proportionality. 

And that constant proportionality is denoted by the greek symbol mu. It is called the 

viscosity of the fluid. 

So, a fluid; in a fluid, the stress is not proportional to deformation. It is proportional to 

rate of deformation and through this simple geometric analysis or argument, they have 

shown that the rate of deformation is proportional to the velocity gradient, that is equal to 

the velocity gradient. 

Therefore tau y x which is proportional to the velocity gradient, can be replaced by a 

constant mu, the proportionality sign can be replaced with a constant which is called a 

viscosity of the fluid. 

So, what this says is that suppose we were to do this experiment of two fluids; one with 

higher viscosity, and the other with lower viscosity, and you apply the same force of f x 

on the top layer, and you watch the motion of these lines at a time, after a time delta t.  

So, if you do that, you will find that the lower viscosity fluid would have deformed more 

compared to the higher viscosity fluid at the same time, but if you are prepared to wait 

long enough at higher values of delta t, even the higher viscosity fluid will achieve the 

same amount of deformation as low viscosity fluid. 

So, in simple terms, a solid cares how much you deform. The stress is proportional to the 

deformation, the amount of deformation while liquid cares how fast you deform. So, a 

fluid resists deformation not in the sense, a fluid resist deformation by the rate at which it 

is deforming, not by the deformation itself. 

If you take a solid like steel which is very very rigid, and if you take a soft material like a 

rubber, then if you apply the same amount of stress, both of these materials will deform, 

but the extent of deformation will be more in rubber than in steel.  

Whereas, here in a fluid, if you take two different fluids; one with very high viscosity 

and other with low viscosity, if you apply the same amount of stress, the amount at 

which, the rate at which the fluid deforms will be different which is given by suppose 

you keep the time interval constant, then that is given by angle delta alpha.  



So, this delta alpha will be small for a higher viscosity fluid, while it will be larger for 

low lower viscosity fluid. But this delta alpha will continue to increase in both the cases. 

So, it is a matter of this how fast a fluid deforms, and a higher viscosity implies that the 

fluid is going to resist deformation more compared to the case where when the fluid has 

lower viscosity, where it deforms very quickly. So, it is the rate of deformation; that is 

the crucial factor you know fluid. And the stress is directly proportional to rate of 

deformation.  

Now tau y x is mu d u d y, where the stress is equal to the viscosity times rate of 

deformation is sometimes called Newton’s law of viscosity, but you should understand 

that this is merely an observed material behavior, observed behavior of a class of fluids. 
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So, a Newtonian fluid is merely (( )) or the Newton’s law of viscosity; let me write this 

as the Newton’s law of viscosity which is merely a behavior of a class of fluids 

materials. It is not a fundamental law and there are of course, there are fluids need not 

obey Newton’s law of viscosity. So, but, it turn out that many simple fluids like air, 

water, honey, then glycerin and several oils; they all observe, they all obey this behavior. 

So, it is a pattern of behavior that is followed by wide class of fluids, but there are 

always, there are lots of exceptions to this behavior, but this one of the simplest possible 

relations between the stress and the rate of deformation in a fluid. So, and fluids which 

obey this behavior, they are called Newtonian fluids. They are called Newtonian fluids.  



Now, let us workout the dimensions of viscosity because we are encountering this for the 

first time in this course. So, tau y x is mu d u d y. tau y x is stress and stress is force per 

unit area. So, this has dimensions. We already saw this few minutes back in the context 

of modulus of elasticity, and velocity gradient is basically l t to the minus 1 divided by l. 

So, this is simply t to the minus… It has dimensions of 1 over time. So, if you work this 

out, the dimensions of the mu is m l to the minus 1 t to the minus 1. 
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Just compare these two. In order for this equation to be dimensionally consistent, then 

mu has to have this dimensions; viscosity as to have this dimensions. In SI units, mass is 

measured in kilogram, length in meter, and time in seconds. So, the unit of viscosity is k 

g per meter second. So, this also equal to one pascal second.  
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Now, just to give you some example of various viscosity values that one sees in common 

fluids, suppose you have air, all the viscosity values are in pascal seconds. Viscosity 

value of, viscosity of air is about 10 to the minus 5 in pascal second units. Water is about 

10 to the minus 3 and castor oil 100 times more viscous than water; 0.1, and blood is 

which is a bodily fluid has viscosity of 8 times to the minus 3, eight times to viscosity of 

water. 

But interestingly, if you consider mercury which is a liquid metal, the viscosity is very 

close to that of water. It is only 1.55 times larger than water. So, mercury has large 

density we know that, but the viscosity is a completely different property. It is not 

correlated with density in any direct way as you can see here. Even though mercury is 

very very dense, the viscosity of mercury is not very different from that of the viscosity 

of water. 

So, in this course, which is about fluid mechanics applied to chemical process industries, 

we will largely restrict ourselves to Newtonian fluids mostly. But, at the end of the 

course…, so, when we say Newtonian fluids, we mean that the stress is proportional to 

or is equal to viscosity times the rate of deformation, which is the velocity gradient. 

Mostly, but at a later point of time, at the end of the course, we will have opportunities to 

talk about fluids which do not obey this behavior. They are called Non-Newtonian fluids. 



So, we will have an opportunity to discuss the behavior of fluid that do not follow the 

Newton’s law of viscosity, but for the initial part, we will certainly restrict ourselves to 

Newtonian fluids. 
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Now, what this is saying is if tau y x  is nu d u d y, if you have to do this experiment in a 

lab and plot the data that you get for tau y x versus d u d y, this is variously called as rate 

of deformation because that is what it is. It is rate at which the fluid deforms. 

But since the rate of deformation we showed is equal to velocity gradient, it is also called 

as velocity gradient, and since the deformation; the way in which the fluid is deforming 

by shear; that is, you are applying a tangential force. This also called shear rate or rate of 

shear or shear rate. You should be… sometimes it is also called the strain rate because 

delta alpha is a measure of strain, and this is delta alpha divided by delta t. So, these are 

all various descriptors that are used to signify the same quantity which is mathematically 

d u by d y, which is a velocity gradient. 

So, if you plot the shear stress versus shear rate, so this is the shear rate; the rate of the 

deformation for Newtonian fluid, you will get a straight line that passes through the 

origin, and slope of this line will be the viscosity mu. 

This is not to say that all fluids will have the same behavior. I have told you that there 

are many fluids which do not follow this behavior. Let me tell you the experimental 



behavior that is commonly seen. Suppose you take…, so these are, I am going to… the 

blue line is Newtonian. So, let me write this in blue.  

So, let us suppose you take a solution of water and a polymer like poly ethylene oxide. 

You dissolve very very small quantities less than one weight percent polymer in water; 

polymer such as poly ethylene oxide, so, polymer solution, and if you plot tau y x; if you 

do this experiment in a lab, you will find that it is not linear. It is going to behave like 

this, if you take a polymer solution. This is a polymer solution. 

Now, for a Newtonian fluid, if you have to plot the viscosity, so, let me just go a little 

below. 
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If you plot the viscosity as a function of shear rate, it is a constant because tau is directly 

proportional to d u d y, and it is a straight line. So, the slope is a constant, but if you take 

a polymer solution, the viscosity will decrease with shear rate. So, such fluids are called 

shear thinning because the viscosity decreases with shear rate. 

But there are also fluids that shear thicken. These are colloidal dispersions. By shear 

thickening, we mean that the viscosity increases with shear rate. So, you could also have 

this behavior. Both are non-newtonian; that is, the viscosity is not a constant, that is, our 

tau is not linear in d u d y, but there are different classes of non-newtonian behavior and 

there is one more type a non-newtonian behavior which I will draw in a separate graph.  
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So, you can have a material like tar, where if you plot tau y x versus shear rate, the 

material does not flow up to a critical value of shear rate, and it flows after that like a 

Newtonian fluid. Such fluid such materials are called Bingham plastics. Example is tar. 

So, appears like a solid up to a critical shear stress, after that, it starts flowing like fluid. 

So, such materials are called Bingham plastics. 

So, this discussion is to just tell you what a fluid is, what is a fluid, why is it, how does it 

differ from a solid in terms of its deformation nature, and we saw that a fluid 

fundamentally differs from a solid in the way it responds to shearing stresses. Fluids; we 

say it cannot resist any shear stresses unlike a solid because if you apply a shear stress to 

a solid, it undergoes a deformation and it stops deformation after some time. It does not 

continue to deform unlike a fluid which keeps on deforming as long as the force is 

applied, as long as the shear stress is applied. 

So, a solid cares how much you deform, while liquid cares about a how fast you deform. 

So, if viscous if the constant of proportionality between the stress and rate of 

deformation is called viscosity and fluids with different viscosity offer varying resistance 

to rate at which they deform. Just as solid with different moduli offer varying amounts of 

resistant to how much they deform.  For example, if you apply a stress of 100 pascals to 

a steel bar, it will deform very very little in contrast to let say a piece of soft rubber.  



So there, these two materials; steel and rubber are characterized by different elastic 

moduli and material with lower elastic moduli deforms much more compared to material 

with larger elastic moduli, whereas in a fluid, a fluid with higher viscosity deforms at a 

much smaller rate than fluid with a much lower viscosity for the same stress that you 

apply because in a fluid, you can get the same amount of deformation regardless of the 

stress applied because you can always wait long enough. 
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Now, the next topic that we are going to worry about is fluid statics. Now so, this is the 

first series of topics we are going to cover in fluid mechanics. So, far we are been 

introducing the subject and introducing the notions of continuum hypothesis, what a 

fluids is and so on. 

The first topic that we are going to discuss is fluid statics and what are the forces that 

are… How force distribution happens when a fluid is completely static. Static means 

there is no flow, there is no motion. 

So, this is the topic that we are going to first discuss, and we will start from next the 

lecture. So, we will see you in the next lecture to discuss this new topic on the force 

distributions and static fluids. Good bye. 
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