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Welcome to this lecture number 21 on this NPTEL course of fluid mechanics for chemical 

engineering undergraduate students. The topic of our discussion in the last lecture, lecture 

number 20 was differential balances. Differential balances are balances of mass momentum 

and energy that are written down for a fluid, and these are valid at each and every point in 

the domain of the fluid. See, so the advantage of using differential balances is that one can 

after solving the equations that come out of differential balances. One can get a detailed 

description of the velocity and pressure distributions in a flow field, such as flow in a pipe 

or flow passed a body like a sphere or an airplane wing. 

So, while it has the most exhaustive or accurate information that one can get for a fluid 

flow, but the down side is that the solution of these differential balances are not easy. And 

often one has to use computer, a very powerful computer to solve the equations that govern 

the mass, momentum, and energy for (( )) at each and every point in the fluid. But these are 

the most rigorous equation that one has for describing fluid flow. So, it is useful to know, 

and have a good feel for how these equations are derived, and how they are simplified to get 

some solutions that are often used in many applications. The other approaches that we 

already discussed, the other approach that we already discussed is that of integral balances. 

In integral balances, we do not write down equations that are valid at each and every point 

in the flow domain. Rather, we write down we choose a very huge control volume which 

encompasses many equipment, such as pumps, and turbines, and so on. 

 

 

 



And one writes the overall balance of mass momentum energy, but that so the integral 

balances are fairly simple. But the point is the use of the integral balances is will involve 

quantities such as viscous losses or forces on solid surfaces which are not known a priory. 

So one is left with rather incomplete set of equations, because one does not know in general 

what are the losses. So, one is often left with the choice of neglecting certain important 

feature like losses, in order that one can solve the integral balances. At times experiment 

data is available to estimate these losses, so one can use them or as we will see a little later. 

By solving the differential balances in simple systems, one can actually find out the losses. 

So, the basic idea in differential balances like the basic idea in differential balances is that 

one takes a very very tiny control volume of infinitesimal size, so let us try to draw for 

simplicity cubic control volume. 
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So you have three cartesian directions. Lets draw it lightly short, you have x, y and z, three 

orthogonal directions. And the distance is along the three directions are simply, so this is 

simply delta y and this is delta s this is delta z. So, the volume of this infinitesimal control 

volume is delta x delta y times delta z. And we are going to take an infinitesimal control 

volume in the sense that, we are going to eventually take the limit of delta x delta y and 

delta z going to zero. So, essentially this control volume will shrink in the limit to a point. 

And thereby, we are we going to derive equations that are valid at each and every point in 

the fluid. Since, we are taking the limiting process of delta x delta y delta z going to zero; 

we can anticipate that we can get differential of a various quantities. 
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So that is why we use it is these balances are called as differential balances. What one does 

is to derive the differential balances is, to use the integral balance for c v and take the limit 

of an infinitesimal c v. So, we look at mass conservation of mass as a plate with c v. We 

already derived that rate of change of mass present in the c v plus integral rho v dot n dA 

over the control surface is zero. This is the most general equation that governs mass 

conversation for c v. Now, we are going to apply this to this infinitesimal c v. So apply to 

the infinitesimal c v with sides delta x delta y delta z, the cubic c v that we just drew here. 

Now, few simplifications arise, when we apply a general conservation equation such as this 

integral balance to c v. First of all, since let us look at term by term, so if you look at this 

term. Look at this term, now since the c v so tiny, the variation of density within this c v can 

be neglected to a first approximation. 

So we can pull this out of the c v, this is the approximately this, in the limit of this c v 

volume tending to zero. We can write this very easily and this is nothing but, if you 

integrate this volume we will simply get times delta v, where delta v is delta x times delta y 

times delta z, the volume of the c v. So, that is one simplification that comes in the first 

term. Even if you look at the second term, we can do some simplification. Now, since the c 

v cross sectionals areas are so small, we can assume uniform flow. 

 



We can simply write this as, summation over all outlets, for outlets v dot n is positive 

remember is v for outlets and is minus v four inlets, this is something that we had seen 

before. So, i times rho. So let us, now the key thing is that if you pull, if things are uniform 

we can pull this outside the integral. And integral over d will simply give you A, the area of 

cross section true which fluid is flowing, so we will give rho a rho i A i V i out minus rho i 

A i V i through all the all the inlets. 
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Now we do, we have c v like this, a simple cubic c v and x, y, z. This cubic c v is has six 

faces, one at x one at x plus delta x another at z plus delta z delta l z one at y one at y plus 

delta y, so there are three six faces at various stations. Therefore, fluid can come in and go 

out of any of the six faces. Just for the fake of clarity, we going to assume to that fluid is 

going to enter for example, the face at y this is the face at y, face at let see say the face at x 

and its going to leave the face at x plus delta x. That is fluid is entering the face at x and 

fluid is leaving the face at x plus delta x. So this is, so we made a small mistake here, the 

face at x, so this is the coordinate x, the face at x is here, the face at x plus delta x is here. So 

that is what I have drawn here. The face at x is the left side of the c v, the face at rise at x 

plus delta x here is here the right side. So fluid can enter through this and leave through this. 

Well, you can also have that the fluid entering through this and leaving through this or both 

sides fluid entering through both sides and leaving through some other face. That does not 

alter any of our derivations, because we are going to assume the velocities to be algebra 

quantities that is they have sign associated with them. 
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So, accordingly in a given problem they will take a plus or minus signs accordingly. But just 

for the sake of clarity in derivation, we are going to assume that fluid is coming in through 

there and leaving through that. So we have had this equation d rho dt times delta v plus 

summation i rho i A i V i over the three outlets minus rho i A i V i over the three inlets, this 

is what we are going to use to derive the equation. Now to do that, first of all we have to 

account for the amount of mass is that enters at x and then we have to find out the amount of 

mass that leaves at x plus delta. 

So, in general the quantity such as rho v will be a functions of x, the velocity vector will 

also be a function of x, because we have use the continue hypothesis. And many all fluid 

quantities such as rho, v, p, (( )) pressure rho density, velocity, pressure they all vary 

smoothly and continuously with special coordinates. So, we will have to evaluate in order to 

find out the mass flow, at x is equal to rho a times the x, so velocity is a vector its u times i 

plus v times j plus w times k. So, this is the x component of the velocity evaluated at face x, 

mass flow at x plus delta x is rho A u at x plus delta x. 
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Now, in general rho A u at x plus delta x is not the same as rho A u at x. All though A is 

same, if you assume that that the cube area is not changing, but rho and u in general are not 

same. So, first of all, what is A? A is equal to in this face delta y times delta z. Here also, A 

is delta y delta z. So, the mass flow, mass in at x is rho A sorry rho u times delta y delta z 

evaluated at x. Mass out at is rho u delta y delta z at plus delta x, this in general not the same 

as the quantity rho u at x. 
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But you can use, what is called Taylor expansion or Taylor series expansion. To find out 

what is rho u at x plus delta x, this is rho u evaluated at x plus d d of rho u evaluated at x 

time delta x plus half d dx square d square x dx square times delta x square plus so on. Now, 

we are going to drop all the higher order terms. So, we are going to restrict only to this 

order. So, if you want write down and likewise you can write down at the directions, mass 

in at y is rho v delta x delta z at face y, mask out at y plus delta y is rho v delta x delta z at y 

plus delta y. And then mass in at face z is rho double w delta x delta y, mass out at rho w. 

Now, we going to use this equation d rho d t plus summation over all outlets rho A v minus 

summation over inlets rho A v is zero. So, d rho dt plus. Now, let us look at all the three 

faces separately. For the face at x, the outlet well mass flow rate is rho u at x times delta y 

delta z plus d dx of rho u at x, I am sorry its delta y delta z times delta x that is the Taylor 

series expansion. We are neglecting higher order terms, minus this inlet flow rate in the x 

face which is rho u at x times y delta y z. 
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Similarly, you can write down for other two faces, plus rho v at y delta x delta z plus d dy 

of, after having Taylor expanded, rho v at y delta times delta x delta z times delta y. This 

delta y comes from the Taylor expansion, minus the inlet which is rho v at y times delta y 

delta z plus the z face rho w at z times delta z, delta x delta y plus d dz of rho w valuated at 

z times delta y delta x delta y k times delta z, which comes from the trailer expansion, minus 

rho w z times delta x delta y is equal to zero. 



Now we can see that several terms are going to cancel away. For example, these two terms 

will cancel, these two terms will cancel, and these two terms will cancel leaving us with 

only this term. Now, if you see all these terms are multiplied by the volume and this term is 

also multiplied by the volume, if you remember which we wrote earlier, is delta v is nothing 

but, delta y delta z and del times delta x. So, you can divide the entire equation by delta x, 

delta y, delta z, to give simple expression for the mass conservation d dx of rho u plus d dy 

rho v plus d dz of rho w is zero. 
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Now, this equation is valid at each and every point in the fluid, this is also called the 

continuity equation or equation of continuity. Now, we also wrote down a coordinate free 

vector form of this equation. This form of the equation is valid only in cartesian coordinates, 

cartesian reference frame. Now, if you want to write it in general other coordinates, in other 

coordinate frames, we will use the quantity the propriety of a gradient or a divergence to 

write this as follows. And this is a vector form which is coordinate free form. 
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So, once you now what are the proprieties of divergence in other coordinate systems, you 

can use this form and write down the equation of continuity in other coordinate systems. 

While you cannot use this form in other coordinate system that is only valid for cartesian 

coordinate system. So, having said that we proceeded further to use this continuity equation 

to simplify it for an incompressible fluid. Before I do that, I can write this equation as d rho 

dt plus v dot del rho plus rho del dot v is zero. If we expand this term, you get two terms by 

using differentiation by parts. Now, this expression combined together is the substantial 

derivative of density plus rho from this term del dot v is zero is this. 
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The substantial derivative of any quantity is the rate of change of that quantity with time, as 

you follow a given fluid particle. Whereas, this term is simply the rate of change evaluated 

at a fix point in space. Now for incompressible fluid, d rho dt is zero. Suppose you follow a 

given fluid parcel, its density will not change with time, for an incompressible flow. So, if 

you knock this term of for an incompressible fluid, we get the continuity equation for an 

incompressible fluid to simplify, as rho times del dot v is zero. But since rho is a non-zero 

constant you have, this is the equation of continuity for an incompressible fluid, continuity 

equations for an incompressible fluid. It is important to understand that the time derivative 

goes not, because the flow is steady. It is because of the fact that the substantial derivative 

of density is zero for an incompressible fluid. 
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So this is valid for both steady and unsteady flows of an incompressible fluid, both unsteady 

and steady flows of an incompressible fluid. So that is something important for us to 

remember that this equation is in general true for both steady and unsteady flows, but it is 

applicable only for an incompressible fluid. We also saw that incompressible condition is 

valid when, in the last lecture, I would not go through this again. When the velocity typical 

magnitude of the velocity relative to the speed of sound is very very small, that is ratio of c 

is very very small compare to 1. 

 



That is the Mach number is small compare to 1, then the flow is incompressible. If you want 

know that derivation, you please refer to lecture number 20, the previous lecture, I would 

not derive this here again. So, for this course will be predominantly focusing only on 

incompressible flows, wherein the density of a fluid parcel does not change as you follow 

the fluid parcel. So our continuity equation will always take the form of a del dot v equal to 

zero. That is the velocity field, the velocity is a vector quantity and it varies at each and 

every point in space, in general in a flow. But what this means is that del dot v equals zero 

means is that the velocity v field vector field has no diverges in an incompressible flow. The 

velocity can vary at each and every point in space, but in such a manner that the divergence 

of the velocity vector always has to be zero. 

This is a very very rigorous and important constraint on the possible values which the 

velocity vector can take, because it cannot take any arbitrary values. It always has to satisfy 

the continuity equation del dot v equal to zero for an incompressible fluid, because it is 

essentially a statements of conservation of mass. So it is a very fundamental principle that 

no flow can violate. So although, we cannot show individual applications of continuity 

equation right now. What is important for us to understand is that the continuity equation 

must always be satisfied by any fluid flow. And for an incompressible fluid, it takes a 

simple form that the divergences of velocity filed is zero. 
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Now, we are going to go further, proceed further and we are going to introduce a notion of a 

stream function. Now, I am going to assume again incompressible flows. For 

incompressible flows, we always have del dot v is zero. In general fluid flows, the velocity 

vector velocity is a vector can have component in the i direction plus component in the j 

direction plus a component in the k direction that is the z direction. But we will restrict our 

attention now to what are called 2 D flows that is only these two components are non-zero. 

We can choose the coordinate frame in such a manner, that the z component of the velocity 

is zero. So the flow is invariant, 2 D flows means flow is invariant in the z direction and this 

is first point and the z component of velocity is zero. If you do this, so you have only in 

these two velocity components u and v. 

(Refer Slide Time: 25:06) 

 

The continuity equation for cartesian coordinates for an incompressible fluid del dot v equal 

to zero means partial u partial x plus partial v partial y plus partial w partial z is equal to 

zero. So this is del dot v is zero, but since we are said that the w is not there, it is a 2 D flow, 

it is an incompressible 2 D flow. So the in the continuity equation simplifies to or the mass 

conservation simplifies equation simplifies to partial u partial x plus partial v partial y zero. 
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So and both the components of velocity u and v are functions of only x and y. Because, we 

have saying that assuming that the flow is invariant in the third direction. Now, we are 

going to introduce a concept, new concept called a stream function. It is a function of the 

two independent variables, its denoted by the Greek letter psi is a function of both x and y, 

and its related to the fluid velocities in the following manner. So, its related as follows u of 

x y is partial psi by partial y v of x y is minus partial psi by partial x. 

That is this new function is constricted is defined in such a manner. That if you take and it is 

a function of the both the independent variables x and y in a two dimensional flow. If you 

take the partial derivative of the new function with the respect to y, you get the x component 

of the velocity u. And if you take the partial derivative of the new function psi with respect 

to x that is the negative of that is basically the y component of the velocity v, so this is the 

definition of string function. 
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What is the advantage of this definition? Now, let us look at the continuity equation, you 

have partial u partial x plus partial v partial y is zero that is the continuity equation. Now, I 

am going to substitute u here and v here through this definition. So you get partial partial x 

of partial psi partial y plus partial partial y of minus partial psi partial x is zero that is the 

continuity equation. Now, I can pull this minus sign outs, you get partial square by partial x 

partial y psi minus partial square by partial y partial x psi, this is the continuity equation. 

But partial square psi by partial x partial y is actually partial square psi by partial y partial x, 

because the order on which you take partial derivative should not matter for a continues 

function of two variables. So this means that an important conclusion can be drawn that the 

continuity equation is automatically satisfied by the definition of this stream function, where 

the definition of the stream function. 

So this is a very important conclusion, because now we are finding the, by constructing the 

stream function in this faction by defining the stream function in this fashion, your 

automatically satisfying the continuity equation for two dimensional in compressible flows. 

That is a great simplification, because when you want to proceed further to momentum 

balance, you will find that you will have two sets of equation. The mass balance and 

momentum balance which are linked with each other or they are coupled to each other. 

 



But by defining this stream function, you are doing away with one equation, your we have 

to solve one equation less. And it is always nice to solve a lesser number of equations and 

more number equations mathematically speaking. So, in that sense the stream function is 

very very helpful, in the solution of two dimensional incompressible flow problems. So, it is 

a purely mathematical reason has to why this I mean this motivation of stream function is 

purely mathematical. That of course, it simplifies the solution of the equations by reducing 

the number of equations by one. 
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So that is one motivation for introducing this stream function. Another motivation for the 

stream function is that, we have to first understand that stream functions are related to; we 

are going to show functions are related to stream lines. We are discussed stream lines, 

stream lines long back when we discussed fluid kinematics. Kinematics, if you remember is 

a description of flow without worrying about what are the underlying causes of the flow that 

is forces acting on the fluid. So there we define stream function, stream lines as lines which 

are always parallel to the fluid velocity vector. Suppose you have fluid, let us just first draw 

the fluid velocity vector, suppose you have at each and every point the velocity vector is 

pointing in this direction. We can connect each and every point a line that is tangential to 

the fluid velocity vector and such a line is a stream line. 

 

 



Stream line is tangential to the, it is tangent to the fluid velocity vector at each and every 

point in the flow. So if two, if you have a local velocity vector v and the displacement along 

the stream function is dx. And if these are parallel, then the cross product of v cross dx is 

zero. This is something that we did it last time; we did few lectures back when we did 

kinematics. Now this gave rise to the condition, if v cross dx is zero, then we found that du 

by u dx, we found that dx by u is dy by v. This is something that we derived by using the 

fact that they are two vectors with the velocity vector and the displacement vector along the 

stream line they are parallel, so the cross point of these two vector should be zero, that give 

rise to this equation. 
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So along us stream line along the stream line, we can say that u dy minus v dx is zero. This 

is along the stream line from the definition of the stream line. Now, I am going to use the 

definition of the stream function that u is partial psi by partial y dy v is minus partial psi by 

partial x, there is also one more negative sign. The two negatives will make a positive 

partial psi by partial x dx is zero. So along the stream line, we are finding this relation. Now, 

if you know little bit of calculus, you will realize that if psi is function of two variable x and 

y. Then the variation in psi a small variation in psi that occurs because of small variations in 

x and y can be written as partial psi by partial x at constant y times dx plus partial psi by 

partial x, partial psi by partial y at constant x times dy is zero. 



This is I am not saying it zero, this is the variation in psi because of variations in small 

variations in x and y. But we find from a definition of stream function that along the stream 

line, from the definition of a stream line this quantity identically zero, so d psi is zero along 

the stream line. This something that we just found, because this is evaluated along the 

stream line. And this is nothing but, d psi the total change in psi that is incurred, if you 

change so d psi, if you change x by a small value and y by a small value. So, if d psi zero 

along a stream line what it means is, what this means is that if you go along a stream line psi 

has to be a constant. Because along a stream line, if you change the variation in the stream 

function, it turns out to be zero rigorously, so psi is a constant along a stream line. This is a 

very major result, because if you want to plot stream lines, all you have to do is to flat lines 

of constant psi. 
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Once you have the information of how psi varies as a function of x and y, psi some of now 

two variables for a two dimensional flow. Then we can simply plot constant values of psi 

and those will be stream lines. So this is a very very useful result, because if you want to 

plot fluid flow behavior, if you want to visualize fluid flow behavior, it is often useful to use 

stream line stream lines to do that both experimentally as well as from a computational point 

of view. In that context, it is much much easier to find out the stream lines by just drawing 

lines of constant psi. 



So this is one another use of stream function. So we found two uses so far of a stream 

function. Firstly, the stream function simplifies the solution of problems for two 

dimensional incompressible flow situations. Because by defining the free stream function 

like the way we defined just few minutes before, we found that the incompressibility 

condition is identically satisfied. So you have you are left one equation less in your solution 

scheme, so it is always helpful form a mathematical point of view. The second advantage is 

more physical that if you find the stream function, then lines of constant stream functions 

are stream lines. 

Now stream lines are special lines in a flow domain, where the velocity vector the stream 

lines are always parallel or tangential to the velocity vector each and every point in the fluid. 

So, by knowing by plotting the stream lines in a flow domain, it is easier to have a visual 

understanding of what the flow is a going to be like. Now, there is another important third 

major implication of using stream functions and that relates to the volumetric flow rate that 

flows between two stream lines. So, let me explain this bit slowly. Suppose you have flow 

domain and we are any way restricting ourselves 2 D flows. 
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So you have a 2 D flow domain in the x y plain, what we mean by say, what we mean by 2 

D flow is that the variation long suppose we have x, y and z. The variation along the third 

dimension z, this is the x is less very very less, so there is no variation in the third direction. 

So that is the meaning of saying that flow is two dimensional. 



So, the another use of stream function is the fact that this values the difference between 

values of stream functions between any two points in a flow domain has some relation to the 

volumetric flow rate that flows in between the two stream lines. So, we first saw that lines 

of constant values of stream function denote a stream line. So, let us imagine a two 

dimensional flow, in any case our restriction our discussions are now restricted 2 D flows. 

So we have, let us say three stream functions, three stream lines one, two and three. And 

each stream line is denoted by a constant value of stream function psi 1, psi 2 and psi 3. 

Now, the claim is that and remember imagine remember that the flows are three–

dimensional, two-dimensional in the sense there is no variation in the third direction z. 

So these stream lines are almost like sheets, so in the third direction and there is no 

variation. Because you can always construct many such stream lines in the third z direction 

and there is no variation of any quantity in the third direction. So, you can cut at any cross 

section and they will look like that lines. Now suppose, if I look at any two points A, B, you 

can ask the question what is the volume of fluid that flows between these two points per unit 

width of the third direction z. And you can likewise consider some other orientation of the 

area, what is the amount of fluid that is flowing between volume of fluids that is flowing 

between this area per unit width in the third direction per unit time. So, that is the question 

that we want to answer. 
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So, let us find out the volumetric flow rate. So the volumetric flow rate let us use the line A 

B. the line A, B is actually a surface, because you have to extend it in the third direction. 

And since things are invariant in the third direction z direction, you can calculate everything 

per unit width of the third direction. For the volumetric flow rate per unit depth, let us say 

the third direction across this surface A B. Now, I am choosing this surface A B, because in 

this surface along this surface A B, this surface is directly perpendicular to its along its 

perpendicular to the x axis. 

So the only component to the velocity vector which is going to a cause flow it towards to 

the surface is x components. Because the y component is parallel to this surface so it cannot 

cause any flow. So the volumetric flow rate is nothing but, integral it, in principle it is v dot 

n times dA. now, in principle but, since it is unit width we cannot write dA. So, we have to 

write it as some write it as dA per width. And for this simple system, since v is purely along 

the x direction v dot n becomes u. And the coordinate for integration is simply dy, but per 

unit width of the third direction, so you do not have to worry about the third direction. 
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So, q is simply integral A to B u dy. and what is the differentiating thing between points A 

and B. it is the y coordinates, this is y 1, this is y 2. So this is simply y 1, simply equal to y 1 

to y 2. Instead of u, I can put partial psi by partial y t y. so q is nothing but, psi at y 2 minus 

psi at y 1. So and psi at y 2 is simply psi 2 and psi at y 1 is psi 1, because along each and 

every point in this line the stream function is a constant psi 1. 

I can do this for the psi surface or lines B C also, let us do that for the line B C q is integral, 

so if you look at this diagram. Now, this is completely perpendicular to the x, it is 

completely perpendicular the unit normal is perpendicular to the y direction; it is along the y 

direction. And the surface is completely normal to the y direction, so the only component of 

velocity that is going to contribute is the y component of the velocity. So the normal 

component is just the y component. So, q will be written as per unit width will be written as, 

now the only thing that differentiates between these two points between B and C is their x 

positions, here its x 2 here its x 1, so integral x 1 x 2. So we are now computing the point x 

1 here, x 2 here. Volumetric between these two points u v dy v dx, because the area of the 

its going to be integrated along the x directions, so dx. 

V is nothing but, minus partial psi by partial x dx, so this is psi of x 1 minus psi of x 2. Now 

psi of x 1 is psi 2, because x 1 lies on the psi 2 line, psi of x 2 psi 1, so this is nothing but, 

psi 2 minus psi 1. So, what we have shown is that by choosing two different completely 

different areas. We have shown that the amount of fluid that flows between these two points 

is the same as the amount of fluid between flows at between these two points. 
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So if you take any two orientation, the amount of fluid that flows between these two points 

per unit width of the third direction per unit time is always given by the difference in the 

value of the stream functions between those two stream lines. So, this the difference in 

values of stream function between any two stream lines directly gives you a measure of how 

much volume of fluid that is going to flow between those two points between those two 

points. 

So, what is the big advantage of this description? The big advantage of this description is 

that, suppose you have a stream flow pattern like this. These are stream lines, so these are 

values of stream lines psi 1, psi 2, psi 3, and psi 4. So, along at each along at each and every 

point along this stream line time, psi is constant psi 1. So if I take psi 1 minus psi 2 the 

difference, it is constant from here to here, because it is the same stream line, the same two 

stream lines. But here the width, the distance between those stream lines is much more 

compare to a point like here. 

So, if the difference between two points the (( )) stream function values is related to the 

volumetric flow rate. More amount of volume, the same amount of value has to flow 

between these two points as well as these two points, because psi two minus psi is constant. 

That means at the velocity here will be less compare to the velocity here, because of the fact 

that this two stream lines are converging. 



So by immediately having, by having quick look at the stream line distribution present in a 

fluid flow, you can immediately say where the fluid velocity is going to larger and smaller. 

Because, the difference between values of stream functions between two, any two stream 

lines is always equal to the amount of volume that is going to flow across any line drawn 

between these two stream lines. Since, psi 2 minus psi minus constant along the stream lines 

at along any two points along the stream lines. 

So when the whenever the two stream lines converge, we can immediately conclude that 

along at the point of converge the velocity vectors will be much much greater compare to 

the point where the stream lines are divergent. So, this gives rise to a way very quick aid for 

flow visualization, because once you have a huge data, let us say from a computer solution 

or an experiment in fact. 
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By plotting all the data in terms of stream lines, one can immediately get a qualitative feel 

as to where the flow velocities are large and where the flow velocities are small. So this is 

the big advantage of differential stream function. So to just to recapitulate what we did in 

today’s lecture. We first derived the most general form of continuity equation, for cartesian 

coordinate system that becomes the following, this is for cartesian coordinates. Now, we can 

also write this in vector form which is coordinate free. That is the nature of the equation that 

we are going to write in the vector form is coordinate free is independent of coordinate we 

choose to work with. 



It is always the same, it is also called the abstract form, d rho dt plus del dot rho v is zero. 

Now, in many applications you will see little later that it is often convenient to use 

coordinate system that corresponds to the symmetry of the particular system. We may be 

interested in flow through pipes or flow past a sphere. In which case, you may not it may 

not be convenient to work with cartesian coordinate systems and it may be beneficial for us 

to use a cylindrical coordinate system or a spherical coordinate system. 
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In a cylindrical coordinate system any point is denoted by r, which is the distance from the 

origin to the projection of the vector in the x y plane, theta which is the angle the projection 

makes with the x axis and z which is the normal z coordinate in the cartesian coordinate 

direction, so you have r theta is z in cylindrical coordinates. Now just, so in cartesian 

coordinates, the continuity equation or the mass conservation equation in the differential 

form becomes this. But, suppose you in a cylindrical coordinate, the velocity vector is 

written as v r e r plus v theta e theta plus v z e z. 
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So, if you want to write the continuity equation, we cannot write by steady by just extending 

the continuity equation in the cartesian coordinates, this is wrong. Because for the first 

reason that this equation is such a straight forward extension of the cartesian continuity 

equation in cylindrical coordinate, it is not even dimensionally consistent. Because this is an 

angle variable, theta is an angle it has no dimensions does not have dimensions of length, 

whereas all r and z have dimensions of length. So, clearly you cannot readily extend this 

two more other coordinate system such as cylindrical and spherical coordinate systems. A 

more fundamental reason is that, if I look at the abstract form, it becomes divergences of 

divergence of rho v. Now, divergence in the cylindrical coordinates system is one over r 

plus e theta one over r d d theta plus e z d dz. 
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This is a gradient operator dotted with rho v r e r plus rho v theta. So, plus rho v phi, rho v z 

e z. if you do this operation, key thing for us to remember is that in cylindrical coordinates. 

If I look at the r direction and theta direction, this is e r, e theta is along this direction. If I 

move along the theta direction, you can see that e r is going to change its direction. So e r is 

not independent, it is not always pointing in the constant direction; if you change theta e r 

varies. So, this is a very generic feature in curvilinear coordinates wherein the unit vectors 

will change the directions as you go along a given coordinate direction. So unlike in 

cartesian coordinates where the unit vectors i, j, k, are always pointing in the same direction, 

regardless of no matter where how you very x, y, and z, that is not the same. So essentially 

the crux of the matter is that, when you take the divergence, you not only must take the 

divergence of v r, but also e r, e theta and e z and this will give rise to a different kind of 

equation. 

So, I would not to do the details, but it is important to know that in cylindrical coordinate 

systems the continuity equation will become the following. So, one cannot readily extend 

the cartesian continuity equation like here to cylindrical coordinate systems. Because of the 

fact that unit vectors themselves will vary with special coordinate in curvilinear coordinate 

systems. So that is something that we must keep in our mind, and the same thing applies 

even for spherical coordinate systems. Having done that, we introduce the notion of stream 

function which is very very useful, especially when you consider two dimensional flows. 

Because, you need not satisfy the in compressibility equation or continuity equation 



separately, because the stream function by definition satisfies del dot v equal to zero. So that 

is one big advantage of using a stream function for two dimensional incompressible flows. 

The second advantage is that by, it this the stream functions, if you plot lines of constant 

values of stream function, they are exactly the stream lines. Remember that, the stream lines 

are always locally tangential to the fluid velocity vector. So, it is a very very useful way of 

visualizing fluid flows. The third important result that we derived is that, the different 

between two stream function values between any two stream lines gives you a measure of 

the amount of volumetric flow rate per unit width in the unit depth the other direction, for 

two dimensional flows. 

So this also helps in flow visualization, because when the stream lines are far apart; and if 

they converge at some point. That also means at the velocity vectors are velocity magnitude 

of the velocity will be increasing, wherever the stream lines are converging. So, these are 

the very, so these three are very important implications of the definition of stream function. 

So, this really completes our discussion on a differential mass balance, which gave rise to 

the continuity equation. The continuity equation is the most extremely fundamental, because 

it always must be satisfying, but it cannot be solved in isolation. We have to combine it with 

linear momentum balance as well as energy balance. So, we have to go to the next step of 

deriving the differential momentum balance for fluid flows, which we will do in the next 

lecture. 


