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Welcome to lecture number 36 on this NPTEL course on fluid mechanics for 

undergraduate students chemical of engineering. 

Today we are going discuss fluid mechanics, application of fluid mechanics to various 

chemical engineering processes. And one of the major topics in chemical engineering an 

application is the flow of particulates in fluids. 
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In many chemical engineering applications for example, you have a system like channel 

in which you have many particles that are settling in a liquid. These are called settling 

tanks. So, here particles are moving and settling in a fluid due to gravity and this is used 

to separate particles of different sizes because of their difference in settling velocities as 

we will see. So, this one example there is settling tanks or sedimentation tanks as they 

are called in many chemical engineering applications. You will have sedimentation tanks 



that are used to remove particulates from one liquid phase and then use the liquid phase 

for further processing in other unit operations. 
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And you also have centrifuges to separate particles of different densities, particles or 

droplets of different densities. So, here the driving force here again it is also settling, but, 

under the influence of centrifugal driving forces. And you can you have other unit 

operations such as packed beds wherein you have a bed of particles which are in close 

contact and there is lot of gap in between the particles and fluid is flowing. 

Fluid is flowing in the interstitial gap between these particles. And there are also other 

applications such as fluidized beds wherein you have the motion of fluids through a bed 

of particles. But, the particles themselves are no longer static, but, they are also in some 

sense fluid is suspended. So, they are also in a state of animated motion due to the fact 

that the drag force exerted by the fluid on the particles exceeds the weight of the 

particles. So, the bed of particles starts fluidizing after some velocity. So, all these are 

examples of motion of particles in a fluid. And in order to design these operations well in 

many chemical engineering operations unit operations you have to understand the 

fundamental mechanics of flow of particulates through a liquid. 
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So, one of the simplest problem that we will first start with is flow or motion of a single 

particle in a fluid. (No audio from 03:24 to 03:34). So, essentially we will imagine that 

you have a spherical particle, rigid particle to begin of some radius or diameter D. And 

that is moving with a constant velocity under the influence of gravity. Let us say and we 

want to be able to predict what is the settling velocity of this particle; as a function of 

various parameters in the problem. 
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Now, we already know that the drag force experienced by a sphere is correlated in terms 

of non-dimensional groups C D as a function of the Reynolds number, where C D is 

nothing, but, 2 f D the force divided by maximum projected area times rho V p square by 

2. And then Reynolds number is of course defined as D p V p rho by mu where D V and 

V p are the diameter and velocity of the particles. F D is the drag forced experienced by 

the particle. So, C D is nothing, but, 2 f D by pi or p square rho V p square. 

(Refer Slide Time: 05:10) 

 

Now, if you substitute for Reynolds number small compared to one the drag force is 

given by the strokes drag law 6 pi R p eta V p. So, C D is given by 2 times 6 by R p eta 

V p divided by pi R p square rho V p square. So, C D for a spherical particle, at low 

Reynolds numbers given by, so, 2 times 6 is 12 and then the pi cancels off. One V p will 

cancel with one V p and R p will cancel with one R p will give you 12 by 12 times eta by 

rho R p V p; R p is D p by 2. So, C D is 12 times eta 2 by rho D p V p and this quantity 

is the Reynolds number based on the particle diameter and velocity. 
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So, the drag coefficient is given by 24 by divided by R e based on the particle for 

Reynolds number of the based on the particle much small compared to 1. Of course, at 

high Reynolds numbers we showed that we have log C D log R e plot and it will appear 

like this. For smaller Reynolds numbers is this constant. It is a straight line with slope 

minus 1, but, at higher Reynolds numbers of course, things are different and you will 

find that there is a reason of constant relatively constant drag coefficient. And then for 

Reynolds number of 10 to the 5 is about 10. You have transition from laminar flow to 

turbulence. So, we have this data. This is an experimental observation correlated in terms 

of drag coefficient and Reynolds number experimental data. 
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So, now we want to worry about settling velocity of a sphere. Imagine you have an 

infinite expanse of fluid and then you take a sphere and you drop it in the fluid in the 

liquid and there is gravity. After some time let us say you drop it with 0 velocity initially 

the velocity of the sphere is 0. After some time, initially, the sphere will accelerate 

because there is acceleration due to gravity acting on it, but, it is also being retracted by 

the fluid drag force. This is gravity force let us call it F g. The gravity force that acts and 

then there is drag force that acts in the opposite direction. There is also buoyancy force 

that acts in the opposite direction. 

So, these are the three forces. Now, initially, there will be in imbalance if you write force 

balance for the particle. So, the mass times rate of change of velocity acceleration of the 

particle is sum of all the forces. So, let us assume a coordinate frame x y and z. So, the 

velocity mass times D V by D t sum of all forces and the gravity forces is in let us simply 

write the algebraic quantities of all the algebraic. So, let us use the sign convention the 

gravities f g is acting its minus m g f buoyancy is plus the volume of the sphere let us 

assume the diameter of the sphere to be some D. 

So, the buoyancy will act in the plus y direction because it is buoyancy acts in this 

direction the direction opposite to the motion of the particle. So, buoyancy will act in the 

plus direction which is rho pi D p 2 by 6 time’s g. This is plus then there is drag force 

which is given by it is also in the plus y direction. So, the drag coefficient is defined in 



the following way. Let us look at the definition of the drag coefficient here. From here 

we can drag force which is nothing, but, pi R p square rho V p square by 2. Now if you 

write R p as V p divided by 2 then f D will be simply pi by 8 rho V p square D p square 

times C D of course, times C d. So, I will write if f D f D the drag force in terms of the 

drag coefficient. 
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So, the drag force is pi by 8 times rho V p square D p square times drag coefficient C d. 

So, at steady state you will have no when the sphere has reached the terminal sphere has 

sphere has reached a velocity such as all the force balances its acceleration is zero. So, 

this is called the terminal regime, wherein the sphere velocity does not change with time 

the velocity of the sphere is constant that is independent of time. 

So, you have to simply balance all the three forces and the three forces are simply zero is 

minus rho p by D p Q g by 6. This is the weight, rho p is the density of the particle times 

volume of the particle times g is the weight of the particle; it acts in the minus y direction 

times rho times pi D p cube g divided by 6 plus pi by 8 rho V p square D p square times 

C D. 
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So, if I eliminate for V p we will get V p is equal to square root if I solve for this 

equation for V p you will get 4 divided by 3 times rho p minus rho divided by rho D p g 

divided the drag coefficient. So, this is the terminal steady terminal velocity of a sphere. 

Expression for terminal settling velocity of settling of a sphere of diameter D p which is 

moving on density rho p which is moving in a fluid of density rho. 
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Now, of course, we have to look at different regimes when Reynolds numbers is small 

compared to one we know that C D is 24 divided by Reynolds numbers based on particle 



diameter. So, V p becomes 4 by 3 times rho p minus rho divided by rho time’s D p g by 

24 Reynolds number to the power half. 
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So, V p is nothing, but, or we can square the entire expression V p square is nothing, but, 

we will get. So, you have 4 6. So, you get 18 here you have 1 over 18 rho p minus rho 

divided by rho times D p g times. We have substitute for Reynolds numbers is D p fluid 

density rho V p divided by eta. 

Now, this fluid density will cancel with this density one factor of V p will cancel with 

one factor of V p here to give you V p is nothing, but, rho p minus rho D p square times 

g divided by 18 eta. So, for low Reynolds numbers the settling velocity is given by this 

expression. So, notice that the settling velocity for low Reynolds numbers is proportional 

to square of D p particle diameter. So, that is the key if everything remains constant. If 

you just worry about the variation of the settling velocity on the particle diameter it goes 

as the square of the particle diameter. Now, let us look at high Reynolds numbers. 
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Now, I told you that when Reynolds numbers is in between 1000 and twice 10 to the 5 

there is a region of constant drag coefficient. If you look at this data here C D is 

approximately constant. So, we are looking at this regime where C D is approximately 

constant. It is a number and the number is approximately 0.44. So, then we have to 

merely substitute 0.44 in this expression for C D and then we will get an expression for 

the settling velocity. And the settling velocity for this regime is approximately 3 D p g 

rho p minus rho divided by rho to the power half. Now, notice here that this is the 

settling velocity at the relatively high Reynolds numbers regime between 10 to the 3 and 

twice 10 to the 5, 10 to the 3 and 10 to the 5. 

Notice that the settling velocity is proportional to diameter of the particle to the power 

half. So, there is a square root here also. So, the way in which the settling velocity 

depends on the diameter of the sphere is very different whether the Reynolds numbers is 

small or large. It goes as settling velocity goes as diameter of the particle squared at low 

Reynolds numbers while it goes diameters of the particle at half for high Reynolds 

numbers. 
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Now, this expression can be used to measure the viscosity of a fluid and such a device is 

called the falling ball viscometer. Essentially the idea is you drop a sphere in a fluid and 

wait for it. You take a sphere and replace it in a liquid whose viscosity you want to find 

and wait for it to attain terminal velocity. Calculate the velocity by noting how much 

distance it travels over a particular time t and that will give you the terminal velocity 

settling velocity. So, the settling terminal velocity is measured in the experiment by 

simply measuring the time particles takes to move a certain distance and from there we 

can calculate the viscosity of the liquid in which it is settling through other parameters. 

So, divided by so, merely inverting this expression. So, if the Reynolds number is low. 

So, we can pull theta here and V p here and that is all we have done in this expression. 

And to get an expression for viscosity provided you know what is the diameter density of 

particle density of fluid and you measure the settling velocity; velocity of settling of the 

particle. 
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So, this is often used to measure the viscosity in many industrial settings because it is 

easy first of all to do such an experiment and this is assuming that Reynolds number is 

small. Because, you choose your particle dimensions such that the Reynolds number 

based on the particle is very small. Now, in the above when we used the Stokes drag law. 

So, this is the Stokes drag law of valid at small values of particle Reynolds number. 

When we use the stroke drag law we are using, we are assuming that the fluid is infinite 

in expanse. That is the there are no surrounding walls. But in reality there will be 

surrounding walls. 
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Suppose you may do an experiment in a container and therefore, you have diameter of 

the particle D and then the diameter of the container let us say D C. In principle you may 

expect that when the diameter of the particle is very small compared to the diameter of 

the cylinder in which it is flowing, it is moving. Then you would assume that the wall 

effect on the drag law drag law is negligible. 

Because this drag law is valid only if the walls are infinitely away from the particle, but, 

in reality that is not the case because we do experiments often in laboratory where there 

are confining walls of cylinder or whichever container we are doing experiments. But, 

you can also correct for that. So, the drag coefficient is 24 by r e times some function of 

D p by D C, where people have found using experiments what this functional form is. 
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So, initially it goes as 1 plus. It goes 1 plus this function is what I am plotting as a 

function of D p over D C. Initially it goes 1 plus 2 point one times D p by D c. So, when 

D p equals D C of course, we expect the function to go to 1 and then it starts deviating. 

So, the confining walls tend to increase the drag because there is additional dissipation in 

the problem compared to when you have no confining walls. So, typically when D p by 

D C is less than 1 over 20 then the isolated sphere results is pretty good; answer is pretty 

good. But, when the confining walls or when D p by D C is such that it is not as small 

then you will start seeing the effects of containing walls confining walls and this is given 

by this correction. 

So, we have seen what is meant by settling of a sphere and we will we are going to now 

first understand that it is not just that drag coefficients are defined only for spheres. You 

can have in many applications particles of other shapes also. 
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So, a general definition of drag coefficient is simply C D is the drag force divided by half 

rho V p square times A p where is A p is the projection of the solid object on a plane 

normal to the direction of flow; Area of projection of the solid object in the direction 

normal to flow. So, for example, if you have a cylinder that is moving settling suppose, 

you have cylinder settling like this and you have cylinder settling like this and the under 

influence of gravity the projected area here is very different. Here the projected area is 

simply it is going to appear like a rectangle. Here the projected area is going to appear 

like a circle of radius pi D p square by 4 or whereas, over here the projection area is pi D 

p times l. 

So, it is very different depending on sorry not there is no pi here it is D p times L because 

it is going to appear like rectangle of dimensions D p times l. So, the drag coefficient is 

defined differently because the projected area is very different and similar drag loss. I 

mean that this how the drag coefficient depends on Reynolds number is empirically 

found using experiments for other geometry such as cylinders as well. But, those are 

matters of experimental detail which can be found in text books or those are just matter 

just empirical data which can found in text books. But, the idea is that you do have 

similar drag coefficient versus Reynolds number relations for other geometries as well. 
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Now, I am going to do an application and the application is as follows. You want to have 

separation of particulates by virtue of the difference in their size for example. Suppose, 

you have how it is done is you see what is called a gravity settling chamber? (No audio 

from 23:14 to 23:23). Essentially, you have a box channel through which you have flow 

of a particulate. This is a suspension of it is this is like a suspension of some fly 

particulates like solid particles that are suspended in a fluid and the flow rate is Q. And 

width of the channel is W in this direction and height of the channel is H the gap in 

which particulate is flowing its flowing out in this direction and the length of the channel 

is l. 
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So, let us assume W is very large. So, we can treat the problem as a 2 dimensional 

problem. So, you imagine you have a channel height is H and the length is L and you 

have a mixture of gas solid mixture gas plus tiny solid particulates that flow in. And we 

want to make sure when the gas when this mixture flows out we want to separate out the 

solid from the gas. And that happens by the virtue of the gravity which acts in this 

direction and settling. But, typically in industrial applications this in incoming mixture 

will have a size distribution of particles not all particles will have the same size. It will 

have particles of varying sizes. 

So, but, we want to know. So, from settling from the basic idea of settling you will 

imagine that bigger particles will settle sooner compared to smaller particles. Because, 

the drag force sorry the let us let us look at this settling velocity the settling velocity at 

low Reynolds numbers is proportional to D p square. So, the settling velocity is 

proportional to D p square which is what we derived just now. 

So, it is higher by particles with higher diameters are going to settle more quickly 

compared to particles with smaller diameter. So, you can ask the question suppose I start 

from here. What is the smallest particle that I can capture in a length L? Suppose, you 

have a settling chamber of some length L and the gap with H what is the smallest particle 

that you can capture typically in a settling chamber. So, let us start with some position a 

here. 



Now, if this particle has to be trapped over a distance L then it must settle or it must 

travel a distance of H within a time where wherein it resides in this settling chamber. 

That residence time is typically the average velocity divided by the length of the, this is 

typically the residence time; time of residence. A particle will approximately stay over a 

time of order u by L because it has to travel with an average velocity city u over a 

distance l. So, the time the particle spends in this chamber is u by l. 

Now, within this time this particle which started out here must reach here as it moves. 

So, the particle will do this the trajectory of the particle will be something like this. So, if 

you consider a particle that is bigger than this particle that is anyway going to settle 

quickly. If you consider a particle that is smaller it is not going to settle. It is not going to 

settle within the chamber it is going to fly away with the flow. So, there is flow in this 

direction. So, which is that particle which will exactly start here at A and end here at B 

and that particle will be the cut off diameter which can be separated by this settling 

chamber. 
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So, let us look at this analysis. The horizontal velocity of the fluid is simply average 

velocity of the flow is simply the volumetric flow rate divided by the area. Area is the 

cross section area of flow, which is width, which is into the board times the gap 

thickness h. A residence time of the particle the time, the particle typically spends in the 

chamber is simply L by V f which is nothing, but, W H L by Q. Now, if the particle falls 



with the settling velocity V p the time it takes taken to settle over a distance H is simply 

H divided by V p. This is let us call it t v. 
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Now, if you imagine that you wanted a particle which started at A and ends exactly at B. 

For such a particle the time of residence which is the time it spends over a length L must 

be exactly equal to the time of settling. So, t H is the residence time velocity time. So, it 

must be equal to settling time. So, equate the two times we will have W H L divided by 

Q is nothing, but, H divided by V p or V p is Q divided by W L as H cancels from both 

sides. 
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Now, we have let us say, we have small particles and let us assume that Reynolds 

number of based on particle is small compared to 1. Then we will use the settling 

velocity that we just derived for such particles which is g D p square rho p minus rho 

divided by 18 eta. We are going to substitute this out here. 
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So, we will get g D p square rho p minus rho by 18 eta is Q divided W L or D p is 

nothing, but, 18 eta Q divided by g W L times rho p minus rho the whole thing to the 

power half. Now, this is the smallest diameter typically that can be captured by in the 



settling tank of this dimension. If Q is the volumetric flow rate of the mixture it has the 

viscosity of the liquid, g is the acceleration due to gravity, W is the width into the paper, 

L is the length of the channel, rho p is the density of the particles and rho is the density 

of the fluid in which it is travelled it is moving. This is the diameter of the smallest 

particle that can that typically the diameter of the smallest particle. 

Now, if a smaller particle it is in principle possible that a smaller particle than this D p 

enters the chamber somewhat below A and it can be captured before B itself. But, that is 

something that is something that we can predict with certainty. So, this is typically 

because the incoming particles will come with distribution and each particle will enter 

the chamber at different vertical locations. 

So, obviously, that can be smaller particles that can that can settle in the chamber, but, 

we can make with the following statement with certainly that no particle larger than D p 

will settle within the chamber. Now, so far we have been discussing the settling and 

motion of rigid particles. There is also case in many chemical engineering applications 

where you have to motion of drops and bubbles in a liquid. (No audio from 31:59 to 

32:09). 
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Now, if you have a drop of some diameter D and let us say the drop viscosity is mu I and 

the outside viscosity is mu o. Then at low Reynolds numbers based on the drop small 

compared to 1 the drag coefficient is given by 24 divided by r e time’s k plus 2 divided 



by 3 divided by k plus 1 where k is nothing, but, mu I divided by mu o. So, the ratio of 

inner fluid viscosity drops viscosity to the outer viscosity. 
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So, we have two limiting cases where mu is very small compared to mu o you get the 

motion of an air bubble or a bubble, gas bubble. And you will get C D in that limit. So, 

mu I is less than mu naught k tends to 0, if, I put k tends to 0 in this case I will get 16 by 

R e. Now, if mu I is very large compared to mu o that is k tending to infinity you get a 

rigid object rigid sphere. So, C D becomes 24 by l. So, it does reduce to the well-known 

cases of the; it does reduce correctly to the result of 24 by r e when the viscosity of the 

inner fluid is very large compared to the viscosity of the outer fluid. 

And we also have a new result that for the motion of the gas bubble suppose you have a 

gas bubble in water air bubble in water it is going to rise. What is the terminal rise 

velocity at low Reynolds numbers? Well we can use this relation and then find out the 

terminal rise velocity in a very similar way that we did for terminal settling velocity. 
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Now, it does not just because of the driving force for settling is typically gravity in many 

applications, but, in many of in some application you do find the use of centrifugal 

driving forces that drive the motion of the particle in a fluid. So, the centrifugal happen 

forces happen whenever there is a rotation of fluid flow. So, whenever the direct of part 

of. So, when you have a suspension of a liquid in of solid in liquid and then if you want 

to separate these particles based on their sizes or densities. You can use gravity, but, 

gravity you cannot manipulate gravity because it is fixed on the surface earth. 

So, if you were to use, if you want to speed up the process, if you want to have more 

control over the process, you could use centrifugal forces because these forces also 

appear as body forces. Because, this is like motion in an accelerating frame of reference 

it is a rotating frame of reference. So, you have fictitious forces which will act like body 

forces and that force proportional to r omega the acceleration centrifugal acceleration 

proportion to r time’s omega square. 

So, if you balance the centrifugal acceleration with the drag force you will get O is r 

omega square rho p times 1 minus rho divided by rho p. This is the net driving, net force 

along the direction of the body force because you have to account for buoyancy minus 

the drag force which is opposing this. So, C rho V square A p by 2 m. So, the terminal 

velocity in a centrifugal field is written as omega times square root of 2 r rho p minus rho 

times m divided by A p rho p C D rho. 



So, once you know what C D is you can actually predict the terminal velocity in a 

settling of settling even in a centrifugal field. This is often used in you know you know if 

you have a dairy product milk is basically emulsion of droplets of one liquid in another. 

Suppose, you want to remove fat from the milk and since fat has different density 

compared to the other constituents of milk you can centrifuge the milk to separate the fat 

from the rest of the milk. 

So, this is how the process skimming is done in a milk using centrifuges and there if you 

want to design those centrifuges you have to have clear cut idea of what is the terminal 

velocity. In order to design the centrifuge, what is the size of the centrifuge you need and 

so on? So, such calculations are very useful in the design of these unit operations. 

So, the next topic that we are going to discuss is related to flow of particulates in a fluid 

or we are going to look at the flow of fluid through a bed of particles which is slightly 

opposite different from what we just did. We so far, we considered the motion of 

particles in a fluid now we are going to consider the motion of fluid in a bed of particles. 

Such beds or such operations are called packed beds in chemical engineering 

applications. The reason why packed beds are used in many unit of operations such as 

adsorption or even reaction is that the packing of a higher surface area per unit volume 

for gas liquid contacting. 

So, typically you may want to conduct an absorption process in a packed bed because 

you want to contact essentially a gas phase with a liquid phase and transfer species 

across the interface between gas and liquid. And clearly the amount of I mean the extent 

the rate at which the transfer can happen will depend on how much area is available for 

the transfer. And if you provide a packing that essentially increases the contact area of 

mass transfer per unit of volume of the bed. So, because of this high surface areas high 

interfacial area of mass transfer that is available these are often used in chemical 

engineering applications. 
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So, the next topic that we are going to do is packed beds. So, it is going to schematically 

appear like this you have a bed of particle and fluid is going to flow in this interstitial 

voids or interstitial spaces between these various particles. If you want to design a 

packed bed for a chemical engineering application, you want to know what is the 

pressure drop to make a fluid flow with some flow rate Q. So, this is the typical design 

question that comes up in designing packed beds. So, how are we going to do that? Now, 

if we were to draw a cartoon of the interstitial spaces, it may look like this. 

So, and you can draw several such contours of interstitial spaces through which fluid is 

going to flow. So, like this and so on. So, there are going to be gaps through which fluid 

is going to flow and essentially the flow through a packed bed can be thought of as a 

flow through a bundle of corrugated tubes. So, you can imagine each path can be like a 

tube and there are several such paths. So, there is empty space within the tube and the 

rest is all solid filling. So, this is the model that we are going to use. A packed bed can be 

thought of as a bundle of rough and highly tortuous tubes of some complex curve cross 

section; rough tortuous tubes. 

Now, we are going to assume further simplification since this problem is way too 

complex. We are going to assume this can be simplified as a bed of uniform circular 

tubes such that the surface area of this problem and the total void volume in this problem 

will match with that of the real packed bed. 



So, that is the only connection that we are going to essentially think of flow through a 

packed bed as a flow through a bundle of tubes. Although, in reality these tubes are 

extremely complex in their cross section and they are very corrugated. But, we are going 

to assume this is going to look like a straight tube, but, we are going to make the 

connection between the model and reality by saying the following that. 
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Assume that the bed has a set of uniform circular channels whose surface area and total 

void volume match the actual packed bed. So, this is the only connection we are going to 

make with the real packed bed. So, let us first look at the real packed bed. The real 

packed bed the total surface area is nothing, but, of particles is equal to the surface area 

per particle times the number of particles total number of particles. So, that is the total 

surface area available for the in the real packed bed. 
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Now, the volume fraction of particles is nothing, but, volume of particles in the bed 

divided by the total volume of the bed. This is the volume fraction of particles it is 

essentially the amount of volume that is occupied by the particles divided by the total 

volume. This is nothing, but, the total number of particles times volume of one particle 

single particle divided by the total bed volume. 
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Now, the bed porosity is defined by the symbol epsilon is essentially the void volume 

divided by total volume. So, the volume fraction of particles becomes 1 over 1 minus 



epsilon. The volume fraction of particles becomes 1 minus epsilon because there only 

particles and void only 2. It is like of like two components system. If voids are 

occupying volume of epsilon then this can to occupy particles have to volume occupy the 

remaining volume. So, the fraction of that space is 1 minus epsilon. 
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So, the surface to volume ratio of a single particle is surface area of a particle divided by 

volume of a single particle. For a sphere, if the particle is a sphere s p is nothing, but, pi 

D p square and V p is nothing, but, 1 over 6 pi D p q. So, s p divided by V p is 6 by D p 

for a sphere. For non-spherical particles because typically we will definitely have only 

non-spherical particles in practical applications s p by V p is written as 6 by phi s D p phi 

s is called a Sphercicity. So, it tells you about deviation from a spherical shape and phi s 

for some spherical shape cause s p by D p is simply 6 by D p for non-spherical particles 

phi s greater than 1. So, so this shows s p by D p is denoted by sphercicity parameter. 

So, you write the, so, you calculate how sphercicity is calculated? You determine s p by 

V p for a non-spherical particle and then use this to determine sphercicity. It tells you the 

deviation from the spherical shape. 
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So, now we want to now find what is the equivalent diameter of the tube? (No audio 

from 46:38 to 46:46) through which we imagine fluid is flowing inside a packed bed in 

this bundle of tubes model. Now, first thing we will do is to evaluate the surface area of 

the tubes surface area of n parallel tubes of length L. So, here we are assuming that the 

length of the tube is same as the length of the bed same as the length of the bed which is 

a severe assumption. Because in reality the actual length of the flow of the particle sorry 

actual length of the fluid since the fluid is since, the tube is highly corrugated; it should 

certainly be more than l. But, we are now assuming because we do not know how what is 

the length of the actual flow path of a fluid inside this corrugated space. 

So, we are going to assume the same as the length of the bed itself. So, this is an 

assumption. This is nothing, but, so, now first we evaluate this and then we equate this to 

this must be equal to the surface volume ratio times the particle volume in the actual bed 

in the real packed bed. 
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So, this is simple to calculate. So, number of tubes times pi D e Q time’s l. This is 

surface area of a single tube through which fluid is moving and times n number of tubes 

is equal to. Therefore, the surface to volume ratio of a particle which is non-spherical is 6 

by phi s D p times the particle volume in the bed particle volume in the bed is nothing, 

but, the cross section of the bed times the length of the bed times 1 minus epsilon. 

This is the empty volume of the bed, but, 1 minus epsilon of this fraction 1 minus epsilon 

of this volume is occupied by the particles. So, we have to do that. So, this is the empty 

volume of the bed volume. This is particle volume fraction and this is the surface to 

volume ratio of a non-spherical particle if it is a sphere phi s is 1. This is one constraint 

that we have. The second constraint is that we have is that the void volume in the bed. 

The void volume in the bed is the same as the total volume of the n channels. 

So, the void volume is simply s naught times L times epsilon. Because it is the empty 

bed volume and once you put in particles this is the void volume because epsilon is the 

void volume divided by the total volume. This is equal to n times pi times l. This is the 

cross section need of a single tube times its length times the number of such cha tube. 
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So, by equating these two. So, D equilibrium sorry b equivalent becomes therefore, 2 by 

3 phi s. So, if you look at this term you can get L will cancel out; L cancels out. So, you 

can get D equivalent in terms of other properties, other quantities. So, D equivalent 

becomes 2 by 3 times phi s and also we have to eliminate for n by using this expression. 

So, essentially you can write instead of s naught L time’s epsilon. You can write this 

expression out here instead of s naught L you substitute n times 1 by 4 pi D square L out 

here and then eliminate for D equivalent for D equivalent. So, we will get 2 by 3 phi s D 

p times epsilon by 1 minus epsilon. 

So, this is the equivalent diameter of the various tubes based on the nature of the 

geometry of the particle the particle dimension and the porosity of the bed. So, we are 

trying to we have already gotten an expression for the equivalent diameter for these tubes 

through which we imagine fluid is flowing. 

Now, the pressure drop depends on the average velocity in the channel; will be a 

function of the velocity in the channels in this various channels. The question is which 

velocity is to be used cause if you consider the bed. So, you have the cross section of the 

bed as s naught and volumetric flow rate that flows is q. So, this will be what is called 

the superficial velocity. 

This is the superficial velocity of the fluid within the bed because once if you look at the 

actual velocity it is likely to be more than the superficial velocity. Because, the cross 



section flow is not actually the entire thing there is only some part that is available for 

the flow. So, it has to be more. So, how do we do that? How to find the relation between 

the superficial velocity and the actual velocity? It is also called the empty tower velocity. 

If the tower was empty without any particles then what is the velocity that you would 

expect in the bed. 
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So, how do you relate this to? So, Q naught is V naught times s naught. Now, that is 

simply equal to n times pi D Equivalent Square by 4 times v. Because this is the 

volumetric flow rate in these n tubes each tube is of dimension of area these cross and 

there are n such tubes. This is the volumetric flow rate across the n tubes that we have 

modeled. So, V becomes therefore, V naught 4 V naught s naught divided by n pi D 

equivalent square. 

Now, there is there is also this equation. You have this expression that relates n and s 

naught L e epsilon. So, once you substitute that, but, n times pi D equivalent squared by 

4 is nothing, but, s naught times epsilon. So, V bar will become therefore, V naught by 

epsilon. So, we can see that V bar is greater than V naught because epsilon is always less 

than 1; epsilon is the porosity. So, this always is less than 1 and in the limit when epsilon 

is equal to 1 that is the whole bed is empty then we will get V equals V naught. 
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So, now we know what is V in terms of the superficial velocity of the bed divided by 

porosity and we know what is D equivalent. So, we know what is the velocity and the 

diameter of the pipes. So, we can use suppose, the Reynolds number is low, Then we can 

use the laminar flow relation. So, delta p by L is 32 V bar mu by D square it is 32 V bar 

is nothing, but, V naught by epsilon times mu by 1 by instead of D we will put D 

equivalent square equivalent diameter and then substitute the expression for D 

equivalent. 

So, you get delta p by L is nothing, but, 32 V naught by epsilon mu 1 over 1 minus 

epsilon squared by epsilon square 4 by 9 phi s square times D p square just after 

substituting the expression for D equivalent that we just derived few minutes back. So, 

delta p by L becomes now after doing algebra the algebra here you will find that this is 

nothing, but, 72 times V naught mu divided by phi s square D p square times 1 minus 

epsilon whole square by epsilon cube. 

Now, we will stop here and we will continue with this derivation in the next lecture 

where we will complete the derivation for pressure drop in packed bed both in the 

laminar regime as well as in the turbulent regime. 


