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Welcome to this lecture number 21 on this NPTEL course of fluid mechanics for 

chemical engineering undergraduate students. The topic of our discussion in the last 

lecture, lecture number 20 was differential balances. Differential balances are balances of 

mass momentum and energy that are written down for a fluid, and these are valid at each 

and every point in the domain of the fluid. So, the advantage of using differential 

balances is that one can after solving the equations that come out of differential balances. 

One can get a detailed description of the velocity, and pressure distributions in a flow 

field, such as flow in a pipe or flow past a body like a sphere or an air plane wing. 

So, while it has the most exhaustive and accurate information that one can get for a fluid 

flow, but the down side is that solution of these differential balances or not easy; and 

often, one has to use a computer, a very powerful computer to solve the equations that 

govern the mass momentum, and energy for it at each and every point in the fluid. But 

these are the most rigorous equations that one has for describing fluid flow. So, it is 

useful to know and have a good fields for how these equations are derived, and how they 

are simplified to get some solutions that are often used in many applications. 

The other approaches that we already discussed, the other approach that we already 

discussed is that of integral balances; in integral balances, we do not write down 

equations that are valid at each and every point in fluid domain. Rather we write down, 

we choose a very huge control volume which encompasses many equipments such as 

pumps, and turbines, and so on, and one writes a overall balance of mass momentum 

energy. 

 

 



But the, so the integral balances are fairly simple, but the point is the use of the integral 

balances will involve quantity such as viscous losses or forces on solid surfaces which 

are not known a priory. So one is left with rather incomplete set of equations, because 

one does not know in general what are the losses? So, one is often left with the choice of 

neglecting certain important features like losses, in order that one can solve the integral 

balances. At times experimental data is available to estimate these losses, so one can use 

them or as we will see little later by solving the differential balances in simple system, 

one can actually find out the losses. 
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So, the basic idea in differential balances is that one takes a very very tiny control 

volume of infinitesimal size. So, let us try to draw for simplicity a cubic control volume. 

So you have three Cartesian directions, let us draw it slightly short. You have x, y and z 

three orthogonal directions and the distance is along the three directions are simply, so 

this is simply delta y and this is delta x, this is delta z. So the volume of this infinitesimal 

control volume is delta x delta y times delta z. And we are going to take a infinitesimal 

control volume in the (( )) we eventually take the limit of delta x, delta y and delta z 

going to zero. 
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So, essentially this control volume will shrink in the limit to a point and thereby we are 

going to derive equations that are valid at each and every point in the fluid. Since, we are 

taking the limit limiting process of delta x, delta y, delta z going to zero; we anticipate 

that we can get differentials of various quantities. So, that is why we use it is these 

balances are called as differential balances. What one does is to derive the differential 

balances is to use the integral balance for c v and take the limit of an infinitesimal c v. So 

we look at mass conservation of mass as applied to c v, we already derived. That rate of 

change of mass presents in the c v plus integral rho v dot n dA over the control surface is 

zero. 

This is the most general equation that governs mass conservation for a c v. Now we are 

going to apply this to this infinitesimal c v. So, apply to the infinitesimal c v with sides 

delta x, delta y, delta z, the cubic c v that we just drew here. Now, few simplifications 

arise when we apply a general conservation equation such as this integral balance to a c 

v. first of all, since let us look at term by term. So if you look at this term, if you look at 

this term. Now, since the c v is so tiny, the variation of density within the c v can be 

neglected to a first approximation, so we can pull this out of the c v; this is 

approximately this in the limit of the c v volume tending to zero. We can write this is 

very very easily and this is nothing but  if you integrate this volume you will simply get 

times delta v, where delta v is delta x times delta y times delta z the volume of the c v. 
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So that is one simplification that comes in the first term. Even if you look at the second 

term, we can do some simplification. Now, since the c v cross sectional areas are so 

small, we can assume uniform flow. So we can simply write this as summation over all 

outlets. For outlets, v dot n is positive you remember is v for outlets and minus v for 

inlets, this is something we had seen before. So, i times rho. So, let us now the key thing 

is that if you pull, if things are uniform you can pull this outside the integral. And 

integral over dA will simply give you A, the area of cross section through which fluid is 

flowing. 
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So we will give rho a rho i A i V i out minus rho i A i V i through all line all the inlets. 

Now, we have c v like this, a simple cubic c v and x, y, z, this cubic c v has six faces. 

One at x, one at x plus delta x, another at z plus delta z z one at y one at y plus delta y. 

So there are six faces at various stations. Now therefore, fluid can come in and go out of 

any of the six faces, just for the sake of clarity, we going to assume that fluid is going to 

enter. For example, the face at y, this is the face at y, this is the face at let us say the face 

at x and it is going to leave the face at x plus x plus delta x. 

That is fluid is entering the face at x and fluid is leaving the face at x plus delta x. So this 

is so we made small mistake here. The face at x, so this is the coordinate x the face at x is 

the face is x plus delta x is here. So that is what I have drawn here, the face at x is the left 

side of the c v the face at rise at x plus delta x here, the right side, so fluid can enter 

through this and leave through this. Well, you can also have that the fluid entering 

through this and leaving through this or both sides fluid entering through both sides and 

leaving through some other face. That does not alter any of our derivations, because we 

are going to assume the velocities to be algebraic quantities that is they have sign 

associated with them. 
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So accordingly in a given problem, they will take plus or minus signs accordingly. But 

just for the sake of clarity in derivation, we are going to assume that fluid is coming in 

through and leaving through that. So, we had this equation d rho dt times delta v plus 

summation i rho i A i V i over the three outlets minus rho i A i V i over the three inlets, 

this what we are going to use to derive the equation. Now to do that, first of all we have 

to account for the amount of mass that enters at x and then we have to find out the 

amount of mass that leaves at x plus delta x. So, in general the quantity such as rho, v 

will be functions of x, the velocity vector will also be a function of x. Because we have 

use the continuum hypothesis and many all fluid quantities such as rho, v, p, pressure rho 

density velocity pressure they all vary smoothly and continuously with spatial 

coordinates. 

So we will have to evaluate, in order to find out the mass flow at x is equal to rho A 

times the x, so velocity is a vector, it is u times i plus v times j plus w times k. so this is 

the x component of the velocity evaluated at face x, mass flow at x plus delta x is rho A u 

at x plus delta x. Now, in general rho A u at x plus delta x is not the same as rho A u at x. 

although A is same, if you assume that the cube area is not changing, but rho and u in 

general are not same. 
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So first of all, what is A? A is equal to in this face delta y times delta z; here also A is 

delta y delta z. So the mass flow, mass in at x is rho A, rho u times delta y delta z 

evaluated at x. Mass out at is rho u delta y delta z at x plus delta x. This in general not 

the same as the quantity rho u at x, but you can use what is called Taylor expansion or 

Taylor’s series expansion. To find out what is rho u at x plus delta x, this is rho u 

evaluated at x plus d dx of rho u, evaluated at x times delta x plus half d dx square d 

square x dx square times delta x square plus so on. 
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Now, we are going to drop all the higher terms. So, we are going to restrict only to this 

order. So, if you want to write down and likewise you can write down other directions, 

mass in at y is rho v delta x delta z at face y, mass out at y plus delta y is rho v delta x 

delta z y plus delta y. And then mass in at face z is rho w delta x delta y, mass out at rho 

w. Now, we going to use this equation d rho dt plus summation over all outlets rho A V 

minus summation over inlets rho A V is zero, so d rho dt plus. 

Now, let us look at all the three faces separately. For the face at x, the outlet well mass 

flow rate is rho u at x times delta y delta z plus d dx of rho u at x, let us delta y delta z 

times delta x that is the Taylor series expansion. We are neglecting higher order terms 

minus, this inlet flow rate in the x face which is rho u at x times delta y delta z. Similarly, 

you can write down for other two faces plus rho v at y delta x delta z plus d dy of, after 

having Taylor expended rho v at y delta times delta x delta z times delta y this delta y 

comes from the Taylor expansion, minus the inlet which is rho v at y times delta y delta z 

plus the z face rho w at z times delta z sorry delta x delta y plus d dz of rho w, evaluated 

at z times delta y delta x delta y times delta z which comes from the Taylor expansion 

minus rho w z times delta x delta y this equals to zero. 
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Now, we can see that several terms are going to cancel away. For example, these two 

terms will cancel, these two terms will cancel, and these two terms will cancel, leaving 

us with only this term. Now, if you see all these terms are multiplied by the volume and 

this term are also multiplied by the volume. If you remember which we wrote earlier, 

delta v is nothing but  delta y delta z and del times delta x. So you can divide the entire 

equation by delta x delta y delta z to give simple expression for the mass conservation d 

dx of rho u plus d dy of rho v plus d dz of rho w is zero. 
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Now this equation is valid at each and every point in the fluid, this is also called the 

continuity equation or equation of continuity. Now, we also wrote down the coordinate 

free vector form of this equation. This form of the equation is valid only in cartesian 

coordinates, cartesian reference. Now if you want to write it in general other coordinate, 

in other coordinate frames we will use the quantity the property of a gradient or a 

divergence to write this is as follows and this is a vector form which is coordinate free 

form. 
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So you, once you know what are the properties of divergence in other coordinate 

systems, you can use this form and write down the equation of continuity in other 

coordinate systems. While you cannot use this form in other coordinate systems that are 

only valid for cartesian coordinate systems. So, I being said that we proceeded further to 

use this continuity equation to simplify it for an incompressible fluid. Before I do that, I 

can write this equation as d rho dt plus v dot del rho plus rho del dot v is zero. If you 

expand this, term you get two terms by using differentiation by parts. Now, this 

expression combined together is the substantial derivative of density plus rho from this 

term del dot v is zero, this term is this. The substantial derivative of any quantity is the 

rate of change of that quantity with time, as you follow a given fluid particle. Whereas, 

this term is simply the rate of change evaluated at a fixed point in space. Now for an 

incompressible fluid, d rho dt is zero. Suppose, you follow a given fluid parcel, it is 

density will not change with time for an incompressible fluid. 
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So, if you knock this term of for an incompressible fluid. We get the continuity equation 

for an incompressible fluid to simplify as rho times del dot v is zero. But since rho is 

non-zero constant you have, this is the equation of continuity for an incompressible fluid, 

continuity equation for an incompressible fluid. It is important to understand that the 

time derivative goes not because the flow is steady; it is because of the fact that the 

substantial derivative of density is zero for an incompressible fluid. So, this is valid for 

both steady and unsteady flows of an incompressible fluid, both unsteady and steady 

flows of an incompressible fluid. 



So that is something that is important for us to remember that this equation is in general 

true for both steady and unsteady flows, but it is applicable only for an incompressible 

fluid. We also saw that incompressible condition is valid, when in the last lecture I would 

not go through this again. When the velocity, typical magnitude of the velocity relative 

to this speed of sound is very very small that is ratio of v over c is very small compare to 

1, that is the Mach number is small compare to 1, then the flow is incompressible. 

If you want to know the derivation you please refer to lecture number twenty the 

previous lecture I would not derive this here again so, for an incompressible, this course 

will be predominantly focusing only on incompressible flows wherein the density of a 

fluid parcel does not change as you follow the fluid parcel so our continuity equation will 

always take the form of del dot v equal to zero that is the velocity field the velocity is the 

vector quantity and it varies at each and every point in space in general in a flow but  

what this means is that del dot v equals zero means is that the velocity v field vector field 

has no divergence in an incompressible fluid. 

The velocity can vary at each and every point in space but  in such a manner that the 

divergence of the velocity vector always has to be zero this is a very very rigorous and 

important constraint on the possible values which the velocity vector can take because it 

cannot take any arbitrary values it always has to satisfy the continuity equation del dot v 

equals to zero for an incompressible fluid because it is essentially a statement of 

conservation of mass so it is a fundamental principle in that no flow can violate so 

although we cannot show individual applications of continuity equation right now what 

is important for us to understand is that the continuity equation must always be satisfied 

by any fluid flow and for an incompressible fluid it takes a simple form that the 

divergence of velocity field is zero. 



(Refer Slide Time: 23:22) 

 

Now, we going to go further proceed further, and we are going to introduce a notion of a 

stream function. Now, I am going to assume again incompressible flows. For an 

incompressible flows, we always has del dot v is zero. In general, fluid flows the velocity 

vector, velocity is a vector can have component in the i direction plus component in the j 

direction plus a component in the k direction; that is the z direction. 

But we will restrict our attention now, what are called 2 D flows that is only these two 

components are non-zero. That we can choose the coordinate frame in such a manner 

that the z component of the velocity is zero. So, the flow is invariant 2 D flows means 

flow is invariant in the z direction and this is first point and the z component of velocity 

is zero. If you do this, so you have only these two velocity components u and v. The 

continuity equation for Cartesian coordinates for an incompressible fluid del dot v equal 

to zero means partial u partial x plus partial v partial y plus partial w partial z is equal to 

zero. 
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So this is del dot v is zero, but since we have said that w is not there it is a 2 D flow, it is 

an incompressible 2 D flow. So the continuity equation simplifies to or the mass 

conservation equation simplifies to partial u partial x plus partial v partial y is zero. So, 

and both the components of velocity u and v are functions of only x and y, because we 

are saying that assuming that the flow is invariant in the third direction. Now, we are 

going to introduce a concept new concept called a stream function. It is a function of the 

two independent variables. 
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It is denoted by the Greek letter psi is a function of both x and y. And it is related to the 

fluid velocities in the following manner. So it is related as follows u of x y is partial psi 

by partial y v of x y is minus partial psi by partial x. That is this new function is 

constructed is defined in such a manner that if you take and it is it is a function of the 

both the independent variables x and y in a two dimensional flow. If you take the partial 

derivative of the new function with respect to the y, you get the x component of the 

velocity u. And if you take the partial derivative of the new function psi with respect to x 

that is in the negative of that is basically the y component of the velocity v, so this is the 

definition of stream function. What is the advantage of this definition? Now, let us look 

at the continuity equation, you have partial u partial x plus partial v partial y is zero that 

is the continuity equation. Now, I am going to substitute u here and v here through these 

definitions. 
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So you get partial partial x of partial psi partial y plus partial partial y of minus partial psi 

partial x is zero that is the continuity equation. Now, I can pull this minus sign out, so 

you get partial square by partial x partial y psi minus partial square but  partial y partial x 

psi, this is the continuity equation. But, partial square psi by partial x partial y is actually 

partial square psi by partial y partial x, because the order in which you take the partial 

derivative should not matter for a continuous function of two variables. 

 



So, this means that an important continuation can be drawn that the continuity equation 

is automatically satisfied by the definition of the stream function, where the definition of 

the stream function. So this is a very important conclusion, because now we have finding 

the by constructing the same function is this fashion by defining the stream function in 

this fashion, you are automatically satisfying the continuity equation for two dimensional 

incompressible flows. That is the great simplification, because when you want to proceed 

further to momentum balance, you will find that you will have two sets of equation. The 

mass balance and momentum balance which are linked with each other or they are 

coupled to each other. but by defining the stream function, you are doing away with one 

equation, you are you have to solve one equation less and it is always nice to solve lesser 

number of equations or more number of equations mathematically speaking. 
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So in that sense, a stream function is very very helpful in the solution of two dimensional 

incompressible flow problems. So, it is a purely mathematical reason has to why this I 

mean this motivation of stream function is purely mathematical. In that of course, it 

simplifies the solution of equations by reducing the number of equations by one.  

So, that is one motivation for introducing the stream function. Another motivation for the 

stream function is that, we have to first understand that stream functions are related to we 

are going to show functions are related to stream lines. We had discussed stream lines, 

stream lines long back when we discussed fluid kinematics. Kinematics, if you 



remember is a description of flow without worrying about what are the underline causes 

of the flow that is forces acting on the fluid. So, there we define stream function stream 

lines as lines which are always parallel to the fluid velocity vector. Suppose you have 

fluid, let us just first draw the fluid velocity vector. Suppose you have at each and every 

point the velocity vector is pointing in this direction. We can connect at each and every 

point a line that is tangential to the fluid velocity vector and such a line is stream line.  

Stream line is tangential to the, it is tangent to the fluid velocity vector at each and every 

point in the flow. So if two, if you have a local velocity vector v and the displacement 

along the stream function is dx. And if these are parallel, then the cross product of v 

cross dx is zero. This is something that we did it last time; we did few lectures back 

when we did kinematics. Now this gave rise to the condition, if v cross dx is zero, then 

we found that du by u dx, we found that dx by u is dy by v. This is something that we 

derived by using the fact that they are two vectors with the velocity vector and the 

displacement vector along the stream line they are parallel, so the cross point of these 

two vector should be zero, that give rise to this equation. 
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So along us stream line along the stream line, we can say that u dy minus v dx is zero. 

This is along the stream line from the definition of the stream line. Now, I am going to 

use the definition of the stream function that u is partial psi by partial y dy v is minus 



partial psi by partial x, there is also one more negative sign. The two negatives will make 

a positive partial psi by partial x dx is zero. 

So along the stream line, we are finding this relation. Now, if you know little bit of 

calculus, you will realize that if psi is function of two variable x and y. Then the 

variation in psi a small variation in psi that occurs because of small variations in x and y 

can be written as partial psi by partial x at constant y times d x plus partial psi by partial 

x, partial psi by partial y at constant x times dy is zero. This is I am not saying it zero, 

this is the variation in psi because of variations in small variations in x and y. But we 

find from a definition of stream function that along the stream line, from the definition of 

a stream line this quantity identically zero, so d psi is zero along the stream line. 

This something that we just found, because this is evaluated along the stream line. And 

this is nothing but  d psi the total change in psi that is incurred, if you change so d psi, if 

you change x by a small value and y by a small value. So, if d psi zero along a stream 

line what it means is, what this means is that if you go along a stream line psi has to be a 

constant. Because along a stream line, if you change the variation in the stream function, 

it turns out to be zero rigorously, so psi is a constant along a stream line. This is a very 

major result, because if you want to plot stream lines, all you have to do is to plot lines of 

constant psi. 
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Once you have the information of how psi varies as a function of x and y, psi some of 

now two variables for a two dimensional flow. Then we can simply plot constant values 

of psi and those will be stream lines. So this is a very very useful result, because if you 

want to plot fluid flow behavior, if you want to visualize fluid flow behavior, it is often 

useful to use stream line stream lines to do that both experimentally as well as from a 

computational point of view. In that context, it is much much easier to find out the 

stream lines by just drawing lines of constant psi. 

So this is one another use of stream function. So we found two uses so far of a stream 

function. Firstly, the stream function simplifies the solution of problems for two 

dimensional incompressible flow situations. Because by defining the free stream function 

like the way we defined just few minutes before, we found that the incompressibility 

condition is identically satisfied. So you have you are left one equation less in your 

solution scheme, so it is always helpful form a mathematical point of view. The second 

advantage is more physical that if you find the stream function, then lines of constant 

stream functions are stream lines. 

Now stream lines are special lines in a flow domain, where the velocity vector the stream 

lines are always parallel or tangential to the velocity vector each and every point in the 

fluid. So, by knowing by plotting the stream lines in a flow domain, it is easier to have a 

visual understanding of what the flow is a going to be like. Now, there is another 

important third major implication of using stream functions and that relates to the 

volumetric flow rate that flows between two stream lines. So, let me explain this bit 

slowly. Suppose you have flow domain and we are any way restricting ourselves 2 D 

flows. 
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So you have a 2 D flow domain in the x y plain, what we mean by say, what we mean by 

two d flow is that the variation long suppose we have x, y and z. The variation along the 

third dimension z, this is the x is less very very less, so there is no variation in the third 

direction. So that is the meaning of saying that flow is two dimensional. 

So, the another use of stream function is the fact that this values the difference between 

values of stream functions between any two points in a flow domain has some relation to 

the volumetric flow rate that flows in between the two stream lines. So, we first saw that 

lines of constant values of stream function denote a stream line. So, let us imagine a two 

dimensional flow, in any case our restriction our discussions are now restricted two d 

flows. So we have, let us say three stream functions, three stream lines one, two and 

three. And each stream line is denoted by a constant value of stream function psi 1, psi 2 

and psi 3. Now, the claim is that and remember imagine remember that the flows are 

three-dimensional, two-dimensional in the sense there is no variation in the third 

direction z. 

 

 

 



So these stream lines are almost like sheets, so in the third direction and there is no 

variation. Because you can always construct many such stream lines in the third z 

direction and there is no variation of any quantity in the third direction. So, you can cut 

at any cross section and they will look like that lines. Now suppose, if I look at any two 

points A, B, you can ask the question what is the volume of fluid that flows between 

these two points per unit width of the third direction z. And you can likewise consider 

some other orientation of the area, what is the amount of fluid that is flowing between 

volume of fluids that is flowing between this area per unit width in the third direction per 

unit time. So, that is the question that we want to answer. 
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So, let us find out the volumetric flow rate. So the volumetric flow rate let us use the line 

A B. the line A, B is actually a surface, because you have to extend it in the third 

direction. And since things are invariant in the third direction z direction, you can 

calculate everything per unit width of the third direction. For the volumetric flow rate per 

unit depth, let us say the third direction across this surface A B. Now, I am choosing this 

surface A B, because in this surface along this surface A B, this surface is directly 

perpendicular to it is along its perpendicular to the x axis. 

 

 



So the only component to the velocity vector which is going to a cause flow it towards to 

the surface is x components. Because the y component is parallel to this surface so it 

cannot cause any flow. So the volumetric flow rate is nothing but  integral it, in principle 

it is v dot n times dA. Now, in principle but  since it is unit width we cannot write dA. 

So, we have to write it as some write it as dA per width. And for this simple system, 

since v is purely along the x direction v dot n becomes u. And the coordinate for 

integration is simply dy, but per unit width of the third direction, so you So, Q is simply 

integral A to B u dy. And what is the differentiating thing between points A and B. It is 

the y coordinates, this is y 1, this is y 2. So this is simply y 1, simply equal to y 1 to y 2. 

Instead of u, I can put partial psi by partial y dy. So Q is nothing but  psi at y 2 minus psi 

at y 1. So and psi at y 2 is simply psi 2 and psi at y 1 is psi 1, because along each and 

every point in this line the stream function is a constant psi 1. 
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So, let us do that for the line B C, Q is integral, so if you look at this diagram; now this is 

completely perpendicular to the x, it is completely perpendicular to the unit normal is 

perpendicular to the y direction is along the y direction and the surface is completely 

normal to the y direction. So the only component of velocity that is going to contribute is 

the y component of the velocity, so the normal component is just the y component. So Q 

will be written as per unit width will be written as, now the only thing that differentiates 

between these two points between B and C is there x positions here, it is x two here, it is 

x one. 



I can do this for the psi surface or lines B C also, let us do that for the line B C Q is 

integral, so if you look at this diagram. Now, this is completely perpendicular to the x, it 

is completely perpendicular the unit normal is perpendicular to the y direction; it is along 

the y direction. And the surface is completely normal to the y direction, so the only 

component of velocity that is going to contribute is the y component of the velocity. So 

the normal component is just the y component. So, q will be written as per unit width 

will be written as, now the only thing that differentiates between these two points 

between B and C is their x positions, here its x 2, here its x 1, so integral x 1 x 2. So we 

are now computing the point x 1 here, x 2 here. Volumetric between these two points u v 

dy v dx, because the area of the its going to be integrated along the x directions, so dx. 
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V is nothing but  minus partial psi by partial x dx, so this is psi of x 1 minus psi of x 2. 

Now, psi of x 1 is psi 2, because x 1 lies on the psi 2 line, psi of x 2 psi 1, so this is 

nothing but  psi 2 minus psi 1. So, what we have shown is that by choosing two different 

completely different areas. We have shown that the amount of fluid that flows between 

these two points is the same as the amount of fluid between flows at between these two 

points. So if you take any two orientation, the amount of fluid that flows between these 

two points per unit width of the third direction per unit time is always given by the 

difference in the value of the stream functions between those two stream lines. So, this 

the difference in values of stream function between any two stream lines directly gives 



you a measure of how much volume of fluid that is going to flow between those two 

points. 

So, what is the big advantage of this description? The big advantage of this description is 

that, suppose you have a stream flow pattern like this. These are stream lines, so these 

are values of stream lines psi 1, psi 2, psi 3, and psi 4. So, along at each along at each 

and every point along this stream line time, psi is constant psi 1. So if I take psi 1 minus 

psi 2 the difference, it is constant from here to here, because it is the same stream line, 

the same two stream lines. But here the width, the distance between those stream lines is 

much more compare to a point like here. 

So, if the difference between two points the (( )) stream function values is related to the 

volumetric flow rate. More amount of volume, the same amount of value has to flow 

between these two points as well as these two points, because psi two minus psi is 

constant. That means at the velocity here will be less compare to the velocity here, 

because of the fact that this two stream lines are converging. 

So by immediately having, by having quick look at the stream line distribution present in 

a fluid flow, you can immediately say where the fluid velocity is going to larger and 

smaller. Because, the difference between values of stream functions between two, any 

two stream lines is always equal to the amount of volume that is going to flow across any 

line drawn between these two stream lines. Since, psi 2 minus psi minus constant along 

the stream lines at along any two points along the stream lines. 

So when the whenever the two stream lines converge, we can immediately conclude that 

along at the point of converge the velocity vectors will be much much greater compare to 

the point where the stream lines are divergent. So, this gives rise to a way very quick aid 

for flow visualization, because once you have a huge data, let us say from a computer 

solution or an experiment in fact. 
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By plotting all the data in terms of stream lines, one can immediately get a qualitative 

feel as to where the flow velocities are large and where the flow velocities are small. So 

this is the big advantage of differential stream function. So to just to recapitulate what we 

did in today’s lecture. We first derived the most general form of continuity equation, for 

cartesian coordinate system that becomes the following, this is for cartesian coordinates. 

Now, we can also write this in vector form which is coordinate free. That is the nature of 

the equation that we are going to write in the vector form is coordinate free is 

independent of coordinate we choose to work with. 

It is always the same, it is also called the abstract form, d rho dt plus del dot rho v is 

zero. Now, in many applications you will see little later that it is often convenient to use 

coordinate system that corresponds to the symmetry of the particular system. We may be 

interested in flow through pipes or flow past a sphere. In which case, you may not it may 

not be convenient to work with cartesian coordinate systems and it may be beneficial for 

us to use a cylindrical coordinate system or a spherical coordinate system. 
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In a cylindrical coordinate system any point is denoted by r, which is the distance from 

the origin to the projection of the vector in the x y plane, theta which is the angle the 

projection makes with the x axis and z which is the normal z coordinate in the cartesian 

coordinate direction, so you have r theta is z in cylindrical coordinates. Now just, so in 

cartesian coordinates, the continuity equation or the mass conservation equation in the 

differential form becomes this. But, suppose you in a cylindrical coordinate, the velocity 

vector is written as v r e r plus v theta e theta plus v z e z. 
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So, if you want to write the continuity equation, we cannot write by steady by just 

extending the continuity equation in the cartesian coordinates, this is wrong. Because for 

the first reason that this equation is such a straight forward extension of the cartesian 

continuity equation in cylindrical coordinate, it is not even dimensionally consistent. 

Because this is an angle variable theta is an angle it has no dimensions does not have 

dimensions of length, whereas all r and z have dimensions of length. So, clearly you 

cannot readily extend this two more other coordinate system such as cylindrical and 

spherical coordinate systems. A more fundamental reason is that, if I look at the abstract 

form, it becomes divergences of divergence of rho b. Now, divergence in the cylindrical 

coordinates system is one over r plus e theta one over r d d theta plus e z d dz. 

This is a gradient operator dotted with rho v r e r plus rho v theta. So, plus rho v phi, rho 

v z e z. If you do this operation, key thing for us to remember is that in cylindrical 

coordinates. If I look at the r direction and theta direction, this is e r e theta is along this 

direction. If I move along the theta direction, you can see that e r is going to change its 

direction.  

(Refer Slide time: 50:51) 

 

So e r is not independent, it is not always pointing in the constant direction; if you 

change theta e r varies. So, this is a very generic feature in curvilinear coordinates 

wherein the unit vectors will change the directions as you go along a given coordinate 

direction. So unlike in cartesian coordinates where the unit vectors i, j, k, are always 



pointing in the same direction, regardless of no matter where how you very x, y, and z, 

that is not the same. So essentially the crux of the matter is that, when you take the 

divergence, you not only must take the divergence of v r, but also e r, e theta and e z and 

this will give rise to a different kind of equation. 
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So, I would not to do the details, but it is important to know that in cylindrical coordinate 

systems the continuity equation will become the following. So, one cannot readily extend 

the cartesian continuity equation like here to cylindrical coordinate systems. Because of 

the fact that unit vectors themselves will vary with special coordinate in curvilinear 

coordinate systems. So that is something that we must keep in our mind, and the same 

thing applies even for spherical coordinate systems. Having done that, we introduce the 

notion of stream function which is very very useful, especially when you consider two 

dimensional flows. Because, you need not satisfy the in compressibility equation or 

continuity equation separately, because the stream function by definition satisfies del dot 

v equal to zero. So that is one big advantage of using a stream function for two 

dimensional incompressible flows. 

The second advantage is that by, it this the stream functions, if you plot lines of constant 

values of stream function, they are exactly the stream lines. Remember that, the stream 

lines are always locally tangential to the fluid velocity vector. So, it is a very very useful 

way of visualizing fluid flows. The third important result that we derived is that, the 



different between two stream function values between any two stream lines gives you a 

measure of the amount of volumetric flow rate per unit width in the unit depth the other 

direction, for two-dimensional flows. 

So, this also helps in flow visualization, because when the stream lines are far apart, and 

if they converge at some point. That also means at the velocity vectors are velocity 

magnitude of the velocity will be increasing, wherever the stream lines are converging. 

So these are the very, these three are very important implications of the definition of 

stream function. So, this really completes our discussion on a differential mass balance, 

which gave rise to the continuity equation. The continuity equation is the most extremely 

fundamental, because it always must be satisfying, but it cannot be solved in isolation. 

We have to combine it with linear momentum balance as well as energy balance. So, we 

have to go to the next step of deriving the differential momentum balance for fluid flows, 

which we will do in the next lecture. 

 


