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Welcome to this lecture number 18 on this NPTEL course on fluid mechanics for 

undergraduate chemical engineering students. We have been discussing the ideas and 

integral balances of mass momentum and energy. And in the last lecture we completed 

the derivation of integral energy balance; and we just started out doing an application of 

the integral energy balance. 

But before completing that application, I thought I will say a few words more about the 

integral energy balance and more specifically I want to make a few additional comments 

on the nature of losses and their connection to the loss of thermodynamics. So let me 

very quickly do that, before I proceed towards application of integral balances. So, after 

essentially the integral energy balance is a statement of the first law of thermodynamics 

applied to a continuously flowing system. 
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And that merely says that the rate of change of the total energy of the system is equal to 

the rate at which heat is transferred to the system minus the rate at which work is done 

by the system. The dot above Q and W refer to the rate of heat transfer to the system. The 

sign convention is very critical, because heat transferred to the system is considered 

positive while heat transferred away from the system is considered negative. In the case 

of work, the convention that we are going to follow is work done by the system on the 

surroundings is positive while work done by the surroundings on the system is negative. 

This is typically the convention used in engineering thermodynamics and fluid 

mechanics, while there may be in other context such as physical chemistry and physics, 

both heat transferred to the system, and work done on the system is considered positive. 

But that is not the convention that we are going to use in this course; so, work done by 

the system on the surroundings. Now we can convert this to the where E is essentially e 

times mass - the mass of the system and that is equal to mass times u - the specific 

internal energy plus half V square specific microscopic kinetic energy of flow and the 

potential energy g z times m.. 
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And when we apply the Reynolds transport theorem, we said that this must be equal to d 

by d t of integral over the control volume rho e dV  integrated over the control volume. 

That is equal to the rate at which heat is transferred to the system minus the rate at which 

shaft work is done by the system. Then we also had in general there is a shear work done 



at the entry and exit through the control surfaces. But we also said that that can be 

normally said to 0 by choosing the control surface perpendicular to the flow velocities. 

But this is not all, when you convert from the system approach to the control volume 

approach the rate of the change of the energy of the control volume will not just change 

because of the heat transferred and the work interaction between the system and 

surroundings, but also because of the fact that that energy can flow in and out the system 

by virtue of flow. 

So that term is there, rho times e times v dot n d A. But we also had one more term that is 

due to the pressure work done by the fluid that is entering and pressure work that is done 

at the inlet and exit control surfaces by virtue of fluid flow in an out of the system. This 

is also sometimes termed as the flow work. It is p times v dot n d A. So, this is all the 

work and heat interactions that causes the rate of change of total energy present in the 

control volume. Now we will make some simplifying assumptions and then make the 

connection to thermodynamics, where we can concretely say something about the losses. 

In the last lecture, I sort of physically motivated it, now I am going to rigorously show 

that. 

So when you choose the control surface like this, suppose this is the unit outward 

normal, this is the inlet and the velocity is coming in exactly perpendicular to the control 

surface then v dot n is minus V. If it is an outlet, n and v are pointing in the same 

direction. So, v dot n is plus V. But whenever you choose your control surface like this 

the shear stress act on the control surface or flow surface in this direction. So sigma t dot 

v is 0. Same for the outlet, this shear stress act perpendicular to the direction of the 

velocity. So the rate at which shear work is done, at the control surface is zero if you 

chose the velocity exactly perpendicular to the control surface. So that is that is often 

possible. So we will just keep it like that so we will neglect shear work from now on. 

Once we do that, we will also find that. 
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So let me now write this integral of the total energy present in the C V is equal to Q dot 

minus W shaft minus integral e plus p by rho times rho v d A at outlets minus e plus p by 

rho, rho v d A at inlets. Now I am going to make further simplifications. Now I am going 

to assume steady flow, now uniform flow at inlets and outlets. This means that quantity 

such as, whichever is happening within this integral such as u V p etc. are independent of 

the cross section area and their constants. This is an assumption because we know how to 

correct it by using the kinetic energy correction factor little later. But right now let us 

keep thing simple by assuming uniform flow. 
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So once we do that and then we further assume single inlet single outlet. For simplicity 

there is only one inlet and one outlet, in which case this equation becomes e plus p by 

rho times rho V A at the outlet is e plus p by rho times rho V A at the inlet plus Q dot 

minus W dot. If you use some mass balance for a single inlet single outlet system for 

steady flow, you will find that rho V A at inlet is the same as rho V A at outlet. This is 

mass in the rate at which mass is flowing is equal to rate at mass is flowing out, at a 

steady state for a single inlet single outlet system if there is no generation of mass or 

consumption of mass within the control volume and this is essentially the mass flow rate 

that is occurring through the system. 
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So let me divide this this equation by m dot throughout, to give e plus p by rho at outlet 

is e plus p by rho at inlet plus small q which is essentially Q dot by m dot, minus small w 

shaft which is essentially W dot by m dot. Small q is the heat transferred to the control 

volume per unit mass of the fluid and small w is the shaft work done by the control 

volume on the surroundings per unit volume of the fluid sorry per unit mass of the fluid 

because now we have divided the rates with the mass flow rates. So the resulting 

quantity will be independent of time and it will be on the basis per mass of the fluid. 

So once we have done that, I am going to write e as u plus p by rho plus half V square 

plus g z. Outlet is u plus p by rho plus half V square plus g z at inlet plus q minus this is 



heat into the system sorry volume per unit mass this is the work done by unit volume per 

unit mass. There is no rate involved.. 
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Now I can use a new symbol delta as that quantity evaluated at the outlet minus quantity 

evaluated at inlet. So delta of u plus p by rho plus half V square plus g z this q minus w 

shaft. Now I want to make connections with thermodynamics specially the second law of 

thermodynamics. So I want to write this in differential form that is I am going to evaluate 

this so that the inlets and outlets are very very close to each other, so that we can convert 

this delta to a normal differential. This is du plus d of p by rho plus half dV square plus g 

dz is del q minus del w shaft. 
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So now, I am going to use relations from thermodynamics. Thermodynamics tell us that 

du is T d s minus p dV v is the specific volume for unit mass, well rho is mass per unit 

volume. So v is 1 over rho in our notation. So this is well known relation in 

thermodynamics, the combination of first and second law of thermodynamics. So we will 

write this as du is T d s minus p d of 1 over rho. So I am going to substitute du out here, 

to get T d s plus, now let me first write minus p d of 1 over rho. This term out here, 

becomes plus p d of 1 over rho, I am going to differentiate over parts, plus 1 over rho dp 

plus half dV  square plus g dz is equal to delta q minus delta W shaft. 
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Now these two terms knock off each other and all you are left is with is T d s, now I am 

going to bring this d q out here, minus del q plus dp by rho plus d of V square by 2 plus g 

dz is equal to minus W shaft. Now the second of thermodynamics tells us that this 

quantity is always greater than or equal to 0. T d s minus d q is always del q is always 

greater than or equal to zero and the equality is valid only for a reversible process. For 

any process that is not reversible for example, any real flow process is not a reversible 

process, there is uni directional conversion of mechanical energy to internal energy. As 

we mention in the last in the previous lecture. 

So this is always greater than 0. So this is given the symbol delta W loss, viscous losses 

which cannot be retrieved as useful work because of irreversibility of the process there is 

always a systematic conversion of microscopic energy to internal energy. So mechanical 

energy to internal energy. So we cannot retrieve this back as useful work. So these are 

forever loss to internal energy of the internal degrees of freedom which will eventually 

manifest as an increas in temperature of the fluid. 

So these are the viscous losses. So we will go to write this as dp by rho plus d of V 

square by 2 plus g dz is equal to minus delta W shaft minus delta W loss - the viscous 

loss. Now, I can now change the differential form to the input minus output form. So I 

am going to change it back to single input single output kind of the system inlet single 

outlet to give p by rho plus half V square plus g z at outlet minus p by rho plus half V 

square plus g z at inlet is minus w shaft minus w loss viscous losses. And this was the 

equation that we derived in the last lecture as well.  

Last lecture I motivated this viscous loss term more physically, but now I have also told 

you that by just using a fundamental relation from thermodynamics you can actually 

show that this T d s minus del q is what eventually becomes a viscous loss and that 

cannot be retrieved as useful work. So this viscous loss is something that has to be either 

calculator or it has to be obtained from experiments. So, we will come to how to evaluate 

viscous losses a little later, but this is quantity that is always greater than 0. It is 0 only in 

the case of an idealized liquid with 0 viscosity, the losses of 0, but no real fluid such as 

air or water has 0 viscosity. They always have, even if is a small number they have a 

finite viscosity. So there will always be loss of microscopic mechanical energy to 

irreversibly, to internal energy which will eventually manifest as attempt increase in 

temperature of the fluid. 
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Now before I go to applications, I want to make some general comments on microscopic 

balances. So we have three equations, integral these are also called as microscopic 

balances because they pertain to entire cross sections of equipments, we are not going to 

worry about detailed variation of flow quantity such as velocity or pressure at each and 

every points in the fluid, but, we are essentially doing a balance about entire equipment; 

so, sometimes called also as microscopic balances, which we refer to as integral 

balances. We have three equations for mass momentum and energy. So the question is 

how do we solve problems? A typical problem in real application might involve the 

following. This is rough statement of the problem, we will not give you concrete, I am 

not telling you a concrete statement. Suppose you may be given a flow geometry and you 

may be given a flow rate that is happening through the geometry - flow rate. 

And we may be asked to find for example, what is a pressure drop required to make the 

fluid flow? What are the losses that are involved? What are the forces that are exerted on 

various parts of the control surfaces because of the fact that fluid is flowing through this 

geometry. Now it turns out that such a problem is not well specified because we will 

eventually find that this number of unknowns that we have is greater than number of 

equations; essentially this, because mass balance will trivially relate inlet and outlet 

velocities. So we will be left with three unknown delta p, loss and force but we have only 

the two balances moment and energy. So you have only two balances while we have 

three unknowns. So that leads to a problem. 
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So for example, I am going to illustrate this situation in the case of an expansion, you 

may have channel which is expanding suddenly and fluid is flowing like this through, at 

steady state. Now, because of the fact that there is a sudden expansion there are these 

recirculating zones of fluid. And this leads to loss because some of the energy that you 

are trying to supply to make the fluid flow in this direction, is lost in making the fluid go 

round and round in this sort of dead pocket. So this leads to loss. So this is reason why 

expansion always has losses. Now if you construct a CV like this at point 1 and at point 

2.  

The mass balance will simply relate V1 and V2, it is simply tells you V1 V2. The energy 

equation as two unknowns delta p and viscous loss, but, the momentum balance has an 

unknown the force - that is also an unknown. So we have only these two mass balance, 

simply relates V1 and V2. So given V1, we can find V2. So that is the only job of mass 

balance. You have two equations, but three unknowns. So in order to calculate losses you 

should either have an idea of what the force is or what the pressure differences are? 

Either through experiments or some way we have to, otherwise this problem cannot be 

solved using the integral balances. 

So we can roughly categorize the application, typically simpler applications of integral 

balances will fall in one of the following classes. Class 1 problems, let us say we will be 

asked to calculate viscous losses for a given flow. So here the idea is to use energy 



equation to find losses. But in order to do that you need to know the pressure drop and 

you should get pressure drop from the momentum balance. So in order to find losses you 

need pressure drop in the energy equation, but the momentum equation relates the 

pressure drop to the forces. So if you want to get pressure drop from momentum 

equation, the momentum balance. Then you need to have we need to know the forces 

acting on the CV, otherwise we cannot.  

So some information about the forces required in class 1 problems, if you want to 

calculate viscous losses, for a given flow and if you have no idea about the pressure 

gradients or pressure drops, then we need to appeal to the momentum balance, but they 

are the process relate to the forces acting through the control surfaces. Now we need to 

have some information on what the forces are acting on a control surface. Then we can 

proceed to calculate the pressure drop from the momentum balance and then substitute 

that back to the energy balance to estimate the losses given in the given application. 
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Now class 2 problems, second class of problems will involve, force must be calculated 

from the momentum balance. So essentially the question that will be asked or post is 

calculate force for a given flow force for a given flow. If you want to do that the force 

must be calculated from momentum balance, now in order to do that you need delta p. In 

order to get delta p you have to go to the energy balance. So, for that you need to know 

the viscous losses. 



So you need to know you need to have some idea of this, information is required. Now to 

compute force in class 2 problems the second class of problems. The third class of 

problems involved. So here we may be asked to calculate delta p for a given flow. So you 

will be given a flow the velocity, what is a delta p that is required. So you have two 

options you could either use the momentum balance or the energy balance. So in order to 

get delta p from the momentum balance, you need to know the forces in order to 

calculate delta p from the energy balance, you need to know the losses. 

So depending on whichever information is available, you may be able to calculate delta p 

from either of the approaches. So the answers may not always be the same because some 

of this information, the knowledge of either forces or losses might itself be not so 

accurate. So, some of the information about forces or losses of themselves are not 

accurate. So the resultant answer for delta p in the this third class of problems will be 

different depending on the approach you take. And of course, one has to choose 

whichever is approximation or is more accurate. You will have to get a better agreement 

with experimental data. So you can have different answers for delta p. 
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So the point I am trying to drive across is that in general, integral balances are simple 

because you do not need much detail information about the velocities, distribution of 

velocities across various points in the flow, they are much simpler but they yield only 

approximate information as we just pointed out, because often our knowledge of the 



forces exerted through control volume or the losses they are not perfect and many a times 

they have to be inferred from doing additional experiments or existing experimental data. 

So, you do not have a rigorous estimate of these, we solve this quantities such as forces 

or losses. So many a times we may have to end up making some severe approximations 

regarding forces or losses. In such a case the integral balances will give you approximate 

results. But the estimates, the approximate estimates that one obtains from integral 

balance, many a times can be good enough for a certain engineering applications. 

So, we may we may actually a be very successful in getting some fairly good estimates 

for quantity such as flow rates, by making some clever approximations. But in some 

other application we may not be able to use the integral balances to great effect because 

the information that is required is simply not there, such as forces or losses. So the 

approximation cannot be good enough. So we need to have a more detail understanding 

of a the flow, which will come through what we will see a little later called differential 

balance approach or the microscopic balances approach. But so far as the integral 

balances are concerned, you have only three equation mass, momentum and energy.  

The fairly simple and we indicated the three kinds of problems that one has. One has 

namely class 1 problems where for example, you are asked to, in class 1 problem you are 

asked to calculate the viscous losses for a given flow. So if you are given a flow then you 

can use the energy equation to find the losses. But the energy equation requires delta p. 

Now if you want to calculate delta p from momentum balances then you need the force 

information. So that is 1 class of problem and the second class of problem, you may be 

asked to calculate forces for a given flow. If you are asked to calculate the forces for the 

given flow, then you may have to use momentum balance, but the momentum balance 

will again need the information on delta p. In such a case you have to use it energy 

balance to calculate delta p, for which you need the knowledge on losses viscous losses. 

So for class 2 problems, you need to know the losses information, while for class 1 

problem you need to know the forces information. Now class 3 problems, you may ask to 

calculate, you may be asked to calculate delta p for a given flow and that will depend on 

whether you have to use momentum balance or energy balance. Suppose the force 

information is there for you, then you could use the momentum balance and if the losses 

information are there, you could use energy balance 



Now the answers from either approach would of course, not exactly match because that it 

depends on the nature of approximations you have made in getting an idea of what the 

forces are or what the losses are. So in general the answers you will get will not be the 

same for the same quantities such as the pressure for a given flow. And we just pointed 

out that integral balances also give you only approximate results, they will not give you 

exact results because many of the unknown such as losses are known only 

approximately. So but in many engineering application these are fairly successful 

primarily in getting a trend on a various quantities such as flow rates or pressure drops 

and with additional experimentation we may be able to understand the given engineering 

problem variable. 

So that is the philosophy through which or that is the a view point will take on the 

application of integral balances that they yields simple, but approximate the yields they 

allow for some simple solutions, but they give only approximate answers. So that is the 

key thing that we have to understand. Now, we will get back to the problems that we 

started doing in last lecture that is an application of integral balances to flow 

measurements. By flow measurement I mean measuring volumetric flow rates inline that 

is if you have a piping network through which fluid is flowing continuously in an 

application, in an industrial application you need to have a device that is fixed in within 

the pipe line system and we need to be able to measure the volumetric flow rate. 

For example, in many applications in chemical engineering, in a chemical plant we may 

want to know, what is a flow rate that is entering a reactive? So the performance of the 

reactor will a function of flow rate and if the flow rate is not equal to the desired flow 

rate, then you may have to do some corrective measures using process control. So it is 

very critical for us to be able to tell what is a flow rate that is entering a given reactor or 

a given equipment in many chemical engineering application. The question is how are 

we going to measure a flow rate, as it is flowing through a pipeline network, through an 

equipments such as the chemical reactive. 

So one simple way to measure flow rate is to go to the end of the pipeline system collect 

amount of liquid that flows, a fluid that flows to a particular, for a particular amount of 

time and if everything is in steady state you will get some mixture of the amount of 

volume that has flown per unit time just by dividing the amount of volume collected 

divided by the time for which you collected the volume. But those are indirect methods 



and that relies on the fact that you can actually go to the exit of the pipeline network and 

its sort of collect the liquid. 

But suppose you are interested in finding what is the fluid flow rate into a reactive which 

is completely closed to and there is not accessible for you to collect the volume. So you 

needs some indirect methods, where and you can infer the velocity or flow rate through 

maximum of the pressure drop. So such flow meters are called restriction flow meters. 

These are flow measuring devices which are fixed within a pipeline network in which 

fluid steadily flowing and by measuring an pressure drop between 2 appropriate points 

within this device, then we can correlate the pressure drop to the volumetric flow rate. 

That is the philosophy of flow restriction flow measurement devices or restriction flow 

meters. 

So a typical representatives sketch it is not a detailed geometry of given flow meter is 

that you may have a pipeline through which fluid is flowing and you may have a 

contraction and a sudden expansion back to the original pipe diameter. And fluid is 

flowing upstream with some let us say the pipe diameter is D1 and let us say that the 

normal sorry the velocity magnitude of the velocity that is flowing normal to this control 

surface is, so let us call this station as 1. There is an average velocity that is entering the 

way fluid is going to flow is the following; this going to flow like this. 

So I am typically drawing, it is going to expands slowly and there will be recirculating 

zones. Now we can put the control surface somewhere sorry the station to somewhere 

here where the fluid velocity is uniform in this direction and it is flowing through. So let 

me also draw the streamline that separates in red. So you may have a streamline like this. 

So let me draw this streamline first. So then you can draw the flow velocity. 

So this is to where there is, the cross section through which fluid is uniformly flowing is 

roughly a constant. Eventually it diverges and then it is sort of diverges then approaches 

the tube diameter itself. Now we want to apply the energy balance, but there are too 

many losses here, first of all the major contribution to the loss is due the fact there is an 

expansion and due to the expansion there are ades that are formed which are 

recirculating within the dead pocket through which fluid can either enter or leave. 

So the fluid just mainly flows through this minimum area, whereas this area is not 

available flow because of recirculation. So it leads to the lots of losses. Now we do not 



have any idea about what these losses are because these are such a complex flow process 

that we do not know exactly how the losses are related to the average velocity we want, 

that is flowing into the tube.  

So that information is not available to us. So in lack of such information which is 

required to solve the problem rigorously, we will rather take a simpler approach whereby 

we say that let us just use the Bernoulli equation to begin with between points 1 and 2. 

The Bernoulli equation as I told you, remember the last lecture is applicable only for an 

invicid fluid.  A  fluid with a hypothetical fluid with zero viscosity. It is applicable along 

a streamline sorryIt is applicable only along the streamline. So the Bernoulli equation is 

applicable only along the streamline. So we will take a streamline that flows between 

point 1 and 2 like follows. 
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So let me draw this streamline with an orange. So you may have streamline that goes, so 

we are going to apply Bernoulli equation between these point 1 and point 2 along the 

streamline. So this is admittedly an approximation, we will correct for this 

approximation later because remember that the Bernoulli equation is valid for a 

hypothetical invicid fluid while no real fluid is invicid that is no real fluid has zero 

viscosity, so there will be losses. Now losses are neglected to begin with and they will be 

corrected for later using an approximate method. So this is one of the simplest 

illustration of the application of integral energy balances or integral balances in general.  



So the mass conservation equation will simply tell you, if I apply mass conservation 

between point 1 and point 2. Let us let us make the assumptions first, the assumptions 

are steady flow. Flow along a streamline because we want to be able to apply Bernoulli 

equation, no losses which will be corrected for later and you will have uniform velocity 

at stations 1 and 2. And we will further assume that the elevation of points 1 and 2 is 

same, which is a very reasonable assumption. So the bernoulli equation will simply 

become for this problem p1 by rho plus V1 square by 2 plus g z1 this p 2 by rho plus V2 

square by 2 plus g z2 minus W. So we are neglecting shaft work, we are neglecting losses 

because it is Bernoulli. Now z1 is the same as z2 so that is 0. 
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So essentially you will get a relation between p1 minus p2, the pressure drop between 

point 1 and 2 which that is equal to rho by 2 V2 square minus V1 square. Now the mass 

conservation equation tells us, that V1 A1 is V2 A2. Of course, rho is there, but rho is 

cancelling out because it is a incompressible fluid we are assuming incompressible fluids 

rho is a constants - does not change. So you can write V1 as V2 times A2 by A2. So, that 

this equation becomes p1 minus p2 is rho by 2 times V2 square minus V2 square A2 

square by A1 square or p1 minus p2 is rho V2 square by 2 times 1 minus A2 square by 

A1square.. 
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So according to Bernoulli equation you can find what is the velocity at point V2 in terms 

of the pressure torque. If you measure the pressure between points 1 and 2 and if you 

know, what are the areas A1 and A2? Then we can find, what is the average velocity at 

point 2? So the mass flow rate of which is related to the volumetric flow rate quiet 

simply cause it is of fluid incompressible, simply the density times the area times 

velocity V2.  

So this will now become A2 by square root of 1 minus A2 square by A1 square times 

square root of 2 rho p1 minus p2. That is a this th represents for theoretical estimate for 

mass flow rate because in reality this may not be exactly true as we have neglected 

losses, but now we are just estimating based on the application of the Bernoulli equation. 

So what are the things that we need to know to compute the mass flow rate? We need to 

know rho, which can be typically found from handbooks. We need to know these 

differences and pressure delta p and we need to know the geometric factor A2 and A1. 
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So what is the what are the problems with this equation? What are the issues? The 

problematic issues are the area A 2 is not known, it is not the conduit area or tube area. It 

is essentially if you recall the picture, this is the point at which the fluid is flowing 

uniformly and we choose arbitrary the point 2 to be this, we do not what is this area 

through which the fluid is flowing appearing without measurements. 

But this area is roughly taken to be this area of the throat, this point at which the cross 

section is the smallest called the throat and this is called the diameter of the throat, the 

throat diameter. So typically the assumptions that is made, of course is that A2 is a throat. 

This is an assumption which has to be checked. Now we also assumed uniform velocity 

profiles while applying the Bernoulli equation, but in reality that is not the case. So there 

will be some errors that accrue because of the fact that we have made the velocity profile 

to be uniform because the most important is we have neglected losses - the expansion 

losses. So the actual flow rate, the mass flow rate will be not the same. But it will be 

some other constant which has to be empirically or experimentally determined divided 

by 1 minus A t square by A1 square times square root of 2 rho P 1 minus P 2. 
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Now it is conventional to use beta as the rate ratio of throat, the two diameters D t and 

D1. Beta is D t divided by D1 ratio of the throat diameter to the inlet diameter. So if I do 

that than the actual flow rate will be some C times At divided by square root of 1 minus 

beta to the four times 2 rho P 1minus p P 2. Now this is called the discharge coefficient it 

is completely non dimensional, is called the discharge coefficient. So the actual mass 

flow rate becomes K A t square root of 2 rho p 1 minus p 2. Now this is. So, how do we 

do this for a given flow meter and for non-flow rates we measure pressure and calibrate 

the flow meter by finding K for known values of pressured drops and for known values 

of flow rates and by measuring pressure. 

Once you have calibrated K for a given flow meter for an unknown value of flow rate 

you can use this equation by just simply measuring the pressure between the 2 points 1 

and 2. So essentially what is normally done is, to put a manometer at this between these 

two points and to measure the pressure drop and that will give us an accurate estimate of 

what is the actual mass flow rate that is happening but for that we need to know what is 

K this discharge coefficient and in principle this K can be function of the velocity itself. 

So you will find that in calibration charts the K is actually a function of velocity in some 

way. So that comes from the experimental fitting of the equation. So essentially this is 

the expected equation and you try to fit it with known values of flow rate and pressure 

since At and rho are known you can find out what is K and if you do that generally find 



the K is not a constant it is really functional velocity, at which fluid is flowing through 

this flow meters.. 
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So, what are the types of such flow meters 1 is called the orifice meter. Orifice meter is 

generally you have a circular disk with a hole that is an orifice which acts as a restriction 

device D1 and you also have venturi meter. So here you have this, let me draw with some 

other color, you have this upstream tube but it gradually converges and gradually 

diverges and again fluid is flowing in this region like this. So this is point 1, this is point 

2, this is the throat diameter. So these are the two common configurations of the 

restriction flow meters that are often used.  So essentially, the basic idea is the same; you 

are trying to estimate rather the mass flow rate or volumetric flow rate through a pipe by 

merely measuring the pressure drop before and after or at the point of minimum cross 

section that is a throat and by measuring this pressure drop we are able to relate that 

pressure difference, shows the actual flow rate that is happening in the system. Now 

these devices is measure average. 
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So what is the major idea behind restriction flow meters? The restriction flow meters 

such as orifice and venturi meters; they measure average velocity. They do not tell you, 

what is the velocity at each and every point across the cross section of a pipe? They 

measure only the average velocity. So if you want to measure, what is the point vice 

velocity? You cannot use restriction flow devices, restriction flow meters; to measure 

velocity at each point in the fluid, you need what is called the Pitot tube. It is essentially 

a very small tube that is inserted into the flow, then which is used to infer, what is the 

velocity at a given point in the fluid? By varying the location of this tiny tube at various 

points across the cross section of a pipe for example, then we can infer the velocity 

distribution or the variation in velocity at each and every point across the cross section of 

the pipe. So, I we will stop here at this point, and we will start in the next lecture. 

 

 

 


