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Welcome to this lecture number 13, on N P T E L course on fluid mechanics for 

undergraduate students in chemical engineering. The topic that we are currently 

discussing is under the title of macroscopic balances or they are also referred to as 

integral balances, just to remind you of what we were discussing in the last lecture. 

Macroscopic balances are concerned with entire equipment, process equipment like 

pumps, compressors or tubes networks of tubes and so on. 

So, we are going to apply the principles of conservation of mass, momentum and energy 

to control volume what is called a control volume. A control volume is any fixed region 

in space that is of interest to us. So, you could have for example, a pipe leading to a 

pump and then there could be several other pumps also, all this could come under a 

single control volume, depending on the nature of the application. This is just an 

example of course; the context in which the problem arises will suggest control volume 



by itself. And it comes from some experience by solving various problems in fluid 

mechanics; one learns how to choose appropriate control volumes that is convenient 

given problem. 

But, none the less in general a control volume is a region in space that is of interest to us 

in which we want to compute certain quantities such as forces or power requirement in 

pumps or and so on, similar reason similar quantities. 
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So, whenever you have a control volume. We have this instrument or we have this tool 

called the Reynolds transport theorem, (No Audio Time: 02:04 to 02:10) transport 

theorem which relates the rate of change of quantity in a system. So, just remind you a 

control volume is a fixed region in space. Here I am denoting the control volume by blue 

line a system is that fluid that occupies the C V at a given time t but, at a time 

immediately later t plus delta t the system has moved slightly away from the C V. A 

system or a material volume contains a same set of material points; there is a same set of 

fluid particles. 

So, you are following the same set of fluid particles while a C V is a fixed region in 

space. So, the Reynolds transport theorem tells you that suppose you have a C V and at a 

time t plus delta t, a system has moved slightly away. So, this is time t, this t plus delta t. 

What is the rate of change of various quantities at a present in this system, at time t as a 

function of, in terms of the variables that are expressed in terms of the control volume? 



So, the system rate of change of any quantity. So we introduced a general quantity called 

eta which is per quantity per unit mass. This quantity could be mass momentum or 

energy integrated over volume is d dt over C V eta rho d V. The time rate of change of 

that quantity present in the C V plus flux contribution which is over the various inlets 

and exits of the C V eta rho V dot n d A, where n is the unit outward normal to the 

control surface. 
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And this is the Reynolds transport theorem. This is the left side of the Reynolds transport 

theorem. Let me just write in words, is the rate of change of any extensive quantity such 

as any extensive quantity such as mass momentum or energy, momentum or energy 

present in the control mass or system at time t. 

The system and control volume coincide at time t but, at a slightly later time t plus delta t 

the control mass would have moved away from the C V because if you follow fluid 

particles by virtual flow, all these particles will be moving slightly away. So, that is the 

idea and the right side, the first term on the right side contains the rate of change of that 

quantity present in the C V itself. So, there are two contributions to the rate of change of 

this quantity extensive quantity as you follow this system. 

One is because of the fact that there is an inherent rate of change present in the C V 

itself. This is a rate of change in the C V and things could also change because of the fact 



that fluid is moving in and out by virtue of this flow in and out of the C V. There are 

fluxes of quantities inside and outside the C V and that is this quantity. 

So, this is the flux term, this is the flux of quantity moving in or out of the C V. A C V is 

visible to the outer surface through the control surface so through the surface, the control 

surface. So, the interpretation of various terms as follows. So, just to remind you eta is 

any quantity per unit mass time’s rho which is density, which is mass per unit volume. 

This product will give you any quantity per unit volume in a tiny volume in the C, in a 

system integrated over a entire volume will give the total amount of mass momentum or 

energy that is present in the system and this is d dt of that. 

The time rate of change of any quantity, the same interpretation but, here instead of 

integrating over the system which is a function of time, we are integrating over C V 

which is fixed region in space and this is the flux term. The interpretation as follows V 

dot n is a normal component of the velocity at the control surface times, d A is the 

normal volumetric flow rate of the fluid times. Density is the mass flow rate times the 

quantity per unit mass will give the rate at which any quantity such as mass, momentum 

or energy is entering or leaving the C V through the control surface. 
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V dot n is positive, if there is, if the fluid is leaving because n is a unit outward normal to 

the C V. So, V dot n is positive if fluid is leaving, and it is negative, if fluid is entering 

the C V. 
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So, that is the general Reynolds transport theorem. We next applied it to the case of 

conservation of mass, the principle of conservation of mass. So, this is the integral 

balance for mass conservation. Suppose, you have an arbitrary C V and in reality you 

may think of this as a container with several inlets and exits that is how it will appear in a 

real problem. 

So, fluid may enter through certain entries and exit through certain exits. So, this is the C 

V, so you identify the C V. How does the conservation of mass principle work for this? 

So, eta is quantity per unit mass, now the stuff that we are interested in mass itself. So, it 

is mass per unit mass is unity. So, you have to substitute 1 in the Reynolds transport 

theorem. So, d dt of rho d V of the system is d dt of V, control volume over the C V rho 

d V plus integral rho V dot n d A over the control surface. This is by applying Reynolds 

transport theorem with eta equals 1. 
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Now, the conservation of mass principle says that if you follow the same set of mass 

points, masses neither created nor destroyed. So, this is 0 by law of conservation of mass. 

If you follow the same set of mass points or fluid particles, since mass can neither be 

created nor be destroyed. If you follow the same set of mass particles, fluid particles their 

mass will remain a constant. So, that is a meaning of this derivative where you are 

following a system, that is by system we mean that you have system is like this at time t 

is equal to t at any time t. A little time later the system will deform but, it will have the 

same set of mass points has it had a t. 

So, if you follow the system at a later time t plus delta t. The mass will remain the same 

so the time rate of change of mass of the system is 0. So, the mass conservation principle 

as applied to a C V reduces to d dt of integral over C V rho d V plus integral C S rho V 

dot n d A is 0. Because this term is 0 so this right side must be equal to must be equal to 

0. 
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Now, I can interpret this in the following manner. I can take the flux down to the other 

side C s rho V dot n d A. Now, the physical interpretation for this is, this is the rho times 

d V is the mass that is present is a tiny pocket, tiny volume in a C V integrated over the 

entire C V will give you the total mass. This is the rate of change of mass present in this 

C V. 

Now, why should the mass in the C V change? Well it changes because there are entry 

and exits to the C V. And through the entry and exit fluid is flowing in and out and if 

there is a net flow in then there is an increase of mass. If there is a net flow out then there 

is an decrease of mass. So, what is the right side, V dot n is a normal compare to the 

velocity times d a is the volumetric flow rate over a tiny part of the control surface. So, if 

you look at a control Volume like this then if you take a tiny area d A, the net volumetric 

flow rate is V dot n d A. 

Now, times rho will be the net mass flow rate. Integrate over the entire surface will give 

you the total net mass flow rate in or out of the system. Now, V dot n is positive if there 

is a net flow out. If there is net flow out everywhere on the control surface then this 

integral will be positive, negative of a positive quantity is negative. That means that there 

will be decrease of mass respect to time in the C V. If V dot n is negative through every 

part of the control surface then there is a net inflow because n is the unit outward normal. 



If V is pointing coming into the C V, V dot n will be negative, if there is inflow and V 

dot n is positive if there is outflow. 
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If V dot n is negative, then negative of negative is positive. So, this leads to a buildup of 

mass that is d dt mass in the C V is positive. So, this is the most general form of mass 

conservation principle the d dt of integral over C V rho d V is minus integral over C S 

rho V dot n d A. Now, we can also simplify this, to many special cases. This is the most 

general form of mass conservation that is Valid for any system in fluid mechanics any 

problem in fluid mechanics. Now, for some special cases, the first special case we did is 

for the case of incompressible fluids. When the fluid is incompressible, rho is a constant, 

rho is independent, and rho does not change with pressure. 

Whenever there is a fluid flow there is pressure changes associated with any flow but, if 

the density changes are small or negligible then we can treat the density to be constant 

with respect to variation in pressure. Such fluids are called incompressible fluids. 

If rho is a constant then you can pull rho outside the integral. So, d dt integral, this is C V 

rho d V is again rho is constant, V dot n d A. Now, since rho is there in both sides of the 

equation it cancels out. Now integral over d V of the C V is nothing but, the d dt of the C 

V itself, the volume of the control volume. Now, if the control volume is fixed region in 

space it is constant so it is 0, it does not vary with time. So, minus integral C S V dot n d 

A is 0. 
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Now, let us apply to a case where you have typically C V can be a container with region 

of interest with several inlets and several outlets. There can be several inlets i and several 

outlets, just schematically fluid can come in and go out through several outlets. Now, I 

can therefore, split this flux term. So, for an incompressible fluid V dot n d A is 0. This is 

the conservation of mass principle; this is simplified form for incompressible fluids rho 

is constant. 

Now, the control surface is split into various control surfaces, C S 1 plus C S 2 plus so on 

is 0. Because there are typically several countable number of inputs and outputs in 

generally in realistic problem in fluid mechanics. In such a case, you can write like this. 
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Now, you can also demarked inlets and outlets. So, for an inlet V dot n is negative inlet 

and V dot n is greater than 0 for an outlet because whenever you have a control surface. 

Suppose, you have a conduit if this is the n is the unit outward normal if V is opposite 

then V is entering in V dot n is negative, if V is leaving in out. If V is leaving fluid is 

leaving the control Volume through the control surface V dot n is positive. 

So, we can split this into various inlets. So, since V dot n is negative, let us call V dot n 

as V and the magnitude of V dot n is V and the sign of V dot n is negative for inlets and 

positive for outlets. Now, usually what happens is that, let us just write it like vector 

summation over various inlets and outlets. Now, if the flow is uniform, that is the 

velocity we have in general terms like this C S 1 V dot n d A. Now, we can choose 

velocity to be completely normal to the C V either it is entering or leaving we can choose 

our control surface such that the velocity is normal. 

So, V dot n is essentially sum V, V dot n is the normal component of the velocity that is 

V and then there is a sign associated with it. So, if it is an inlet we will put a negative 

sign. And this is for all the inlets minus summation over all the inlets plus summation 

over so let i denote all the indices for inlets and similarly, for summation over all outlets 

is 0. 
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So, in general we have V i d A i summation over all inlets is integral summation over all 

outlets V i d A i. Now, if the velocity is uniform, if the flow is uniform then the velocity 

vector is independent of the cross section of the control surface, the velocity vectors is a 

constant, uniform flow. Usually flow is not uniform in flow through tubes and channels 

as we will see later but, if the flow is like a free jet that is going in atmosphere that is 

moving in atmosphere, in air then can reasonably think of it as a uniform flow. 

So, as a matter of convince in many simplified settings one may think of the flow to be 

uniform. In such cases V is independent of d A. So, you can pull it out and integral over 

d A over the control surface is simply A. So, summation over all inlets V i A i is 

summation over all outlets V i A i. 

If there is only single inlet, single outlet, single output then V in A in is V out A out. This 

is a very simple form of conservation of mass applied to incompressible flows whether it 

is steady or not it is not a problem because as C V it is a fixed region in space. This is 

valid for both steady and steady and unsteady flows as long as the flows incompressible. 
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So, if the flow is uniform then it that is a velocity vector is independent of cross sectional 

area. Then this is the simplified form of mass conservation equation V times A is the 

volumetric flow rate Q. So, Q in is Q out. So, generally if I was saying single input 

single output problem mass in must be equal to mass out because the fluid since the fluid 

density is constant. That means that the volume rate at which volume is flowing in is 

equal to rate at which mass is volume is flowing. This is denoted by volumetric flow rate 

is denoted by the symbol Q dot. So, this is the simplified form of mass conservation 

equation that is useful in many contexts in practical applications. 

Now, you can also consider another approximation that is the steady flow approximation. 

When the flow is steady d dt is 0, whether the fluid is incompressible or not is not a 

matter. We are merely considering steady flow that is d dt is 0. 
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When d dt of any quantity is 0, so we have the general mass conservation equation rho d 

V over the C V is minus integral over C S rho V dot n d A. Now, for steady flow 

approximation d dt is 0, valid for both incompressible and compressible fluids. 

(No Audio Time: 20:55 to 21:02) 

So, this is independent of whether rho is constant or not because we are assuming the 

flow to be steady. So, here integral over C S, now since rho is not a constant we have to 

keep rho inside the integral is 0. 
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And if the flow is uniform and you assume inlets and outlets that are discreet in number. 

Then you can write this as summation over V dot A i over all inlets is equal to 

summation over rho i V i dot A i over all outlets. So, this is the simplified form of mass 

conservation equation for steady flows and if the flow is uniform then V dot A will be 

simply. 

So, this is still without taking into account, the sign convention for inlets and outlets. So, 

V dot A is V A for outlets and V dot A is minus V A for inlets. Then we can take one of 

these out and write V rho i V i A i over inlets is rho i V i A i. So, this is a simplified form 

of mass conserve equation valid only for steady flows and density can vary from inlet to 

outlet. Although the form appears fairly similar to what we had before for 

incompressible flows, there the equation that we derived was valid whether the flow is 

steady or not, here it is valid only for steady flows. 
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Now, I told you a thing about uniform flow approximation, we will come to this little 

later and we do differential balances but, let me just tell you what will happen in reality. 

Suppose, you have a flow in the x direction, let us say in a rectangular channel. That is 

extending in the z direction that is coming out of the board in the z direction the flow is 

in the x direction. Now, if you have flow between two rigid plates. Then the velocity in 



the fluid well in general be non-uniform. That is the velocity will be 0 at the vase and it 

will be maximum at the center. 

So, and this is called velocity profile, it is called a velocity profile and in general 

therefore, one cannot pull the velocity if whenever you have V dot n d A. You cannot 

pull V out because velocity is a function of the coordinate with which you are 

integrating. So, one has to do this integration in general. 

So, for example, in a channel flow, flow in a rectangular channel the velocity in the x 

direction is a function of the y coordinates in the following manner. It is the maximum 

velocity which is at the center this is called V max times 1 minus y by B. Suppose, this is 

the 2 B and the y coordinate is set like this then whole square. 
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Then if you want to integrate integral V dot d A what this would mean. Suppose, fluid is 

entering in the x direction the unit outward normal is or let us keep the exit for 

simplicity. Suppose, fluid is exiting the channel in the x direction and the unit outward 

normal is also in the i direction that is along the x direction. Then V dot V A will be 

simply d y times W i where W is the width of the channel in the third direction. 

The channel is also wider in the direction perpendicular to the board. So, this will simply 

give you V dot i is simply and W is a constant can be pulled over. It is V x times d y and 

integrated from y equals minus B to y equals plus B. This is the meaning of this term V 



dot d A, this is W times y equals minus B to plus B times. V x of y is V max times 1 

minus y by B square. So, this is the meaning of integral V dot d A in general for a non-

uniform flow and this is nothing but, the volumetric flow rate in the channel. 

So, if you want to calculate the volumetric flow rate, this is how one calculates. And to 

get definition of an average velocity in the channel, V bar. It is defined as the volumetric 

flow rate divided by the cross sectional area. So, this is Q dot divided by the cross 

sectional area of the channel is nothing but, 2 B times W. 
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The whole width of the channel is the gap of the channel is 2 B and the width out of the 

paper is W. So, two times W is the width of the channel. This one calculates or defines 

average velocity by taking computing the volumetric flow rate for a non-uniform flow 

and dividing with the area. Suppose, the flow is uniform, if you have uniform flow then 

V x is independent of y the normal coordinate. 

So, integral V dot d A will be some constant U times. So, let us just do it. If V is simply 

a constant in the x direction so, you will have U i dot d A is nothing but, dy W i. So, this 

is nothing but, integral U dy and y going from minus B to B. This is nothing but, U times 

2 B times W, this is the volumetric flow rate. The average velocity is Q dot divided by 

area cross section area. That is nothing but, Q dot divided by 2 B times W. That is equal 

to U times 2 B times W, from this expression divided by 2 B times W. 



So, the 2 B W 2 B W cancels implying that the average velocity is the uniform velocity. 

That makes physical sense because if the velocity is constant independent of the cross 

sectional coordinate. Then independent of the coordinate perpendicular to the direction 

of the flow then obviously of you even if you average it will give you constant answer. 

So, this is the meaning of this particular quantity called Average velocity. So, this 

completes our discussion on mass conservations. 

So, that that really completes the discussion on mass conservation and we will apply 

mass conservation is so important. That in any problem that involves other balances such 

as momentum balance or energy balance we will see little later when we apply these 

principles. That mass conservation will give you one input to the problem. That is it will 

give you one equation to relate various unknowns with. So, mass conservation is always 

satisfied. So, it must be always satisfied in any problem in fluid mechanics. 

So, the integral form of mass balance we will see a little later is also always applied in 

some very rare cases. It gives you a very trivial consequence but, mostly it gives you 

useful information in terms of relating the unknown variables that we want to solve for. 

The next in our topic in momentum, in integral balances is the integral momentum 

balance. 
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Integral momentum balance applied to a C V, as applied to a C V. We want to derive an 

integral balance for momentum as applied to a control volume but, we have to go back to 



the control mass approach because really speaking, the momentum balance rests on 

Newton’s second law of motion. 

Law which says that the sum of all forces acting on a body, a body is an identifiable 

piece of matter in space. Sum of all forces acting on a body is equal to the rate of change 

of the time, rate of change of momentum that is present in the body which is the system. 

That is you follow the same set of mass points. The time rate of change of momentum of 

all these mass points which found this system or a control mass is equal to sum of all the 

forces that are exerted by the surroundings on the control mass. 

So, the Newton’s second law is really applied to a control mass, it applies only for a 

control mass or a system control mass and not directly applicable for C V. So, we have to 

use Reynolds transport theorem to simplify the time rate of change of momentum that is 

present in the system and relate it to variables in a C V. This has been our strategy even 

in the conservation of mass principle but, there it was very straight forward because the 

time rate of change of mass of a system was 0. If you follow the same set of mass points 

then it is mass will not change as per conservation of mass principle. Therefore, that was 

simple but, here it is slightly more involved as we will see. 
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So, the total momentum that is present in a system which is identical to the C V at time t 

is equal to integrated with the volume of the system rho times velocity times d V. Mass 



times velocity vector is momentum vector, momentum is a vector mass times velocity 

vector is momentum vector. 

In a fluid density can general change from point to point? So, we take a tiny volume then 

density times velocity is the momentum per unit volume times the tiny volume will give 

you the differential volume will give you the momentum present in that volume. 

Integrated over the entire volume of the system will give you the total momentum that is 

present in the system. And if we since, we want d dt and this must be simplified this 

must be used Reynolds transport theorem to simplify this we will do this shortly. 

The sum of all the forces is sum of body forces and surface forces. So, surface forces on 

the C V. Suppose, you have C V the system coincides with the C V at time t. What are 

the various forces that are being acted upon by the fluid or other solids that are present 

outside on this C V on the surface of the C V? And then there are body forces like 

gravity which act through the entire volume of the C V which coincides with the system 

at that time. So, these are the various forces that are acting on this system. 

So, let us apply the Reynolds transport theorem, the Reynolds transport theorem. If you 

recall d dt of integral over volume of the system eta rho d V is nothing but, d dt of 

integral over the C V eta rho d V plus integral over C S eta rho V dot n d A. 
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Now, we want conservation of momentum. So, eta is momentum per unit mass so eta 

will be mass times velocity divided by mass. So, mass mass cancels so eta will be simply 

the velocity vector itself. 
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So, the Reynolds transport theorem, as applied to the momentum conservation principle 

is V d V is d dt over the C V rho V d V plus integral over C S rho V V dot n d A. V V 

dot n d A is sum of all surface forces plus sum of all body forces. Now, if you recall the 

system and the C V they coincide at a given time in the application of Reynolds transport 

theorem. So, the system and C V coincide. So, F S and F B are merely the forces acting 

on the on the C V because they are originally the forces acting on the system at time t 

but, since the system and C V coincide at time t. So, these are merely forces on the forces 

acting on the C V themselves. So, we are now able to obtain a version of the Newton 

second law to variables that pertain to a control Volume. 

So, essentially what we have is this F S plus F B the sum of all surface and body forces is 

equal to integral rho V d V plus integral control surface rho V V dot n d A. So, this is the 

general form of integral momentum balance. Now, we can simplify it to some special 

cases. 
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Suppose, you have limiting cases, you have uniform flow when the flow is uniform then 

V vector is independent of d A. So, you can pull it out of the in the of the area integral 

the surface term. So, you get F is F S plus F B sum of all forces on this C V is d dt rho V 

d V plus summation over C S V rho V dot A. Still there is a sign associated with the area 

let just put it as V dot n A. 

Because if the flow entry is flow is entering the C V then n is unit outward so V dot n is 

negative and the flow is leaving then V dot n is positive. So, that is the usual convention 

that we follow. Usually what happens is the body force is due to gravity. So, the body 

force is merely integral over C V rho g d V. 
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Now, what are the various causes of surface force F S? These are the surface forces 

acting on the C V because you have a system like this and this is our C V, red line is a 

control surface of the C V. 

So, this is our C V, the red line is our C V and fluid is entering. Let us say like this and 

going like this now on the surface is the control surface can be divided into two parts, a 

part where flow is entering and the part where flow is leaving. This is one part where 

there is entry and exit. And there are the stationary parts here these are stationary parts 

where of the C S where there is no fluid entry or exit. So, various forces can act on the 

surfaces. For example, here whenever there is flow suppose I just exaggerate this entry 

whenever fluid is entering control surface into the C V then there are pressure forces that 

act on the control surface. 

So, that forms a force and whenever there is fluid flow in inside this C V also. At the 

surface itself there can be resisting forces due to shear stresses exerted by the wall on the 

fluid. So, both these forces, surface forces are in fact possible. 
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But, manier times in simple problems we neglect many cases, in many examples. It turns 

out that we neglect shear stresses and retain only the pressure forces. One has to look 

into the context and then make more judicious decision on whether shear stresses or in 

fact negligible or not but, in most cases it turns out that it can, one can get a rough 

answer by neglecting shear stresses just because of the fact that we do not have much 

idea about the drag forces that are exerted by the solid surfaces on the fluid. 

So, we merely neglect them but, while doing examples I will try to indicate where one 

can actually get an estimate and so on. But right now, we retain only pressure. So, the 

pressure, suppose you have a C V and this is a unit outward normal. The pressure acts in 

the direction of minus n pressure is a surface force but, it acts it is compressive in nature 

So, F S is integral over C S minus p d A. This is minus so that is the way you compute 

the surface force due to pressure on the control surface. 



(Refer Slide Time: 41:21) 

 

So, what is important here one when calculating the surface force due to pressure. 

Suppose, you have an entry and suppose you have an exit, this is your C V let us say. In 

the entry the pressure the outward unit normal to the flow is n while in the exit it is in the 

direction of flow. The flow is exiting like this while it is entering like this. So, what is 

important is the pressure acts in the direction opposite to the normal both here as well as 

here. So, the pressure here is acting like this here in the direction of minus n the pressure 

forces are acting like this here. 

So, one should not think that just because fluid is leaving the C V through this C S 

pressure forces are in this direction. Whenever a fluid leaves the just fluid just outside 

the control surface will tend to resist it is motion by exerting a pressure. So, regardless of 

the direction of motion the pressure is always in the direction opposite to the unit normal. 

So, that is the key thing, one should not apply wrong intuition that since the fluid is 

flowing out the pressure is in this direction. What we are looking at is a force exerted or 

experienced by the fluid that is leaving out of the C V. Due to the fluid that is just 

outside which therefore, will be in this direction. So, this is something that we have to 

understand so the momentum equation is a vector equation. 
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So, you can write it in terms of 3 scalar components the x component will be x 

component of the body force plus x component of the surface force is d dt. Let me first 

write the vector form of the momentum equation and then let me so F body plus F vector 

surface is d dt C V rho V d V plus C S rho V V dot n d A. 

So, the x component of this equation is F B x plus F S x is d dt. So, in this term the only 

vector is a vectors velocity vector V. So, to take the x component velocity vector V has x 

component U, y component V, z component W. So, rho U d V. In this term rho is a 

scalar; V dot n is a scalar. Even though V is a vector once you dotted with n it becomes a 

scalar, so, V dot n is a scalar. So, this is the only vector that is available to U is V and the 

x component of width is U and V dot n remains as such. 
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So similarly, the y component of F B y plus F S y is d dt over C V rho V d V plus C S 

rho V vector V dot n d A and the z component is F B z plus F S z is d dt rho W d V plus 

integral over C S rho W V dot n d A. So, these are three components of the momentum 

balance equation. When you apply the momentum balance equation to any problem, so, 

you will have to refer it to a particular coordinate system. Therefore, you will have to 

solve various components of the momentum balance. So, it is always useful to write it in 

a component form here I have the Cartesian coordinate system to indicate the various 

components. 

Now, another thing is to notice the role of pressure on the control surface. Suppose, you 

have a C V like this and the unit outward normal is like this the pressure is in the 

direction of minus unit outward normal. Now, so F pressure is integral p times minus n d 

A. 
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Suppose, if there is a uniform atmospheric pressure acting everywhere. If p is constant, 

let us say it is due to atmospheric pressure. In many applications you will find that you 

are C V is surrounded by atmospheric pressure and if that is an only pressure that is 

acting on a C V. If there is no other pressure that is acting then p is constant. 

So, F p is since p is constant you can pull it out minus also let me pull it out and d A. 

Now for any close surface if you take n like this and integrated over the surface it will be 

identically 0 just by symmetry it has to be 0. So, the net pressure force acting on a C V 

due to if the pressure is uniform is 0, like an atmospheric pressure but, in many cases the 

pressure you will have atmospheric pressure over and above some other pressure. 

So, the actual pressure force will be due to the difference between the pressure and 

atmospheric pressure in the direction of minus n d A. It is nothing but, the gage pressure 

because p minus p A is gage. So, the net pressure force is really because of the fact that 

there is a difference between the pressure force and the atmospheric pressure. If the only 

pressure is due to atmospheric pressure, it is completely constant it is uniform so it will 

give rise to 0. 
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So, the gage pressure comes naturally when you want to compute the net pressure force 

contribution on any control surface in a given problem in momentum balance. So, let me 

just recap, first of all some tips and before I recap momentum balance, some tips and 

applying the momentum balance. So, firstly you choose the C V and C S carefully such 

that you can evaluate all the terms in the volume and surface integral easily. (No Audio 

Time: 48:37 to 48:44). So, one tip is that suppose whenever you have flow in direction 

you choose the C S such that it is normal to the flow so that V dot n becomes a simple 

quantity to calculate that is one thing. 

So, the second point is, label carefully each inlet and outlet. And you must identify all 

the forces, all the external forces that are the surface forces importantly, carefully. Now, 

the surface forces as I told you are mainly due to pressure but, in some applications you 

will find that your C V will cut across a solid surface. 
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For example, let us say a fluid jet is impinging on a solid surface. Let us draw the solid 

surface with blue. This is the solid surface and a fluid jet is let us say coming and 

impinging on the solid surface and let us say it is going like this. Now let us say you are 

holding this solid surface in your hand and we choose the C V to be like this. So, this is 

the C V that you are choosing. Let us say fluid layer is leaving let us like this, like this 

and the C V is control surface is cutting across your hand. Now, this is the fluid jet that is 

coming impinging. 

Suppose, you want to on the solid surface and it is leaving. Suppose, want to calculate 

the force exerted by the fluid on this solid surface. The C V is really cutting through your 

hand. You have to include the reaction force exerted force by your hand on the solid as a 

part of external force, external surface force on the C V because otherwise this C V will 

not this solid surface will not remain stationary. Since the solid surface is remaining 

stationary this fluid which is impinging on the solid surface will induce the momentum 

transfer to the surface, which will have to be resisted by an external force, which is a 

reaction force by your hand. 

So, this must be included as a surface force because there is no other way we can account 

for this force this not a body force it happens only at the control surface where the C S 

the control surface cuts across your hand. So, that must be incorporated as a surface 

force. So, this is something that we will illustrate with the help of an example in the next 



lecture. So, we will stop here and we will continue from here from in the next lecture by 

illustrating how the integral momentum balance is applied to compute such forces. 

Thank you for your attention. 


