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Welcome to this lecture number 33 on this NPTEL course on Fluid Mechanics for under 

graduate chemical engineering students. The topic that, we are currently discussing in the 

last two lectures is higher Reynolds number flows, when fluid flow, typically fluid flows 

happen at very high Reynolds numbers of the order of few thousands in many 

engineering applications. Therefore, it is very useful to understand the basics of the 

fundamentals of fluid flow at high Reynolds numbers. At high Reynolds numbers, the 

inertial forces are dominant compared to viscous forces in the in the flow. 
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Therefore, as a first approximation, we can hope to neglect the viscous forces or viscous 

effects all together, there thereby ending up with the Euler equation, which is simply the 

Navier stokes equation without the viscous terms, this is the inertial part of the Euler 

equation and the pressure force is plus the gravity forces. Now, upon using a vector 

identity and by assuming that either, suppose if omega is del cross v is the vorticity of 



the flow then, either by assuming that flow is along a stream line line or another 

independent assumption, by assuming that vorticity is 0, that is the flow is irrotational. 
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We were able to show, that the Euler equation simplifies to the Bernoulli equation for a 

steady, incompressible and inviscid flow, that is, flow without viscous effects. So, you 

have p by rho plus half v square plus g times z is a constant along a stream line, this is if 

use assumption 1, or it is a constant anywhere in the flow, if you use assumption 2. That 

is, if you assume that the flow is irrotational, anywhere in the flow, if omega is 0. So, 

these are two independent assumptions, as I told you in the last lecture, this is the more 

stronger assumption, because we are assuming that the flow is irrotational, but it leads to 

simplification, that this is a constant anywhere in the flow. 

Another, so we will also pointed out we also pointed out in the last lecture, that 

irrotationality, although being the kinematic assumption is more likely to be seen at 

higher Reynolds numbers, when you are far away from solid surfaces. 

So, we can assume the flow to be reasonably irrotational when the fluid flow is happen 

happening at higher Reynolds numbers, but close to the solid surfaces, rotational effects 

become important. So, we can imagine the solid surfaces to be sources of vorticity and 

they the vorticity will be confined close to the solid surfaces, but far away from solid 

surfaces at high Reynolds numbers, the flow is largely irrotational. 
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So, when you assume the flow is irrotational implies irrotational implies del cross v is 0, 

or whenever you write curl of a velocity vector is 0, then we can write v as a gradient of 

a scalar potential, this scalar potential is called the velocity potential. So, inviscid and 

irrotational flows are also called as, so inviscid plus irrotational flows are also called as 

potential flows, are also known as potential flows, because the velocity is written as a 

gradient of a potential. 
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What is the simplification? The velocity is a three dimensional quantity in general, it has 

three components, each being the function of all the three coordinates directions. But if 

you use velocity as gradient of potential for irrotational flows, then you need to resolve 

only one unknown function, instead of three unknown functions. So, only one functions 

to be solved, so it leads to lot of simplifications. 
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Another simplification that comes is that, when you couple this with the fact that the 

mass conservation equation for incompressible flows becomes del dot v is 0, this means 

that del dot del psi del phi is 0 or del squared phi is 0. 

So, this is a Laplace equation, so this is a well-known Laplace equation, but importantly, 

it is a linear equation, so the potential satisfies the Laplace equation for the potential 

flows, we also pointed out that, the only boundary condition that can be applied is the 

normal velocity condition, because we are forgone v dot n is 0 on solid surfaces, because 

we have already sacrificed, we have already dropped the highest order derivative in the 

Navier Stokes equation namely, the viscous terms, so we cannot satisfy all the boundary 

conditions that are present in the problem that will lead to over specification of the Euler 

equation problem. 

So, we have to necessarily sacrifice or forgo one of the boundary conditions. So, we we 

actually omit the tangential velocity condition in the inviscid flow regime. Now, whether 

this is really a good assumption or not, has to be seen, but already this, because the 



tangential velocity condition is satisfied, no matter what, how higher the Reynolds 

number is. 

So, clearly the no-slip condition is being violated by not being  by not satisfying the no-

slip condition, we are neglecting some physics, how important and that is we will see a 

little later, and that will be done in the context of what is called the boundary layer 

theorem. But right now, let us stick to potential flows and in the last lecture, we 

mentioned that, it is much easier to solve the potential flow, because you have to simply 

solve del squared phi is 0 subject to v dot n is 0 on the solid boundaries. Now, that is 

merely del squared phi is equal to 0, is merely a statement of the fact that, the flow is 

irrotational and incompressible. 

So, the momentum equation, the Euler equation, which has been simplified to the 

Bernoulli equation for a potential flow, merely serves to determine the pressure. So, the 

velocity is determined first by solving the Laplace equation, subjected to the normal 

velocity boundary condition and the Bernoulli equation is then used to solve the pressure 

in the flow, there are no viscous stresses. So, once you know the pressure in the flow, 

then you can integrate it over a solid surface to find, what is the net force on a body? For 

example which we will indicate a little later. 
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Now, the the context in which we started out discussing potential flows is that, we 

provided examples of some simple potential flows, so we started discussing some simple 



potential flows. Before that, we also discussed that just as this potential satisfies del 

squared phi is equal to 0, for 2 dimensional flows, that is when the flow is happening 

only in the x y plane, we also showed that the stream function also satisfies the Laplace 

equation. 

And lines of constant stream functions, psi are perpendicular to lines of constant phi, that 

is, the stream lines and the equipotentials are orthogonal to each other, each and at each 

and every point in the flow. So, this is something that that we discussed, then we 

proceeded to do two examples, we did the (()), we found out what is the potential and 

stream function for what a uniform flow is. 
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A uniform flow is essentially a flow, in the x y plane or the flow is constant in the x 

direction, there is no flow in the y direction. So, u equals U and v equals 0 and we found 

that, the potential is U times x and the stream function is U times y, we have already 

solved this. So, the potentials or lines, so lines of constant potentials are found by putting 

x constant values. So, you will find that, lines of constant potential or vertical lines along 

the y y direction, while lines of constant stream function are putting, are obtained by 

putting values of y, because psi is simply U y, which are just horizontal lines, which 

makes sense for a uniform flow. 
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Then we also discussed, we also discussed line source, or sink which is essentially you 

have, the x y z plane. Imagine you have a source of fluid of mass, and where fluid is 

coming out radially, at each and every point. Since, the source length is very very large, 

you can imagine it to be like in the x y plane, it will appear like, you have a point source 

and fluid comes out radially at each and every point. So, this is the, and if it is a sink, if 

all the vectors are radially invert, it is the source of all the vectors are radially outward. 

And for this problem, we found that the stream function velocity potential is m log r and 

this stream function is m theta, where m is nothing but Q by 2 pi b, where b is the length 

of the source and Q is the volumetric flow rate, this is called the source strength. If m is 

positive, it is a source flow; if m is negative, it is a sink flow. So, we have discussed this 

also, in the last lecture. We then began discus what is called a line vertex that is the topic 

that we going to start now. 
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A line vortex is essentially, if you look at the 2 D plane, you have fluid flow completely 

in circular stream lines; stream lines are completely circular in the x y plane. So, you 

have v theta is some constant by r and v r is 0, now this is the description of the velocity 

field. So, from this, you can find out use cylindrical polar coordinates coordinates to find 

what is the stream function and what is the velocity potential velocity potential? So, v 

theta is K by r is nothing but 1 over r, partial phi partial theta is nothing but minus partial 

psi partial r and v r is 0 is partial phi partial r is 1 over r partial psi partial theta. 
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So, if you integrate the v r equation, you will find that phi; integrate this with respect to r. 

So, phi becomes a constant which could be a functional theta and psi, if you integrate 

this with respect to theta, you will find that it is a constant which could be a function 

only of r. Now, if we integrate, so that is upon integrating this equation, if integrate this 

equation, if we integrate that equation, we will get phi is K theta plus a constant which 

could be a functional of r and psi is essentially. 

So, if you do this, psi becomes minus some other constant. So, sorry minus K log r plus 

some constant which could be a function of theta, should compare all this, you finally get 

this. So, these constant must be identically 0, since phi already K theta. So, let me 6 

sorry, so phi is already, phi is a function only of theta so that, so this constant is 

identically 0, I am sorry likewise this constant, since i is the function only for this 

constant is 0. So, ultimately we get, phi K theta psi is minus K l n r, these are the 

potentials and stream functions for line vortex. So, if you look at the expressions, we can 

finally draw, what are the potential and stream functions. 

(Refer Slide Time: 14:55) 

 

So, steam functions are lines of constant r, so they are circular two dimensions and 

potentials are lines of constant theta. So, they will be radially outgoing lines, these are 

potentials, equipotentials and these are constant psi lines. So, these are three 

fundamentals solutions of potential flows, simple solutions of potential flows. Now, we 



going to discuss a very important concept in potential flows, that is we going to discuss 

what is called super position. 
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So, the Laplace equation, that governs the stream functions and potential are linear 

equations. So, if phi 1 and phi 2 are solutions of Laplace equations, then so is some 

constant times phi 1, some other constant times phi 2. So, if we have two simple 

solutions of the Laplace equation, you can linearly superpose them and the super position 

is also a solution to the Laplace equation. So, if we have two solutions to the Laplace 

equation, then the liner, any liner combination of these two solutions is also a solution to 

Laplace equation. 

So, by generated, by combining all the simple solution that we have seen, we can 

generate newer solutions, which are also solution to Laplace equation, but we have to 

then figure out what to what physical contexts are the solutions of. So, that is the task 

that we have to complete, but all we we will definitely have a solution to the Laplace 

equation and then, we will find out to which problem it is a solution of it. 

It is in fact, like the reverse of what we do normally, we have a problem and we find a 

solution, here it is almost the reverse where we find the solution by linearly combining 

various simple solutions and then, find out what is the problems for which, this is the 

salutation of, I am going to illustrate this with a couple of examples. 
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So, let me do this for what is called doublet or a die pole. So, essentially you have in the 

x y plane, you have a source at a distance of strength plus n, distance minus a from the 

origin in the x axis, and a sink of strength minus m. So, we want to know what is the 

solution for this problem, this is called a doublet or dipole, because you have a source 

and sink that are separated by distance 2 a. Now, by the argument I just told you, psi for 

doublet is essentially psi source plus psi sink, because if psi source is a solution of 

Laplace equation, size sink is a solution of Laplace equation, then a combination of that 

also solution is also Laplace equation. 
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Now, we know that if psi is at the origin, sources is at a origin, psi is m theta, theta is tan 

inverse of y by x, in terms of the Cartesian variables y and x. If source, this is source at 

origin, if source is at any location x is, x equals x naught y equal y naught, then we can 

write psi is m theta is equal to m tan inverse of distance from the source becomes y 

minus y naught, and x minus x naught. 

In this problem, x naught is x naught is minus a, the source is at a distance minus a, but 

why naught is 0, it s still at the origin, in the y direction, all along the x axis in the y 

direction. So, size source for our problem is essentially m tan inverse of y divided by x 

plus a, and psi sink is essentially minus m tan inverse of y divided by x minus a. 
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So, psi doublet which is essentially the super position of these two, is m times tan inverse 

of y divided by x plus a minus tan inverse of y divided by x minus a. So, linearly 

combining the two solutions for psi source and psi sink, we have easily obtained the 

solution for a doublet. 

Now, we want to take the limit, so I will first rewrite this as, m times tan inverse of y by 

x times 1 minus a by x minus tan inverse of y by x times. So, if we multiply this by y by 

x, I will get, so let me just do this algebra. So, y by x times 1 minus a by x is y by x 

minus, so instead of doing this, I just delete this step, it is not required. We can take the 

limit; we want to look at the limit where the distance between the two sources, the source 

of string plus m and sink of sink minus m, we want to let the distance go to 0. 



At the same time, but if the distance goes to 0, the source and sink will cancel each other, 

but in such a manner that, m tends to infinity, the sink strength tends to infinity such that, 

the product of this distance and the strength tends to two times that tends to lambda, this 

is the strength of the doublet. So, in that limit, we can simplify this as a tends to 0 psi 

doublet, this expression as a tends to 0, this becomes minus 2 in the limits as a tends to 0, 

becomes minus 2 y a divided by x square plus y square times m. 
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So, this becomes psi doublet as a tends to 0, m tends to infinity, 2 a m tends to lambda 

becomes minus lambda y divided by x square plus y square, or we can say that, we can 

rewrite this as x square plus y square psi plus lambda y 0, or x square plus y plus lambda 

by 2 psi whole square is lambda by 2 psi whole square. So, as becomes very very small 

and m becomes very very large, and such a manner that a times m is a constant, the 

doublet essentially becomes like this. 

So, the stream functions are circles, you have to, so in order to plot a same function, you 

have to put psi equals to constant; or in order to plot the stream lines, you have to put psi 

equals constant and you have to simply draw the curve. 
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You will find that, these are essentially circles like this of, so essentially, the source will 

turn to push the fluid in this direction, and the sink will turn to attract the fluid in this 

direction. So, the direction of flow is like this, so source is trying to push the fluid like 

this, the sink is trying to attract the fluid and the equipotential will be perpendicular to 

this. 

So, we have to draw circle, I mean circles that are perpendicular to at each and every 

point and so on. So, those are the equipotentials, and the potential are also easily derived 

for the doublet. So, by superposing the two solutions and getting the limit as a tends to 0, 

you will get this is lambda x by x square plus y square and these are also circles, but in 

such a manner that, they are orthogonal to the steam lines, the equipotential also circles. 
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Now, so we have these two expressions psi doublet and phi doublet, psi doublet is minus 

lambda y divided by x square plus y square. Then from geometry, we can write this in 

cylindrical polar coordinates as, so this is x by x square plus y square is nothing but, so if 

you look at the polar coordinates, you have r theta. So, this is x is r cos theta, so lambda r 

cos theta divided by r square. So, this becomes lambda cos theta by r, this becomes 

minus lambda sin theta by r. So, these are the expressions for doublets, the steam 

functions and velocity potentials for a doublet. 

So, the doublet is again solution, that is a mathematical abstraction, but it is nonetheless 

solution to potential flow, in which case wherein, you have a source of fluid and a sink of 

fluid in such a manner that of identical strengths, but source as positives values and sink 

has negative values, in such a manner that you bring the source and sink together, but the 

distance, as the distance goes to 0, the magnitude of the source are sink strength also 

goes infinity in such a manner that, a times m, that is a product of these two tends to a 

constant lambda, twice of  that, two times, a times m tends to a constant lambda. And in 

that limit, you get what is called doublet or a dipole. 

Now, all though the dipole by it self is merely a mathematical abstraction, we will soon 

see that the dipole plays an important role in finding, what is the flow pattern for, 

potential flow fastest cylinder. 
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But before that, I want to discuss one important example that is, that of what is called 

Rankin half body. Suppose, you have a source at the origin, so in cylindrical polar source 

at the origin means the string functional is m theta and a uniform flow in the x direction. 

So, let me draw the coordinate direction, you have x y, you have a source at the origin 

plus m and far away, you have uniform in the plus x direction of velocity u. So, the 

uniform flow has potential stream function u y, y is r sin theta. So, I am writing this as r 

sin theta. So, this is the uniform flow and I am adding it with source at the origin. Now, 

if I were to plot the steam lines, by putting in values for psi, we will find that you get far 

away, you get flow like this. 

Now, close to the cylinder sorry close to the origin, you have the source which will try to 

push fluid in this direction, but they will be soon connected away by the uniform flow in 

the plus x direction. So, the steam lines will look like this, but there will be, so there will 

be another stream line like this. But there will be one stream line, which will we 

essentially like a close surface. Now, this stream line, so this is stream line that is 

completely like a surface, this is called a half body, because it is almost like a sort of an 

elliptically shaped body and there is fluid flow pass that solid surface. 

Now, what is important to understand is that, whenever you have a stream line and you 

have flow fast, potential flow and there is a stream line, the stream line can be essentially 

treated as a solid body, because in, within the potential flow, within the realm of 



potential flow we can satisfy only the normal velocity condition and there is no flow 

across the stream line, there is no way we can satisfy the (()) velocity condition with in 

potential flow. So, if we have a close stream line like this that means, that fluid is 

flowing past such a closed event. So, you have flow like this, and you may have flow 

like this ok. 

So, in fact, fluid is flowing past this shaped body, that is called the half body. So, what I 

am trying to say is that, by just merely super posing to simple flows, a uniform flow and 

a source at the origin, we are almost getting the potential flow solution to a flow past a 

solid body. Along the same lines, we are now going to understand, what is potential flow 

fastest cylinder? It is a very important problem. 
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So, essentially you have a long circular cylinder and fluid is flowing like this, so 

potential flow past, how are we going to get this solution. So, essentially if this direction 

very long, we can just look on, look we can essentially simplify the problem to look like 

on the plane it is like a flow past a circle, how do you, how are you going to simulate this 

flow  using the simple potential flow, using the simple potential flow solutions. 
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You superpose a doublet of strength lambda and uniform flow with velocity U. So, 

essentially use superpose these two, we know what is the uniform flow potential which is 

U x and we know what is the doublet potential or similarly, we know what is the uniform 

flow stream function, we know what is the doublet steam function, we just derived this. I 

am going to tell you. 
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I am going to show you or demonstrative to you that these correspond to potential flow 

past a cylinder, how that I am going to do that, well instead of x, I am going to put r cos 



theta, polar coordinates; instead of y, I am going to put r sin theta. So, psi becomes U r 

times 1 minus lambda by U r square, if I take sin theta. 

Now, and phi is U r times 1 plus lambda by U r square times cos theta. Now, we can ask 

the question, what are the velocity components? v r is partial phi by partial r is nothing 

but U minus lambda by r square times cosine theta, and v theta is 1 over r partial phi, 

partial theta which is nothing but minus U 1 plus lambda by U r square sin theta. 
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If we ask the question when is v r 0, v r 0 by looking at this expression when U equals 

lambda by r square, or theta becomes pi by 2, 3 pi by 2. So, in along those lines, v r is 0. 

So, either v r can be 0 when either this quantity is 0, when U is lambda by r square, or an 

cosine theta 0, cosine theta is 0 when theta equals pi by 2 or 3 pi by 2. So, when you look 

at this, this simplifies to when r equals the radial coordinate is root of lambda by U. So, 

when r equals, when the radial distance r equals a constant, that is which is essentially is 

shape of a circle in two dimensions, there is no normal velocity; v r is 0 along a circle. 

That means, that there is a close stream line in the problem, in which v r is 0, that is that 

is the definition of a stream line, because you are essentially putting a constant value. So, 

you can also look at the psi value, when lambda when r is equal to square root of lambda 

by U, you mean you will seem that, you will see that the stream function value is 0. So, 

that is a line of constant stream function, which is essentially steam line, it is a circle. So, 

it is almost like flow past a circle, which is essentially 2 D flow past a cylinder. 



So, by superposing uniform flow with the doublet at the origin, we have stimulated 

potential flow passed a circle for a cylinder. Now, far away as r tends to infinity, if you 

look at this expression, as r tends to infinity, v r becomes U cosine theta, that is the 

uniform velocity, radial component of the uniform velocity, but the velocity is v x times i 

plus v y times j, there are two components. 

(Refer Slide Time: 34:45) 

 

Or we can write it as, v r e r plus v theta e theta, but e r can be expressed in terms of e x 

and e y or i and j, using geometry cos theta times i plus sin theta times j and e theta is 

nothing but minus sin theta times i plus cos theta times j. So, we can write the velocity, 

we can plug this values of e r in terms of i and j out here and then, write the velocity in 

cartesian coordinates, which essentially becomes U. 

So, v becomes v r times cos theta i minus sorry plus sin theta j plus v theta times minus 

sin theta i plus cos theta j. As R goes to infinity, we will find that the velocity vector is 

essentially, if you simplify this, you will find that this is U cos square theta i plus U cos 

theta sin theta j plus u sin square theta i minus U sin theta cos theta j as r goes to infinity. 

So, these two terms will cancel to give with the velocity to be just U times i it is the 

uniform flow. So, essentially we have solved for what is the velocity field for flow 

around a cylinder in the potential flow regime, by simply superposing the uniform flow 

far away with the doublet at the origin and that gave rise to essentially a close stream line 



of radius square root of lambda by U, where lambda is dipole strength and U is a strength 

of the uniform flow and this gave rise to flow past a cylinder. 
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We will now compute what is the pressure force on a cylinder. So, having solved for the 

velocity field in the potential flow regime, for flow past a cylinder, a long cylinder, we 

are now ready to compute the pressure force. So, the pressure if you remember, should 

be calculated from the Bernoulli equation. 

So, v square by 2 plus p by rho plus g z is a constant in a potential flow, that is the 

statement of Bernoulli equation for inviscid, incompressible, irrotational flows and if you 

assumed that the gravitational effects are unimportant, because everything as I mean, the 

the distances are very very small. So, there is no effect of gravity, so essentially, we will 

have p by rho plus v square plus by 2 is constant. 

So, as r goes to infinity, v the velocity vector is U times i, we just derived that and the 

pressure is some constant pressure p naught. So, the constant that we want, far away is p 

0 plus U square by 2. So, this is that constant, because you can fix that constant by 

looking at what the pressure and the velocities are at p by rho is U square by 2. 
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Now, we want to calculate what is the force on the surface of the cylinder due to pressure 

forces, at the surface of the cylinder, square root of lambda by U at theta equals, suppose 

you put a coordinate system, this is theta. Now, at theta equals pi by 2, v theta is minus 2 

v naught, at theta is minus pi by 2, that is, if you go like this. So, here v theta is minus to 

v naught and out here, v theta is 2 v naught. 
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So, at r equals R, v r 0 by definition, because there is no normal velocity in to the surface 

of the cylinder that is how we identified that it is, there is no normal velocity at the steam 



line when R equals, r capital R equals lambda by U. So, the only velocity you have to 

worry is v theta, which upon putting r is the radius, you get minus U times 1 plus lambda 

by U capital R square sin theta. Now, r square is nothing but lambda by U by definition, 

that how we define the radius of this sphere. So, v theta evaluated at the radius of the 

cylinder I am sorry is minus 2 u sin theta. So, this is the point I was trying to, I mean 

make to you there is no v naught, it is just U, this is the free stream velocity far away. 
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Now, we know that p by rho plus half v square is constant. So, p at r equals r, by rho plus 

half v square evaluated at r equals R is p at r tends infinity by rho plus half v square r 

tends to infinity. Now, this is nothing but p naught by rho plus half U square and p at r 

equals R, which is what we want plus half v square r equals R. 

Now, this is nothing but half times minus 2 u sin theta, there is no r component, there is 

only theta component which we just evaluated at r equals the radius capital R. So, 

eliminating, therefore the pressure, p at r equals r minus p naught is rho U square by 2 

times 1 minus 4 sin square theta, so this is the pressure. Now, we look at this from the 

context of the coordinate system, you have x y flow is far away in the x direction, and 

now, if we look at various points, look at this expression, this expression when theta is 

equal to 0, sin theta is 0 (Refer Slide Time: 41:59). So, let us assume this to be theta; 

when theta is 0, sin theta is 0. 
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So, the pressure takes the value at, so pressure at r equals R is only a function theta, 

pressure at theta equal to 0 at r equals R. So, we are fixing r equals R, pressure at theta 

equal to 0 minus p naught, it is the constant pressure is rho U square by 2. Now, pressure 

at theta is pi by 2, when theta is pi by 2, sin theta is 1. So, this becomes 1 minus 4 which 

becomes negative, compared to the free stream pressure. 

So, this becomes minus p naught is rho U square by 2 times 1 minus 4 which is minus 3. 

Now, and pressure at theta is, if you go around 3 pi by 2 minus p naught sin theta is 

again 0 at value of sorry not 3 pi by 2, pressure at the value pi sin pi is again 0, we will 

again get rho v square by 2 and pressure at the value of 3 pi by 2 minus p naught, we will 

again get minus 3 rho u square by 2. 

So, the pressure is maximum at these two points and pressure is a minimum at these two 

points (Refer Slide Time: 44:05) and the variation of pressure over the surface is 

symmetric, there is complete symmetry about this, there is complete 4 half symmetry 

about the half of the cylinder is a complete symmetry of the pressure variation, because 

pressure is an even function of theta, because you have 1 minus 4 sin square theta. 

So, it is an even function of the theta. So, there is a complete symmetry of pressure. So, 

the pressure value here will be the same as pressure value here, because of sin square 

theta. So, it will be the same if you are whether, if we are here or here. So, now once you 



find what is, so pressure is completely symmetric in the about this, this axis it is called 4 

half symmetry. 
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Once you have found what is the pressure, we can find what is the force, the force on the 

object is only due to the pressure force, pressure exerted by the fluid on the surface acts 

inward, because if the outward unit normal is n, inward normal is pressure acts in the 

direction of minus n. So, d s, d s is nothing but R d theta, this is the force per unit length 

of the cylinder, because is it is a long cylinder, so this is force per unit length. 

Now, by symmetry since the flow is in the x direction, we can imagine that the only 

force should be in the x direction, because there is nothing in the y direction to suggest 

that, there will be a net force in the y direction. So, by symmetry we can say that, the 

only force that we have to calculate it is in the x direction is minus p. Now, n is nothing 

but e r dot i and then d s is R d theta, where r is the radius of the circle. 
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And the pressure is, simply minus rho U square R by 2 times 1 minus 4 sin square theta 

times cosine theta d theta. So, the x component of the force is nothing but minus rho U 

square and sorry. So, before I do that, I will look at this expression, so theta is going 

from 0 to 2 pi. So, this is equal to minus rho U square R by 2, theta is 0 2 to pi 1 minus 4 

sin square theta, d d theta of sin theta is cos theta. So, instead of cos theta d theta, I will 

write d of sin theta, so it is d of sin theta. So, you have a very simple integral, wherein 

you have an even function on sin theta, an even function of argument and theta goes 

from 0 to 2 pi. 

So, if cos theta is written as x d x by d theta is essentially sin and theta d theta. So, the x 

by d theta is sin theta or d theta is d x by sin theta. So, you can evaluate this as a integral 

by using this change of variable and we can show that f x is identically 0 and similarly, 

we can also compute if you do not invoke symmetry, we can also compute the force in 

the y direction. It becomes rho U square R by 2 1 minus 4 sin square theta time sin theta 

d theta and that also become 0, so F y it is also become 0. 
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So, if we have flow past uniform flow, past a circle as cylinder of some radius r, what we 

are finding, you have uniform potential flow (No audio From 49:01 to 49:07). In a 

potential flow, there are now viscous effects, because the viscous effects are set to 0, 

when we went from the Navier Stokes to Euler equation, and the only forces are due to 

fluid pressure. 

So, the stress (()) has only the pressure contribution, there is no viscous stress 

contribution. So, the force exerted by the fluid on the cylinder is identically equal to 0. 

So, this comes as a surprise in the potential flow limit, for potential flow. This comes as 

a surprise, because excrements tell us that, even at very high Reynolds numbers, 

whenever you have potential flow past any object like a long cylinder or a sphere, you 

always find a finite force that is resist. I mean, if you move sphere or a cylinder at very 

high Reynolds numbers, then you do find that, there is force experienced by these solid 

objects. 
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But when you try to treat that within the potential approximation, you find that there are 

no forces so that this appears like a paradoxical situation and this is called the D' 

Alembert's paradox that, the potential flow solutions give rise to zero force on solid 

objects such as cylinder, a long cylinder when you find the pressure profile and integrate 

the pressure, you find that the pressure is identically, the force due to pressure is 

identically 0. 

So, this leads to a contradiction or a paradox, because experimentally these objects do 

experience a finite drag force, when they move in a fluid. So, there is a force, resistance 

force exerted by the fluid on the solid objects, but they come out to be 0, identically in 

the potential flow approximation. 

So, this forces has to rethink our approximation itself, because as I mentioned in the 

beginning, when we went from the Navier Stokes equations, we neglected the viscous 

terms completely assuming that, they are multiplied by a small number 1 over Reynolds 

number, that assumption meant that gradients of velocities are uniformly small 

everywhere in the flow, and this also led to the sacrifice of the no slip condition, because 

we were not able to satisfy all the boundary conditions, on of the problem. 

So, this already signals where we could have gone wrong, namely that when you neglect 

the viscous terms, probably the neglect is ok, when you are for away from a solid 

surface. But close to the solid surface, we cannot completely the neglect the viscous 



terms, because it is where the velocity will change from whatever it is there, little away 

from the solid surface to 0, because the no slip condition is always satisfied by fluid 

regardless of the Reynolds number. 

It is a physical condition that is independent of the Reynolds number. No matter how low 

or how high viscosity of fluid is, the no slip condition is always satisfied. Therefore, one 

has to revisit our assumption of scarifying the no slip condition in the potential flow 

approximation. Now, that is what is done in what is called the boundary layer theory, 

wherein we now are going to say that, the potential approximation is not a bad 

approximation, when you are far away from the solid surface, but close to the solid 

surface, we have to re-invoke the viscous effects, even at high Reynolds numbers. 

And when you invoke the viscous effects at high Reynolds numbers, by suitably 

approximating the viscous systems, then we are bringing the viscous terms back in to the 

governing equations and then, we have the ability to satisfy both the normal velocity and 

tangential velocity conditions and that region close to the solid surface where viscous 

effects dominate, is called the boundary layer. 

Now, by including the viscous forces, then we now have hope of obtaining a finite drag, 

because now the net force on a solid surface is not because of just the pressure forces, 

but close to a solid surface where the boundary layer is viscous effects also become 

important. And therefore, we can now have hope of getting a non-zero force. Now, that 

is the subject of boundary layer theory, which I will start in the next lecture. 


