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Welcome to this lecture number 32 on this NPTEL course on Fluid Mechanics for under 

graduate chemical engineering students. The topic that we are currently discussing is 

fluid flow at very high Reynolds numbers. As I mentioned in the last lecture, the solution 

of the referential balances, namely the Navier Stokes equations are extremely difficult, 

when you consider the Navier Stokes equations in their entire form. 

So, often it is necessary to make simplifications of the Navier Stokes equations in 

appropriate flow regimes. Many practical applications in chemical engineering and in 

other other engineering contest happen at very high Reynolds numbers, the fluid flow at 

such applications in such in such applications happen at very high Reynolds numbers. 

So, it often appears, it is often beneficial to look at what is going to happen to fluid flows 

at very high Reynolds numbers. 
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In order to do that, we first looked at the non-dimensional Navier Stokes equations, 

which look like this, plus v star dot del star v star, all the star quantities are non-

dimensional, this minus del star v star plus 1 over a Reynolds number times del star 

square v star plus the non-dimensional gravity term, which is which is proportional. Let 

us ignore gravity for the moment and so, this is the non dimensional form of Navier 

Stokes equation and we know that the Reynolds number is a ratio of inertial to viscous 

forces; it is a measure of inertial forces in the system to viscous forces in the system. 

And when the Reynolds is very large compare to 1, this implies that viscous forces are 

small, compared to other forces in the system. So, as a first approximation, we can think 

of neglecting the term multiplied by 1 over a Reynolds number, because 1 over Reynolds 

number is very small. And assuming that, this quantity that del star square v star is a 

reasonably well behaved quantity in the sense that, it is a non-dimensional quantity, so it 

should not be very large. 

Then, we can neglect this term, there are issues with this neglect and this forms a very 

important part of discussion in fluid mechanics and I will come to that a little later, after 

1 or 2 lectures. But right now, this is the most sensible thing that appears, this is the most 

reasonable things that appear plausible at this time. 
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So, we will go ahead with this assumption and the resultant equation is called the Euler 

equation, where you have thrown away the viscous term. So, we will have simply, this is 



the dimensional form of Euler equation and if there is gravity, you can put rho times g, 

this is the dimensional form form of Euler equation. Now, once you had the Euler 

equation, in the last lecture, we proceeded further. 
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And then what we did was to rewrite this term, v dot del v term as del of half v dot v plus 

del cross v cross v, and del cross v was omega. So, this became omega cross v. So, once 

you substitute this entire thing, back in the Euler equation and if you dot the entire 

equation, with with an elemental displacement d r, we obtained (No Audio from 04:27 to 

04:35) plus 1 over rho del p minus g dot d r is 0.  Notice that, omega is called the 

vorticity in fluid mechanics; it is a measure of fluid rotation about a given point in the 

flow. 

If there is vorticity, that means that about a point in the flow, the neighboring points 

under go a circular motion about a given point. So, there is, it is, it does not correspond 

to bulk rigid body like motion of the entire rotation of the entire fluid volume, but about 

a given point there is a differential, about a given point if you consider differential 

displacement vector, the neighboring points are moving in a circular motion about this 

point. So, that is the meaning of vorticity, non zero vorticity. If the vorticity is 0, at each 

and every point in the fluid, then such flows are called irrotational flows, we will come 

to that a little later. 
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Right now, from basics partial derivatives, if you have del phi dot d r, that will give you 

the change in the value of the function phi between the two points. Suppose, you 

consider two points which are connected by an elemental vector d r, if you take the 

gradient at this point and dotted with d r, this will give you for small d r, the change,  the 

amount of change the function is going to incurve when you merge a tiny distance d r. 

So, if I dot this with d r, I will get, the first term will remain as such, the second term will 

become d of half v dot v, the third term will become d p by rho, if you look at there are 

four  terms 1, 2, 3, there are five terms. So, for the moment, we going to restrict 

ourselves to cases where omega dot sorry omega cross v dot d r is identically 0, only 

then the equations can be simplified. 

I pointed out in the last lecture that, this can happen if either omega itself is 0, that is the 

fluid rotational or flows along the stream line; or if you consider d r, or d r along the 

stream line, that is if you are marching a long stream line, then that is true. 

So, under these circumstances, either when the flow is rotational or when you are 

considering along the stream line, this term is identically not there, this term is not there. 

So, we are left with just d p by rho plus, you had g dot d r is 0. Now, let us assume 

arbitrarily, write g as minus g times k, this is pointing in the minus z direction and d r is 

nothing but d x times i plus d y times j plus d z times k. 



So, if I dot this two, I will get, g dot d r as, I am sorry there is some minus sign here, if I 

remember correctly, there is a minus g here. 
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So, the minus should happen here. So, g dot d r will just become minus g d z. So, this is 

g dot d r is equal to minus g d z. 
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if I substitute this, back in here, the two negatives will get cancel to give you d v d t dot d 

r plus d of half v dot v plus d p by rho plus g d z is 0. Now, if I integrate, if I consider 

that d r is along the stream line, there are only two cases, we can consider, that is d r is 



along the stream line, or the vorticity omega is identically 0. So, d r is along the stream 

line, and I integrate the above equation between points 1 and 2 along the same stream 

line, points 1 and 2 along the same stream line, along a given stream line. Now, then 

further make the assumption that, the flow is steady and incompressible (No Audio from 

09:26 to 09:34). If I make these two assumptions, then if the flow is steady, then this 

term goes away; if the flow is incompressible, rho is a constant. 
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Then if I integrate along any two points, I will get integral form 0.1 to 0. 2, d p by 1 over 

rho d p, plus from 0.1 to 0.2 d of v dot v is v square and there is half and then, plus g d z 

is 0, this implies that p 2 by rho plus half v 2 square plus g z 2 minus p 1 by rho plus half 

v 1 square plus g z 1 is 0. 

But since, points 1 and 2 are any two points, along the stream line, this implies 

essentially that this implies essentially that p by rho plus half v square plus g z is 

constant along the stream line, stream line in an inviscid flow, steady inviscid, steady 

incompressible flow, these are the assumptions we made to derive this. So, it is good to 

keep them in mind, because it is always important to know when such equations are 

applicable. So, what we have shown essentially is that, this is the Bernoulli equation. 

So, strictly speaking the Bernoulli equation is valid for an inviscid flow, steady the, if the 

Bernoulli equation is written in this form that p, that is p by rho plus half v square plus g 

z being a constant along the stream line, it is valid for a steady incompressible inviscid 



flow. Now, we also found, we also had this other assumption. So, the first assumption, 

well we consider this first, d r along the stream line, you also had this as another 

possibility, that omega is identically 0. 

So, let us go to this equation and integrate this now, considering the other assumption 

that omega is identically 0. So, will go back so will go back, to this equation and 

consider the assumption that, instead of considering along the stream line, we will 

consider omega is identically 0, so we are going to take this equation. 
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So, we again have d of half v square, v dot v is v square, it is the square of the magnitude 

of the velocity vector plus d p by rho plus g d z is 0, considering that vorticity is 0 

everywhere, in the flow. Even even with this assumption, this equation is valid, this 

equation is valid for two different types of assumptions; one is that, the flow is the 

differential vector d r is considered along a stream line, then the term omega cross v dot 

d r is 0 or if you identically consider, this is the much stronger assumptions, this is the 

much more stronger assumption, because you are assuming that the flow is irrotational 

everywhere, but it also leads to lots of simplifications, this although it is a very strong 

assumption, it leads to a lot of simplifications. 

So, if you assume that you will again get the same equation, but now you can integrate 

between any two points in the flow, because you can dot it with d r, now dot with d r and 



there is no necessity that d r is along a stream line, and d r is an arbitrary vector, 

displacement can integrate between any two points in the flow. 
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Then, again you will get the same equation, p by rho plus half v square plus g z is 

constant anywhere in a flow, in the flow, provided the flow is inviscid, irrotational, 

steady and incompressible. So, these are four, this is the same equation, the same type of 

equation results, but the type of assumptions that we made to get this equation that p by 

rho plus half v square plus g z is constant, being constant anywhere in the flow, there are 

completely different types of suspensions, basically you need not consider d r along the 

stream line, it can be any two points in the flow, but we are making a much stronger 

assumption that the flow is irrotational. 

So, now we have to really worry about the following thing, that when can a flow we 

consider irrotational, because we are going to tell shortly, we going to see very shortly, 

that when the flow is irrotational, it leads to lots of simplifications in finding the velocity 

fluids, at high Reynolds numbers. So, when we can ask the question, when the flow is 

likely to be irrotational? 
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The answer turns out to be that, suppose you consider body shape like this, this is called 

an airfoil, this is a solid body, essentially it is a body that looks like this. And I am, since 

it is a long, this is very very long, width of the body is very very large compare to other 

dimensions, other dimensions are thin. 

So, I am going to just draw cross section of this, I am going to take a cut across a plane 

and it is going to look like this,  this is called an airfoil, essentially this is like cross 

section of an air plane wing, it is a model of a cross section of a air plane wing. 
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So, if we consider flow pass airfoil airfoil, faraway the flow is uniform, you have 

uniform flow. If you have an uniform flow, one can immediately find out that the flow is 

irrotational also, uniform flow has no vorticity. It is a kinematic feature of an uniform 

flow, if you have a uniform flow, regardless of whether you consider the fluid to be 

viscous or the ideal fluid, inviscid fluid, if you merely compute the vorticity, since there 

are no gradients in the flow, vorticity as to be identically 0, so vorticity is 0. 

So, there is no vorticity when the fluid is flowing far away from the airfoil, the moment it 

reaches close to the airfoil, what is going to happen is that, in reality on the surface of the 

airfoil, there is a no slip condition. Let us assume the airfoil is stationary, the fluid is 

moving. So, on the surface of the airfoil, at each and every point on the surface of the 

airfoil, there is a no slip condition, which forces the fluid to retard to 0 velocity, that is it 

forces the fluid to reach 0 velocity. Now, little away from the surface of the airfoil, the 

fluid as to move, because you are considering a steady flow, fluid has to move pass the 

airfoil. 

So, there will be a region where velocity goes from this uniform value to 0, on the 

surface of the airfoil. Now, that region it turns out to be, turns out that the region very 

thin, at least for objects like an airfoil, so again the flow is uniform here, roughly uniform 

here. So, we imagine that the vorticity in the flow is 0 here, but here with in this zone, 

close to the surface of the airfoil, there are velocity gradients and it is not immediately 

clear whether the vorticity is 0, vorticity is the curl of the velocity vector and curl as 

gradients in it. 

So, whenever you have gradients of velocity, it is likely that there will be non-zero 

vorticity. So, the assumption that the flow is irrotational is well valid, when you consider 

regions away from the solid surface, but on regions close to solid surface, the vorticity is 

not 0. So, the irrotational flow assumption will breakdown in regions close to solid 

surface. In some sense, the solid surface, we can think of or even imagine the solid 

surface to be a source of vorticity, because by forcing the fluid to reach 0 velocity on its 

surface, it is creating or setting up velocity gradients and high regions of shear and such 

such that is the, those are the regions where the vorticity can be large. 

So, we can imagine that vorticity is generated in the solid surface and it is swept away by 

the flow, faraway. So, there has to be zone where vorticity is confined and that zone is 



actually called the boundary layer, I will come to that a little later. So, essentially when 

you are away from the solid surface, it makes sense to assume the flow to be irrotational. 

And generally the flow, Reynolds numbers are high such that, you can ignore the viscous 

term. So, flow is anyway inviscid approximately speaking, far away from the solid 

surface and in addition, it is also a irrotational. 

So, the thethe moment you a make the inviscid assumption, you will get the Euler 

equation, the moment you make the irrotational assumption, that is the vorticity is 0, then 

you get the result, the Bernoulli equation that p by rho plus half v square plus g z is 

constant across any two points in the flow, you need not follow stream line. Such 

inviscid and irrotational flows are called potential flows are called potential flows. 
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Now, the reason why they are called potential flows is not part to see, because when you 

assume the vorticity is 0, this is an irrotational flow, this is the kinematic constraint that 

is, we are simply assuming that there is no rotation, about a point in a fluid and at each 

and every point in the fluid, this is the purely kinematic condition, this has nothing to do 

with whether viscous forces are dominant or inertial forces are dominant. 

But it so happens, that this assumption is more and more applicable at high Reynolds 

numbers, because if you consider like the examples I suggested, when you have flow 

past solid surfaces; little away from the solid surfaces, the fluid flow is uniform. And so, 



we can expect that the vorticity is 0 or negligible there, and all the vorticity is confined 

flow to the solid surface in a region called the boundary layer. 

So, even though this assumption is a purely kinematic assumption, it has by itself, we 

cannot say whether this is a good assumption for viscous flows or inviscid flows. But by 

looking at the nature of why vorticity is generated, and the nature of flows at high 

Reynolds numbers, we can say that this assumption is more and more valid at higher and 

higher Reynolds numbers, especially in fluid flow past solid surfaces, because the 

vorticity is generally 0 in regions away from solid surface or small. So, it makes sense 

for us to assume that, the vorticity is 0 that is negligible. 

So, these are irrotational flows, whenever you have curl, vorticity is curl of the velocity 

vector, whenever you have a curl of vector field is 0, you can write the vector field to be 

the gradient of a scalar function. And conventionally, this is called the velocity potential 

and hence, inviscid plus irrotational flows are called potential flows, because the velocity 

is determined by a scalar potential. Now, what is the interesting is that, the velocity is a 

vector; it has three unknowns, three components, v x, v y and v z in Cartesian 

coordinates. 

So, in order to solve for the velocity, you have to solve three equations, three coupled 

equations, Euler equations in general. But if the vorticity is 0, then we are saying that 

instead of solving for three velocity components, you can nearly solve for one function, 

instead of solving for three functions, that is a velocities of vector function of position 

variables for steady flows and the vector function has three components, v x, v y, v z and 

each of this is the position variables x, y, z. 

So, instead of solving for three unknown functions, you can solve only for one unknown 

function, that is the velocity potential and once you take the gradient of potential, you 

will get back the velocity vector. So, that is a very very great simplification that happens 

when you assume the flow to be irrotational and as I have told you, irrotational flow is 

merely a kinematic constraint, but when is that irrotational flow valid, when is the 

irrotational assumption valid, it makes better sense to use it at higher Reynolds numbers, 

where you can treat the flow to be effectively inviscid, faraway, at least far away from 

the solid surfaces. 



So, inviscid and irrotational flows are called potential flows, because the velocity is 

written as the gradient of a velocity potential, and such potential flows are applicable at 

high Reynolds numbers, in regions away from the solid surface. For for regions close to 

the solid surface, we have to worry about viscous affix and we will come to that, using 

the boundary layer frame work a little later. 
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So, essentially now what we are simplifying is that, we are going to now restrict our 

attention to potential flows, what I mean by potential flows are the following, velocity is 

written as gradient of potential. And since vorticity, that is vorticity is 0, curl of velocity 

is 0. So, we can write velocity as a gradient of potential, but and of course, by using the 

Euler equation, we also found that p by rho plus half v square plus g z is constant in a 

potential flow. Now, these are not all, because our flow is also incompressible. So, you 

also have in addition, the mass conservation equation, that del dot v is 0. 
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So, if you have v is del phi and substitute that in the mass conservation equation, you 

have del dot del phi is 0 or simply, del square phi is 0. So, the two condition constraints 

on the flow, that the flow is irrotational and the flow is incompressible means that, the 

velocity potential satisfies Laplace equation. And Laplace equation is one of the most 

well studied equation in any branch of physical science, because it occurs in not just in 

fluid mechanics, it occurs in heat transfer, mass transfer, it occurs in electrostatics, it 

occurs in quantum mechanics, in so on and so forth. 

And so, it as been well studied and there are all lots of methods to solve this linear 

equation. So, that is the main advantage of working with high Reynolds numbers, 

potential flows, because because there is the velocity is written as gradient of potential 

and the potential satisfies Laplace equation through mass conservation condition, that del 

dot v is 0. Therefore, you have to solve del square phi is 0, there are many many solution 

techniques, analytical and series solution techniques, that are available to solve the 

Laplace equation, so that is the simplification that one obtains. 

Now, there is one thing that we have to understand, that when we went, what are the 

boundary conditions (No Audio from 27:30 to 27:36) to solve solve this Laplace 

equation? When we went from the Navier Stokes equation to Euler equation, we drop the 

viscous term, the viscous terms, the viscous stress term had del square v, we had del 

square, that is second order derivative in space. 



When we neglected that term, because it is multiplied by 1 over R e in a non-dimensional 

sense, we have lost the highest order derivative term in the governing equation, when we 

went from the Navier stokes to Euler equation. The Euler equation had simply v dot del v 

term and del v as only first order gradients in spatial locations. So, if we had just first 

order differentials in spatial locations, you you cannot satisfy both in principle, if you 

have potential flow past solid surface, it has to satisfy both the normal velocity equal to 0 

condition and the tangential, if you in in principle, if you have flow faster solid surface at 

any Reynolds numbers, you have to satisfy both the normal velocity condition as well as 

the tangential velocity condition. 

Now, the fact that we have lost the highest order derivatives, means that we cannot 

satisfy both the boundary conditions, for the simple reason that, that means we would 

over specify the problem, if you want to solve the Euler equation. So, we have to forgo 

one or the two conditions. Now, we will do the least of the, we will do way with least of 

evils that is, we will try to forgo the tangential velocity boundary condition, rather than 

the normal velocity condition, because if you say that v dot n is not 0 on a solid surface, 

that would imply that mass mass can flow in or out of the solid surface, depending on the 

sign of v dot n. So, that would violate mass conservation, that is amore serious violation 

and so, compared to that, this is lesser of the two evils, that is, instead of forgoing the 

normal velocity condition, we will say that we will forgo the tangential velocity 

continuity condition at a solid surface. 

So, this is the major problem in making the flow or making the assumption that, the 

viscous terms are neglected. In that, we are not able to satisfy the no slip condition and it 

as major physical implications as we will see a little later. So, the boundary conditions 

are that v dot n is 0, on solid surface. Suppose, you have solid surface, then there is no, if 

the solid surface is stationary, then there is no normal component to the velocity, that is 

the only condition you can satisfy, and cannot satisfy tangential velocity condition (No 

Audio from 30:19 to 30:28). So, we can get the velocity field for a potential flow, 

incompressible potential flow by just solving the Laplace equation over the potential, and 

using the boundary condition that v dot n is 0, and then we left with the one more 

equation that is the Bernoulli equation. 
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Here, we still have this equation, that p by rho plus half v square plus g z is constant. 

Now, what is the use of this extra equation, we have not, we have already obtained the 

velocity profile without using the momentum equation. 

Remember that, this momentum, this is essentially the momentum balance is the Euler 

equation, rewritten. Now, the answer for that question is that, the Bernoulli equation 

serves to determine the pressure in a inviscid and irrotational flow. So, the procedure to 

solve potential flow problems is that, first use del squared phi is equal to 0, to along with 

the boundary condition that normal velocity as to be continuous, cross solid. Normal 

velocity is 0 on a stationery solid, and once you solve for the velocity field, you plug the 

velocity field back in here and find the unknown pressure through the Bernoulli 

equation. 

And pressure is determined only up to a constant, because only gradients of pressure are 

important in any physical sense. So, pressure can be found only up to a constant in any 

flow, in incompressible flows. So, this is the one of the most important simplifications 

that one obtains by looking, by making the assumption that the flow is inviscid and 

irrotational. 

Now, I am going to make one further assumption, potential flow assumption is not that 

the velocity is written as gradient of a potential has no bearing on whether the flow is 2 

dimensional or 3 dimensional. It is merely a consequence of the fact that, the vorticity is 



0 everywhere in the flow, but in order to make further simplifications, at least in this 

course, we will restrict ourselves to two dimensional potential flows, that is flow is only 

in the x y plane. The other direction z is so large that, there is no variation in the z 

direction. 
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So, we will assume 2 D potential flows, from now on. When I say 2 D that means, that 

the velocity vector is written as u times i plus v times j plus w times k, when I say 2 D I 

mean that there is no w velocity. And there is no variation of u and v in the z direction, 

that is what we mean by 2 D and u is a function of x y and v is the function of x y, they 

are independent of z. 

Now, whenever you have a 2 D flow, you can always write u as u is a, the stream 

function formulation, partial psi by partial x, v as minus partial psi partial y, because this 

automatically satisfies the, in continuity condition, that del dot u is 0. 
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Now, this is not a all, because we are also saying that omega is 0. In a 2 D flow, where 

the flow is only in the x y plane, the only non-zero velocity is omega z and since omega 

is 0, means that omega z is 0, for a 2 D flow. For a 2 D irrotational flow, we have only 

one component of non-zero velocity that is omega z. 

So, and since it is irrotational, that has to be 0. So, omega z is nothing but partial partial v 

by partial x minus partial u partial y is 0. Upon substituting, the definition of u and v in 

this expression, you will see that, you get partial square psi by partial x square plus 

partial squared psi by partial y squared is 0, or you get del squared psi is 0 in the two 

dimensions x and y. So, the string function for a two directional irrotational flow also 

satisfies Laplace equation, it is not just the velocity potential that satisfies the Laplace 

equation, the fact that the only velocity is omega z implies that, string function also 

satisfies the Laplace equation in a two dimensional potential flow. 
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So, one can also show that, lines of constant psi, that is the stream lines and constant phi 

these are called equipotential, are always orthogonal, this is something that we can show 

very easily. So, constant psi means d psi is 0, d psi is partial psi partial x d x plus partial 

psi partial y d y from the basics of multi variable calculus, partial psi partial x is minus. 

So, we can also, since we can also rewrite this as saying that d y by d x, so d d psi is 0 

means you are along the stream lines, because psi is constant, means you are along the 

stream line. 

So, d psi is 0, means you are along the stream line. So, this is the slope of a stream line at 

constant psi, is nothing but d y by d x, is nothing but minus partial psi partial x by partial 

psi partial y, this is nothing but it is v by u, because this u is partial psi partial y v is 

minus partial psi partial x. 
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So, constant phi implies d phi is 0, this will imply that d y by d x, and the slope of then 

equipotential constant phi is minus u by v. So, if you see these two expressions, you have 

the slope of the, slope of stream function, this is slope of an equipotential (No Audio 

from 37:14 to 37:22) and equipotential. So, the two slopes, m 1 m 2 multiplied to minus 

1; that means that at each point, the stream lines and equipotentials are orthogonal to 

each other. 
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So, to solve for 2 D potential flows all we have to do, so we are restricting ourselves to 2 

dimensional potential flows and the flows will be steady. So, what do you have to solve 

for, you have to solve for del squared phi is 0, with the condition that del phi dot n is 0 at 

solid boundaries. And we also showed that, for 2 D potential flows, since the flow is 

irrotational there is only one component of vorticity that non zero, that is the z 

component of vorticity. 

So, we just showed that, del squared psi is also 0, where psi is a psi is a string function 

and we also showed that, lines of constant psi are orthogonal to lines of constant phi. So, 

that helps in visualizing the flow in a much easier way, as we will just show in some 

examples to follow with. So, now what is the strategy for solving potential flows, we 

have to solve these two equations. Usually what is done is that, we assume a given 

solution to the, so usually what normally we do in solution of Navier stokes is that, we 

have a problem and then we tried to solve for the velocity field, by using suitable 

boundary conditions in by solving the governing equations. 

Now, here what we are going to do is that, we are going to assume some solutions and 

see, to which problem or what physical context does the solution correspond to. 
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First, so we will treat some elementary potential flows, where we are going to just 

assume some solutions of Laplace equations and then see what flows they correspond to. 
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So, first I will consider uniform flow, I already told you that uniform flow as no 

vorticity, so it is an irrotational flow. So, an uniform flow, so you want to see, we want to 

see what an uniform flow is, and how it is represented by the velocity potential, what 

velocity potential corresponds to an uniform flow. So, consider the, a uniform flow in the 

x direction, there is a constant uniform flow in the x direction. 
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Now, so the velocity vector has two components; u and v, u is capital U, while v is 0. 
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Therefore, you can write u is partial phi by partial x, is equal to u that is also equal to 

partial psi by partial y, v is partial phi by partial y, is 0, is minus partial psi by partial x. 

So, we can integrate these two equations partially, with respect to x and y. So, this 

equation will tell us that, phi is nothing but, if you integrate this partially with respect to 

x it is U x plus constant, could be a function of y and psi is nothing but U y plus some 

other constants which could be a function of x. 

Now, if I do this equation, so phi is nothing but, if I integrate this equation, phi is nothing 

but a constant which could be a function of x, and psi is nothing but a constant which 

could be a function of y, it is called C prime D prime, distinguished from these two. So, 

if you compare these two equations, phi is U x plus constant function of y, but here phi is 

a constant only as a function of x. So, this constant C must be 0; likewise for psi, it is u y 

plus a constant of x and it is also a constant of y, so this constant of x is 0. 
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So, both these equations therefore imply that, phi is U x and psi is U y. When phi is U x, 

when psi is, when you phi is U x, you can plot at different values of, you can calculate 

the velocity vector in this in this simple way, that it is, at different values of, so what are 

equipotentials? 

Equipotentials are values, where of lines where phi is constant, when is phi a constant, 

for each values of x phi is a constant. So, equipotentials will be, suppose suppose I put a 

coordinate system like this, x, y. So, equipotentials will be vertical lines, these are 

equipotentials. Now, the stream lines will be obtained by putting different values of y. 

So, there will be horizontal lines, the green line the green lines are stream lines, the pink 

lines are equipotentials. Just by plotting qualitatively, sketching lines of phi, constant phi 

and constant psi and since, it is an uniform flow, make sense of fluid flows from left to 

right along the x direction. 

So, the stream lines will be along the horizontal lines, along the x direction and the 

equipotentials will be vertical lines, because the stream lines and equipotentials are 

always orthogonal to each other, that that is something that we just prove. So, uniform 

flow as velocity potential of U times x and stream function of U times y. 
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Now, another problem that we going to do, another model potential flow is, a line source 

at the origin. Imagine, that you have x, y, z; imagine that along the z axis, you have a 

very tiny tube, a long tiny tube from which fluid is flowing, imagine that this fluid, this 

tube is porous and so, fluid is flowing readily out. 

So, lot of holes in this tube, this is just a mental, it is just a model to describe, to tell you 

what a line source could be, in reality, we just abstracted to a mathematical idea. So, you 

could imagine that, you have a long pipe, thin long pipe with lots of holes and then lots 

of holes, and then imagine that fluid is flowing. So, it as to come out readily and so, the 

flow is in the x y plane, because there is no flow in the z axis, if along the z axis, if the 

length of the tube is very very large. 
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So, we are essentially worrying about flow in the x y plane. In the x y plane, if you look 

from the top, you look like there is a point from which fluid is fluid is flowing readily 

out, this is called a line source, it is called a line source. Of course, if you take a cross 

section, it will look like a point source in the x y plane. So, it is convenient to use planar 

coordinates polar coordinates, instead of x and y, it is convenient to r and theta. 
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Now, if you consider, if you go back to this picture, if you consider an outer cylinder of 

radius r from the center, and if you consider what is the volumetric flow rate that is 

crossing this outer cylinder. 
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That is, volumetric flow rate Q is 2 pi r v r times b which is the length of the cylinder. 

So, this is the volumetric flow rate that flows, because fluid is flowing purely in the 

radial direction. 

So, the velocity vector that is coming in is v r. So, 2 pi r is the, so you want to multiply 

that velocity by the area of the cylinder, area of the cylinder is 2 pi r times b, that is 

surface area of the cylinder. So, that will give you, what is the volumetric flow rate. 

Now, we are going to assume that Q is a constant for steady flow, a constant volumetric 

flow rate keeps coming out from this origin, where you had kept this line source of flow. 
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So, we can write, therefore v r is Q by 2 pi b times 1 over r. Now, this is denoted by the 

letter m, it is a constant. So, v r becomes m over r, where this is called the source 

strength, the strength of the line source. If m is the positive quantity, then fluid emerges 

out radially; if m is a negative quantity, fluid comes in towards the origin. We want to 

find for this lines source of flow mass, what is the velocity potential and what is the 

strength function? 
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So, v r in cylindrical coordinates, there is simply partial phi by partial r and v theta is 1 

over r, partial phi by partial theta, v r is also equal to 1 over r partial psi by partial theta, 

v theta is also equal to minus partial psi by partial r. For our problem, v r is given by this, 

but v theta is 0, there is no flow in the theta direction, fluid is flows purely radial in the 

cylindrical coordinate system. So, we can use these, through equations to again integrate. 
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So, v theta is 0 that means partial psi by partial r is 0, because v theta is minus partial psi 

by partial r that is also equal to 1 over r partial phi by partial theta. So, if I integrate this 

with respect to r, I will get psi is some constant which is a function of theta and I will get 

phi is equal to, so m is 2 pi, m is 2 pi times v. 

So, you have 1 over r partial phi by partial theta is 0, which means phi is a constant D 

which is the function of r. So, that means partial phi by partial theta is 0, if you integrate 

partially with respect to r, what you will get, partially with respect to theta, you will get a 

constant, that is a function only of r. Now, the other equation tells you that, partial phi by 

partial r is m by r and this also equal to, or plus 1 over r partial psi by partial theta. 

This implies, if you integrate this equation partially, phi becomes m logarithm of r plus 

some constant C prime, which is the function only of theta, and psi becomes, if I 

integrate this this 2 r will cancel, you will just get m theta plus D prime, which is a 

function only of r. So, if I compare these two conditions, psi is a function only of theta 



from this equation, whereas the function of theta plus r. So, it cannot be function of r, 

likewise this constant cannot be function of theta. 
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So, phi is m logarithm of r and psi is m theta, for a uniform source, for a line source. 

These are the descriptions of velocity potentials and stream lines. So, let us look at lines 

of constant r. So, lines of constants r are circles, so the equipotentials are circles. And 

lines of constant theta are radial lines; I am going to plot them in pink color. So, these are 

almost like spokes of a cycle wheel, these are stream lines, the pink ones are stream 

lines, and the orange ones are equipotentials, and it also agrees with our general result 

that, stream functions and stream line and equipotentials are always orthogonal to each 

other and that part is of course, brought out nicely here. 
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Now, the next simple simple example or illustration that I am going to do is, a line 

vortex. A line vortex is one in which you have again, if you put an x, y, z coordinate, 

Cartesian coordinate at z equal to 0, you can imagine that you can imagine that very long 

thread of fluid which is rotating at some constant velocity, there is purely circulating 

motion, because of that, there is circulating all the vorticity in the flow is confined only 

to the z axis. 

So, far away because of this motion far away, there will be purely circular motion of the 

fluid, this is called the flow due to a line vortex, the flow is purely circulation. So, only v 

theta is there, and v r is 0, this is exactly the opposite of the uniform sorry, opposite of 

the flow which we just discussed, which is a line source problem where the flow flow is 

purely radial and there is no flow in the theta direction, here we are considering flow 

only in the theta direction and there is no flow in the radial direction. So, what we want 

to do is, use this idea to find out what the stream functions and velocity potentials are, 

and we will stop here and we will continue with this topic in the next lecture. 


