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Welcome to this lecture number 19 on this NPTEL course on fluid mechanics for 

chemical engineering under graduate students. In the last few lectures our topic of 

discussion was the derivational application of integral or microscopic energy balance and 

just to quickly remind you the microscopic energy balance is derived using the first law 

of thermodynamics. The first law of thermodynamics applies to a system which contains 

a particular mass of a fluid while in many engineering flow applications we deal with 

flowing systems.  

So therefore, we have to convert the first law of thermodynamics to a control volume 

which is basically a fixed region of space of interest to us in an engineering operation. 

(Refer Slide Time: 01:10) 

 

So we have to use the Reynolds transport theorem to convert the rate form of the first 

law of thermodynamics which simply says that d E d t for a system is rate at which heat 

is transferred minus to the system minus rate at which work is done by the system just to 



reiterate again the work transferred between the system and surroundings involves a sign 

convention and we are going to follow the sign convention that the work done by the 

system or the C V on the surrounding is positive while the work done on the system or 

the C V is negative. 

So, that why you see a negative sign in this expression for first law of thermodynamics, 

while if you use the other convention that work done on the system is positive then you 

will  have a plus sign. So that is the sign convention that can also be adopted but we are 

going to follow this sign convention which is typically in many engineering context.  

So, then use the Reynolds transport theorem to convert this into a C V formulation where 

in you get rho e d V where e is the total energy per unit mass and e is written as the 

internal energy plus unit mass plus the microscopic potential energy plus unit mass plus 

the gravitational potential energy plus unit mass this is the rate of the change of total 

energy present in the control volume but this is not all you also have the flux term over 

the control surface rho e V dot n d A is integral sorry( Refer Slide No 01:10) is equal to 

rate at which heat is transferred into the system minus rate at which work is done by the 

system. 

Now, there are various contributions to work suppose you have a control volume which 

looks like this there. So this is a system in which fluid is entering through a pipe and 

exiting through a pipe let us say. So now, we are going to draw the control volume like 

this using the red dotted lines now that is the red dotted lines therefore, becomes the 

control surface that demarcates whatever inside which is the control volume from the 

surroundings, now fluid is entering like this here. So the unit output normal here is like 

this only or normal output like this the velocity vector is pointing against the unit 

outward normal at the inlet and along the unit outward normal at the outlet.  

Now, there are various types of work that that are possible but what is important for us 

understand is that work is done only if there is a force that acts and there is motion in the 

line of action of force. So in this control surface suppose you construct this internal areas  

where there is no flow because a fluid is stationary at the wall that is called the no slip 

condition, which we will see in detail  little later. So all though a stress acts on these 

internal surface is there is no work done on those surfaces because the surface is itself 

stationary. 



So, here there is a pressure force that acts there is a normal force that acts and fluid is 

also flowing. So therefore, there is a work contribution at the inlet and outlet that will be 

given by we later saw it to be equal to the inlet and outlet. 
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So, there are these normal contributions to the force that comes from the work done by 

the normal stresses at the inlet and outlet which I will write shortly and there are also 

share contributions because of the fact that you can have share work done by an impeller 

at the control surface. So having included both these terms we saw that the left side 

remains as such as rho e d Vplus integral C S rho e v dot n d A is Q dot now this is 

denoted as the shaft work okthat isassociated with  palm compresses turbines. and so on. 

So either you could do work on the C V or the C V you can extract work out of the C V. 

Now the term that arises due to the fact that you have a normal force due to pressure is 

given by rho sorry (Refer Slide No4:53) integral p v dot n d A integral over the inlets and 

outlets ok and in general there is no shear work at the entrance and exit because if you 

choose the control volume that is normal sorry(Refer Slide No 4:53) if you  choose the 

control  surface to be normal to the inlet velocity the shear stresses act in the direction 

perpendicular to the inlet velocity. So the dot product of these two is orthogonal vectors 

is, obviously zero. So the shear work can be set to zero by choosing the control surface 

carefully. So after having done all this you therefore, get and then we will let us simplify 

v dot n as minus v for inlets is plus V for outlets. 
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So once you do this you get a very simple d V is equal to Q dot minus w dot shaft minus 

integral rho times e plus p by rho plus V for inlets minus rho e plus V by rho v d A over 

outlets because of this fact that v dot n is minus V therefore, minus of minus becomes 

plus here that is plus v for inlets well it is minus it just plus v for outlets. So this minus 

sign stays here so this is the integral energy balance. 

Now, we also said that we can simplify this further by making assumptions of just for the 

sake of  obtaining clarity and so you can use the assumption of uniform flow we of 

course, saw that we can correct this assumption by using the kinetic energy correction 

factor for the energy balance ok the alpha term, but, right now if you assume uniform 

flow and steady flow and single inlet single outlet when the flow is steady this becomes 

zero when the flow is uniform all these quantities are independent of the cross section. 

So you can pull it out at the integral same here. So, the area integral becomes just the 

area of inlet and outlet.Ok so having done that you will get e plus p by rho times rho v a 

at at the outlet is e plus v by rho rho v A at the inlet plus Q dot minus W dot shaft. 
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Now the mass balance will save for a single steady system at with single inlet and single 

outlet that rho v A at inlet is the same as rho v A at outlet because at steady state there is 

no accumulation of mass in the C V. So that is equal to m dot the mass flow rate. So if 

we divide by m dot we get e plus p by rho at outlet is e plus p by rho at the inlet plus Q 

dot by m dot minus w dot shaft by m dot now this is nothingbut, the amount of heat 

transferred to the C V per unit mass there is no rate involved because you are rate 

dividing one rate by another rate. So they cancel out and this is denoted as w shafts there 

is no rate involved anymore. So now as per second law of thermodynamics. 
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So once you expand e to be u plus half V square plus g z you get change where delta 

means change in out minus in u plus half V square plus V by rho lets write V by rho first 

plus half V square plus g z in minus out where delta of any quantity is that quantity 

evaluated at out minus in delta symbol implies that you are evaluating quantity at the 

outlet minus the quantity at the inlet. So this is equal to q minus W shaft if you want use 

thermodynamics I want to change it to a differential where the inlet and outlet are just 

separated by small distance so you can convert it to a different cell d of u plus p by rho 

plus half V square plus g z is del q minus del w shaft. 

 Now you can borrow or adopt a relation from thermodynamics d u is Td s minus p d V, 

V is a specific volume which is 1 over density is T d s minus p d of 1 over rho when you 

substitute this back out here then you get d u instead of d u. 

(Refer Slide Time: 11:34) 

 

So I am going to substitute this in the d u here. So instead of d u I will get T d s minus p 

d 1 over rho but d of p over rho will give me d of p over rho will give me, p d 1 over rho 

plus 1 over rho d p. So I am going to write this as plus p d 1 over rho plus 1 over rho d p 

plus half d V square plus g d z is del q minus del w shaft now these two terms will cancel 

each other to give and I am going to bring the del q to the left side to get T d s minus del 

q plus d p by rho plus half d V square plus g d z is minus del W shaft. 



(Refer Slide Time: 12:49) 

 

Second law of thermodynamics tells you that this term is always greater than equal to 

zero this is second law of thermodynamics therefore, and this is basically the amount of 

work that is  lost irreversibility due to heat and this equality is valid only for reversible 

process but engineering applications involving flow are irreversible process you do not 

do them infinitesimally slowly over a sequence of equilibrium states. So they are 

irreversible processes therefore, second law of thermodynamics tells us that this is 

greater than zero for flow applications this is the amount of heat sorry (Refer Slide 

No12:49) amount of energy that is lost as heat and ends up in increasing the internal 

energy of the fluid of the fluid this is also called as the viscous dissipation of energy 

viscous dissipation of energy.Now, from the point of view of fluid mechanics this is the 

amount that is lost. So these are termed as losses. Ok so this is written as W l amount of 

energy or work that is lost. 
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So you rewrite your energy equations simplified energy equation as p by rho plus half V 

square plus g z at outlet minus p by rho plus half V square plus g z at the inlet is minus 

W shaft minus W loss losses this are the viscous this is the viscous dissipation of energy  

that implies that energy is transformed from microscopic forms like work two internal 

energy. Ok now, how to compute this losses will come to a little later how we do 

differential balances but right now this you have two sort of know the losses if you want 

to find the pressure difference and so on. So, either the losses come as an input to the 

calculation to experimental data or they come out as an output of the calculation. 

So this is the energy balance after taking into account the losses. Now, after finishing this 

we also looked at the application of integral energy balance or through flow 

measurement where we try to understand restriction flow meters wherein essentially you 

had a configuration like this you had a gradual contraction on an expansion. So 

essentially fluid is flowing like this eventually occupying the full region.  

So, there are recirculating zones like this both sides. So idea is here to have a knowledge 

suppose you take streamline that goes from here point 1 to point 2 now if I measure the 

pressure difference between these two points there is a delta p can I relate it to the 

velocity at 1. That is idea. 

So you measure pressure difference between 2 points 1 upstream of the contraction and 

another downstream of the  contraction and see whether you can relate the pressure to the 



velocity we found that after making simplifying assumptions that there are no losses and 

by applying the Bernoulli equation between point 1 and 2 remember that the Bernoulli 

equation is essentially cross simplification of the energy balance by taking the C V to be 

stream cube and by assuming that there is no viscosity in the surrounding fluid. 
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So there is no work then and by shrinking the stream tube to a stream line you find that p 

by rho plus half V square plus g z is a constant along stream line. So, this is the Bernoulli 

equations. So by applying this. To this 2 points along this stream line we found that we 

can say that p 1 minus p 2 is rho by 2 V 2 square minus V 1 square and by using mass 

conservation we say that V 1 A 1 is V 2 A 2 therefore, we were able to write this as V 2 

is 2 V 1 minus p 2 by rho 1 minus A 2 square by A 1 square whole to the power half. 

So this was the theoretically expected V 2 from here we can find the theoretical expected 

mass flow rate as rho V 2 A 2 is equal to A 2 divided by root of 1 minus A 2 square by A 

1 square root of 2 rho p 1 minus p 2. 
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So what is idea? the idea here is that by measuring this pressure difference between 

points 1 and 2 and by knowing the area A 2 and A 1 and by knowing the density we can 

find the mass flow rate, but, this is a theoretically estimated mass flow rate but it has a 

lot of assumptions. So in reality the observed mass flow rate  will not be the same as this 

because we have assumed that there are no losses which is a gross over simplifications 

and another thing is that we do not know what is the flow area at point A 2 but point 2 

we do not know what is the area because the flow area is only this not the entire because 

of the recirculation zone occupies the zone like this. 

Until this streamline occupies the entire the cross section. So this area is something that 

we do not know. So usually what is done is to use the throat area this region is called 

throat area of the minimum cross-section of the flow meter so instead of A 2. Now 

therefore, you write m dot observed or actual is A t instead of A 2 you write A t because 

that is something that we know from the construction of the device a t square by a 1 

square root 2 rho p 1 minus p 2, but, since there are.  

So many approximation that are involved there will be the actual mass flow rate will be 

some constant which are we fitted experimentally or empirically by doing the following 

experiment by knowing the given mass flow rate and by knowing the pressure by 

measuring the pressure drop we can fit the constant. 



So that this equation is satisfied and then this can be used to create calibration charts for 

a given meter that is how the constant C changes as a function of flow velocity and So on 

that will give us way to measure or way to measure way to compute mass flow rate in a 

real application by simply measuring the pressure difference at an upstream point of the 

flow meter and at the downstream point of the flow meter. So that is the idea of 

restriction flow meters. 

We also mentioned that this is generic discussion and in practice there are orifice meters 

and venturi meters which all fall in to this restriction flow meter class of flow measuring 

devices. But one drawback of restriction flow meters is that you will be able to measure 

only the average velocity cross section average velocity or the entire cross section of the 

pipe. But suppose for some in some applications if you need the local velocity at a given 

point in the cross section of the pipe then what do we do. So this is where we left of in 

the last lecture we just started this discussion on what are called pitot tubes. 
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Now, one way to measure the pressure in a flowing liquid is the following suppose you 

have a pipe or a channel in which fluid is flowing you can make a small hole a pressure 

tap this is called a pressure tap or a wall tap and let us say fluid is flowing on the average 

in this direction then it turns over that there is no normal variation of the pressure with 

the stream lines are straight which we see later if the stream lines or parallel then no 

normal variation in pressure. 



So we can just measure the pressure here by having a small tap and then connecting it to 

the manometer which is exposed to the atmosphere. So you can measure the gaze 

pressure at this point of a flowing fluid by simply having a wall tap. So the gage pressure 

in a flowing fluid can be measured by a wall pressure tap and a manometer is called also 

a wall tap. But that is not sufficient to calculate the local velocity at any point in the fluid 

in order to do that what we have to do is what is called use what is called a static 

pressure probe. 
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Essentially what this static pressure probe is it has a small tube and there are two holes at 

the top and bottom. So this 1 is another way of measuring the pressure in a flowing fluid. 

So the pressure that happens in the Bernoulli equation is also called this is a Bernoulli 

equation this is also called the static pressure 1 way to measure the static pressure that is 

the pressure in a flowing fluid is to use a wall tap another way is to introduce this static 

pressure probe  which is very thin cube shape like this now fluid is flowing like this and 

this region will therefore, will fill the pressure of the flowing fluid and if it is connecting 

to a manometer then you will be able to measure the pressure that is present inside a 

flowing fluid which is also called the static pressure or which is also called the static 

pressure  the key thing is to align this in the flow direction this much be aligned in the 

flow direction. 
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Now, another quantity of interest is called the stagnation pressure let me explain what 

this means the stagnation pressure is that pressure hypothetically suppose a fluid is 

flowing along the stream line suppose you bring it to rest you decelerate to a zero 

velocity by a frictionless process.  

So you decelerate a fluid to zero velocity this is a conceptual idea by a frictionless 

process in reality of course, it is not possible to you know in general to have a 

frictionless d k of deceleration of a fluid to zero velocity therefore, but it is a conceptual 

idea it is a concept that if you are able to decelerate a fluid to a zero velocity by a 

frictionless process then what will happen is that if you take the stream line and apply 

Bernoulli equation between point 1 and 2 here the fluid is velocity of the fluid is zero. 

If the velocity is zero here and it is V 0 t here if you apply Bernoulli between point 1 and 

2 Bernoulli equation between point 1 and 2 what will happen is that p 1 by rho plus g 1 z 

plus V naught square which is the upstream let us call all these terms as let us not call 

this V naught let us call it V let just call the velocity in the fluid as V plus V square is at 

the point this is called the stagnation point where the fluid velocity is zero is called the 

stagnation point at the point where the fluid velocity is zero this becomes equal to let us 

denote the subscript this point is p 0 plus g 1 sorry (Refer Slide No 25:04) g z 1 and 

similarly, g z 0 plus V 0 square but V0 t square is zero because the fluid is static it has 

gone to zero velocity.  



Now, if you assume that the elevations are the same then these two terms cancel out. So, 

then that gives you an expression for V square this is not V 2 square this simply let us 

call this V square. So, V square is p 0 minus p 1 by rho or V since you have V square by 

2 we should have V square by 2 here. So, V is 2 p 0 minus p 1 by a rho whole to the half. 
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So this is essentially says that the entire pressure had a there is in on the upstream at 

point 1 there is a pressure head as well as the kinetic energy head. So both the pressure 

head in kinetic energy head are at the stagnation point are converted to just pressure 

because the kinetic energy head is zero there. 

So that gives you an estimate for what is the velocity up stream. So if you measure the 

pressure at a stagnation point and if you measure the static pressure which is the pressure 

in a flowing fluid then that gives you the velocity at which you want to you are 

measuring the static pressure suppose you are able to measure this pressure difference 

between a stagnation point and another point where the fluid is flowing then you can 

estimate the what is the local velocity of the fluid at that point where you have measured 

the static pressure now how do we do this experimentally. 
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So this is conceptually how it comes about but we also have to find a way out 

experimentally and it is done by what is called the pitot tube. The pitot tube is a way to 

measure stagnation pressure. So how it works is the following. So you have a tiny cube it 

is a small hole and it is aligned in the direction of flow and the fluid comes to rest at this 

point approximately and therefore, if you connect this to a manometer you will get the 

stagnation pressure with respect to the  gaze pressure with respect to atmospheric 

pressure that is the gaze stagnation pressure. So the pitot tube can measure stagnation 

pressure. 

(Refer Slide Time: 30:11) 

 



So the pitot tube can measure stagnation pressure but there is also another variation that 

called the pitot static tube which simplifies the two measurements in a single device 

which  makes possible to measure both stagnation pressure and static pressure and the 

difference between them in a single device this is called the pitot static tube which goes 

like this which looks like this. 

So you have the tiny hole and there is the inner one the inner tube is one tap which 

measures the stagnation pressure because fluid is coming like this and then there are 

holes which measure the static pressure.  

So here is this. So let us show it some other color. So the  inner tube this gives you the 

static pressure p where as the outer as the the  sorry (Refer Slide No 30:11) this the tubes 

where this holes are on the surface gives a measure of the static pressure p whereas, this 

tube where the fluid comes to a halt it gives you a measure of stagnation pressure p 0 if 

you connect these two ends to a manometer this change in pressure will directly give you 

what is a local velocity using the formula we just derived because we derived this 

formula which says that V is 2 square root of 2 p 0 minus p divide by rho whole to the 

half. 

Since we know p 0 minus p through the measurement by connecting a manometer 

between this inner tube and outer tube then we can directly substitute that value out here 

and you will get a measure of the local velocity. So you can place you can imagine 

placing the pitot static tube about various points cross section of  a pipe or a channel and 

you can therefore, measure the local velocity at each and every point . 

As I told you sometime back the velocity that of a fluid that flows within a inside a tube 

or a channel varies at various points in cross section of the channel and that can be 

measured by using the pitot static tube because it  gives you a handle to measure the 

local fluid velocity now this will completes our discussion on flow measurement. 

So and I will what I will do next is to apply the engineering balances that is both and that 

is all the three balances mass, momentum and energy to couple of problems to illustrate 

the certain points that comes out upon applying this mass by  integral balances because 

in general what  happens a while using integral balances is that we do not have all the 

data to completely solve a problem. 



Therefore we are forced to make assumptions. Assumpations such as that there is no 

viscous shear a stress existing on a wall when we use the momentum balance for the 

simple reason that we do not know in a complex engineering situation what those forces 

are. So we are forced to make the assumptions that those forces are negligible but then 

such assumptions may work in some context and they may not work in some other 

context. 

So this is always an issue while applying engineering sorry (Refer Slide No 30:11) while 

applying microscopic or integral balances to engineering applications because the 

because of lack of complete information to solve the integral balances. So this I will try 

to show you in the context of two problems. 
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First let us imagine applying integral balances. So imagine you have a sudden expansion, 

of a flow. So we have fluid flowing and you have 1 station 1 upstream. So let us draw the 

C V and another stream let me draw it again.  

So, you have fluid flowing there is a sudden expansion you have station 1 up stream and 

station 2 downstream of the expansion whenever you have a expansion what happens is 

there are losses because not all the energy that you put in by virtue of let us say a 

pressure drop goes in pushing the fluid in the flow direction there are recirculating zones 

which are just there, because of the sudden expansion which cause additional losses such 

losses are called expansion losses. 



So let us say if fluid is flowing with a given velocity and we want to be able to find the 

amount of viscous losses that happen in a sudden expansion. So we are now going to 

calculate the expansion losses the viscous losses that occur in the energy balance that is 

our aim when you have a sudden expansion now the equations that we have are the three 

balances mass momentum and energy. So we  wont to be able to find the losses viscous 

losses due to the sudden expansion. So, using the three balances now how do we how are 

we going to do that. 

Now, if you want to do if you want to use the energy balance to calculate the viscous 

losses as I have told you we need to know what is the pressure drop between point 1 and 

2. If you want to know if you want to know what is the pressure between point 1 and 2 

then you have to use the momentum balance between these two points between those 

two control surfaces points in the control surface you apply them momentum balance 

across these points to estimate delta p for that we need to know what are the forces. 

So let me just draw this diagram once again. So, as a fluid is flowing there are two types 

of forces 1 is a tangential force acting between point 1 and 2 on this surface other is the 

normal force acting on this suppose you imagine this to be a pipe this pipe is going like 

this and it suddenly expanding to a bigger pipe. So, there is an annular region where you 

have this normal force due to pressure. So, there are two types of forces that act on the 

surfaces of this C V. So, we have to keep that in mind now let us first use. 
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So, let us say use assumptions that we will use alpha 1 is alpha 2 is approximately 1 beta 

1 is beta 2 is approximately 1 that is essentially we are saying that let us assume that the 

flow is in the turbulent region just to keep the flow to be reasonably uniform. 

So, you have A 1 V 1 is A 2 V 2 this is mass conservation for an incompressible fluid 

this is equation number 1 the momentum balance tells you that at steady state zero is rho 

A V 1 square minus rho A 1 V 1 square rho A 2 V 2 square plus p 1 A 1 minus p 2 A 2 

minus F where p 1 A 1 are the forces p 1 A 1 and p 2 A 2 are the forces acting when the 

fluid is entering and leaving the control surface and F has both the tangential and normal 

components so I just say as I just told this is the normal component due to pressure these 

are the tangential components in the direction of flow. 

So but we are going to say that the normal component is simply the pressure times A 2 

minus A 1 because this is the annular area remember always the pressure is acting and 

the negative sign is because of forces acting in the direction opposite to the flow 

direction. So you have to put a negative sign. 
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So that is one thing that is a normal force the shear stresses exerted by the fluid on the 

solid surfaces are very difficult to calculate or estimate because we need a more detail 

model such as a microscopic or differential momentum balance to get that information. 

So, due to the lack of the information either from A more fundamental model or from 

experiments we merely set it to zero at this point. So, this is an assumption that we have 



to live with because otherwise it is very difficult to find what the tangential forces are 

due to shear stresses.  

So, the momentum balance becomes rho A 1 V 1 square minus rho A 2 V 2 square plus p 

1 A 1 minus p 2 A 2 minus, minus p A 2 minus A 1. So, this is what we have at. So now 

the point is this p is the pressure at the point where the sudden expansion occurs. So let 

us call that plane as plane e because that is where the pressure is being exerted. So you 

can also rewrite this as zero is rho A 1 V 1 square and as rho A 2 V 2 square plus p 1 

minus p e  (Refer Slide No 38:58) there is there are two negative signs. So, let us remove 

1 plus p 1 minus I am sorry, there  are two negative signs that is plus p 1 minus p e times 

A 1 plus or minus we can even write plus p e minus p 2 times A 2 and then minus F 

tangential which is neglected in our approximation. 

 So now we have to know what is the difference between p e and p 1 because p e is the 

pressure at the expansion whereas, p 1 is the pressure at the upstream of the expansion 

where the fluid is flowing with the some uniform velocity now this the pressure between 

point 1 and point e differs because the factor fluid is flowing in the short segment but by 

choosing the station 1 is sufficiently close to the expansion we can assume that p 1 will 

be very close to p e because the only thing we are now  neglecting is the viscous losses 

due to the flow in that short segment. 
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So, we are going to assume that p 1 is approximately p e. So we have then by rewriting 

this equation p 1 minus p 2 by rho is V 2 square times 1 minus A 2 by A 1 this is from 

the momentum balance this is what the momentum balance gives us the integral 

momentum balance after making the assumption two assumptions that the share stresses 

are zero and the pressure at the a sudden expansion is same as the pressure at the 

upstream now if you use the energy balance integral energy balance you will get that p 2 

by rho plus half V 2 square plus g z 2 is p 1 by rho plus half V 1 square plus g z 1 sorry 

(Refer Slide No 41:52) g z 1 minus viscous losses there is no share there is no shaft work 

done because there are no shaft that are cutting across the control surface through this 

simple expansion.  

Now, one thing that we can say safely is that the elevations of the upstream and 

downstream roughly the same. So there is not much different potential difference due to 

gravity head now then we have to substitute for p 2 minus p 1 from the momentum 

balance to get an expression for viscous loss.  

So you have p 2 minus- rho by rho minus p 1 by rho which is obtain from the momentum 

balance after substituting that here we will get an expression for viscous loss which is p 1 

minus p 2 by rho plus half V 1 square minus V 2 square here I have  not substituted p 1 

minus p 2. So, instead of this p 1 minus p 2 we have to essentially substitute that. So you 

will get the viscous loss l viscous the viscous losses due to expansion as V 2 square times 

1 minus A 2 by A 1 plus half A 2 by A 1 whole square minus half. 
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So the viscous loss is equal to V 2 square by 2 A 2 by A 1 minus 1 whole square. So this 

is the viscous loss that happens due to a sudden expansion of course.In reality this will 

not be exactly true because of the assumption we make. So, we may have to do the 

measurement and up and then fit a constant with that but the form of the dependence of 

the  loss on the velocity is exactly like this and the areas of the sudden contraction but of 

course, this relation will not be exactly true because of the fact that we have made these 

assumption that there are no share stresses and the pressure of the expansion is exactly 

equal to the pressure up stream and so on. 

So certain things are neglected in our analysis that makes our analysis approximates but, 

none the less what is powerful about the integral balances that despite being making such 

grossly simplifying assumptions the functional form of the viscous dependence of the 

viscous loss on velocity and area is exactly the same as you obtain from the simplifying 

analysis simple analysis but, it says that the pre factor which turns out to be 1 our 

analysis is not exactly one but it will be some number which can be fitted by using 

experimental data. 

So, this is one example of an application of integral energy balances where we have not 

just applied one balance but we have applied a combination of mass, momentum and 

energy balance towards obtaining the viscous losses that there in a sudden expansion. 
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Now another example of an application of the integral energy balance is to obtain the 

diameter of the free jet, that exist  from a tube. So imagine you have a tube in which fluid 

is flowing under fully developed condition let us say it is a laminar for simplicity. 

Now, this fluid is existing now the moment it exist it goes into that atmosphere and there 

are no share stresses exerted by the surrounding atmosphere on the fluid because the 

atmosphere is static and it is just an. So shear stresses exerted by the atmosphere on the 

fluid is negligible compare to the amount of share stress the fluid faces when it flows 

through the wall when it flows through the tube a rigid tube with tube with a rigid wall. 

So in general the diameter of the tube d and the diameter of the jet d j that emerges a 

sufficiently downstream from the exit of the tube they are not the same because this is 

simply because of the lack of resistance to flow when the fluid exist into the atmosphere. 

So what happens is it generally thins a little bit the reason for that is because at constant 

flow rate the amount of volume that flows inside and outside is the same so we have V 

times D is V jet times D jet.  

So this is from mass conservation since the fluid will accelerate that is V will be less than 

V jet because of the fact that there is no there is no resisting force here the fluid is 

somewhat accelerate here that means, that d jet has to be. So let see. So V in general so 

the  diameter is in general different at the downstream because of the fact that there is   

no  resisting shear forces here. 



So V jet will be greater than V therefore, d jet will be smaller than D took satisfy this 

mass conservation conditions. So D jet is in general smaller than d and usually as I have 

told you in several occasion before that whenever you have a free jet velocity is uniform 

across the cross section of the jet. So having set these let us use the mass balance pi D j 

square by 4 V 1 sorry (Refer Slide No 46:16) pi D square by four V 1 is equal to pi D j 

square by 4 V 2 let us just call this station as one and this station as  two in our analysis.  

(Refer Slide Time: 49:27) 

 

Now, this is mass integral mass balance applied between points 1 and 2 of the C V this is 

a mass balance the energy balance becomes alpha 2 by 2 times the average velocity 

square at 2 is alpha 1 by 2 the average velocity square is at 1 minus the viscous loss now 

we have assume that p 1 is approximately equals to p 2 and z 1 is approximately equal to 

z 2 because… 

So now, I am going to make a simple change in the C V that my C V is right at the exit 

the point 1 the plane is at the exit of the tube. 

So the velocity profile is just parabolic as it is just exiting in the tube, but, the pressure is 

approximately the atmospheric pressure that is a assumption that we make although it is 

not rigorously correct this is an assumption that pressure as soon as it exist the tube is the 

same as the pressure far away in the free jet which is the atmospheric pressure but the 

velocity profile is still parabolic. 



So if you do that then alpha 2 is approximately one because the flow is uniform here 

whereas, alpha 1 is 2 because the flow is parabolic there. So use these two relations then 

I get a simple relation for you cancel let say alpha 1 is alpha 2 is 1. So V 2 square is 

simply 2. V 1 square that is one relation that we get and therefore, substitute this in 

continuity equation we get d square times V 1 is d j square times V 2. 
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So, if I square equation D square time d to the 4 times V 1 square is D j to the 4 times V 

2 square but, V 2 square is simply 2 V 1 square8d j to the 4 times 2 V 1 square V 1 ,V 1 

cancels off. So D jet is to the 4 is half d to the 4. So, d jet to the 4 is 1 by 2 to the power 

1fourth times D or D jet is point 84D this is the equation that we get while using the 

integral energy balance between points 1 and 2 where the point 1 is just exiting the tube 

and the velocity profile is parabolic while the pressure assumed to be atmospheric point 

2 is sufficiently downstream the jet where the jet velocity is uniform and the jet pressure 

is atmospheric now the reason why jet things is because as soon as the jet exits the liquid 

exits the tube then it does not have any shear stresses also. 

So, it accelerates a little bit. So, its velocity will be more then what it  was at the tube but 

continuity of mass implies that therefore, V 1 A 1 is V 2 A 2 therefore, the jet area will 

be smaller than the tube area therefore, the jet diameter is smaller than the tube diameter 

and it is small by factor of point 84 now we will stop here and in the next lecture we will 

use the momentum balance integral momentum balance to solve the same problem and 



we will see that the answers are not exactly the same. So, we will meet in the next 

lecture. 

 


